1 |
VON WEYL H.. Über beschränkte quadratische Formen, deren Differenz vollstetig ist. Rendiconti del Circolo Matematico di Palermo, 1909, 27 (1): 373- 392.
|
2 |
BERKANI M, KACHAD M.. New Browder and Weyl type theorems. Bulletin of the Korean Mathematical Society, 2015, 52 (2): 439- 452.
|
3 |
GUPTA A, MAMTANI K.. Weyl type theorems for unbounded hyponormal operators. Kyungpook Mathematical Journal, 2015, 55 (3): 531- 540.
|
4 |
HARTE R, LEE W.. Another note on Weyl’s theorem. Transactions of the American Mathematical Society, 1997, 349 (5): 2115- 2124.
|
5 |
DJORDJEVIĆ D S.. Operators obeying a-Weyl’s theorem. Publicationes Mathematicae Debrecen, 1999, 55 (3/4): 283- 298.
|
6 |
BERKANI M, ZARIOUH H.. Generalized a-Weyl’s theorem and perturbations. Functional Analysis, Approximation and Computation, 2010, 2 (1): 7- 18.
|
7 |
RASHID M H M.. Property $ (aw) $ and perturbations. Bulletin of the Belgian Mathematical Society-Simon Stevin, 2013, 20 (1): 1- 18.
|
8 |
REN Y X, JIANG L N, KONG Y Y.. Property $ (W_{E}) $ and topological uniform descent. Bulletin of the Belgian Mathematical Society-Smion Stevin, 2022, 29 (1): 1- 17.
|
9 |
DAI L, CAO X H, GUO Q.. Property $ (\omega) $ and the single-valued extension property. Acta Mathematica Sinica, English Series, 2021, 37 (8): 1254- 1266.
|
10 |
SUN C H, CAO X H.. Criteria for the property $ (UWE) $ and the a-Weyl theorem. Functional Analysis and Its Applications, 2022, 56 (3): 216- 224.
|
11 |
OUDGHIRI M.. Weyl’s theorem and perturbations. Integral Equations and Operator Theory, 2005, 53 (4): 535- 545.
|
12 |
OUDGHIRI M.. A-Weyl’s theorem and perturbations. Studia Mathematica, 2006, 2 (173): 193- 201.
|
13 |
AIENA P, TRIOLO S.. Weyl-type theorems on Banach spaces under compact perturbations. Mediterranean Journal of Mathematics, 2018, 15 (3): 1- 18.
|
14 |
TAYLOR A E.. Theorems on ascent, descent, nullity and defect of linear operators. Mathematische Annalen, 1966, 163 (1): 18- 49.
|
15 |
VLADIMIR M. Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras [M]. Switzerland: Birkhäuser Basel, 2003.
|
16 |
SCHMOEGER C.. Ein Spektralabbildungssatz. Archiv der Mathematik, 1990, 55, 484- 489.
|
17 |
CAO X H, GUO M Z, MENG B.. Weyl spectra and Weyl’s theorem. Journal of Mathematical Analysis and Applications, 2003, 288 (2): 758- 767.
|
18 |
AIENA P, BIONDI M T.. Property $ (\omega) $ and perturbations. Journal of Mathematical Analysis and Applications, 2007, 336 (1): 683- 692.
|