| 1 |
BASU C, HIRSH H, COHEN W, et al. Recommendation as classification [C]// Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence. ACM, 1998: 714-720.
|
| 2 |
WU C H, WU F Z, LYU L J, et al.. A federated graph neural network framework for privacy-preserving personalization. Nature Communications, 2022, 13 (1): 3091.
|
| 3 |
HU Y F, KOREN Y, VOLINSKY C. Collaborative filtering for implicit feedback datasets [C]// 2008 8th IEEE International Conference on Data Mining. IEEE, 2008: 263–272.
|
| 4 |
VOLKOVS M, YU G W, POUTANEN T, et al. DropoutNet: Addressing cold start in recommender systems [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. ACM, 2017: 4964-4973.
|
| 5 |
KANG W C, MCAULEY J. Self-attentive sequential recommendation [C]// 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 2018: 197-206.
|
| 6 |
QIAN T Y, LIANG Y L, LI Q, et al.. Attribute graph neural networks for strict cold start recommendation. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (8): 3597- 3610.
|
| 7 |
ZHAO X, REN Y, DU Y, et al. Improving item cold-start recommendation via model-agnostic conditional variational autoencoder [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2022: 2595-2600.
|
| 8 |
LEE H, IM J, JANG S, et al. MeLU: Meta-learned user preference estimator for cold-start recommendation [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019: 1073-1082.
|
| 9 |
WANG J L, DING K Z, CAVERLEE J, et al. Sequential recommendation for cold-start users with meta transitional learning [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2021: 1783-1787.
|
| 10 |
WEI T X, WU Z W, LI R R, et al. Fast adaptation for cold-start collaborative filtering with meta-learning [C]// 2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020: 661–670.
|
| 11 |
WU Z C, ZHOU X. M2EU: Meta learning for cold-start recommendation via enhancing user preference estimation [C]// Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2023: 1158-1167.
|
| 12 |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [EB/OL]. (2016-02-17)[2024-02-01]. https://arxiv.org/abs/1602.05629.
|
| 13 |
AMMAD-UD-DIN M, IVANNIKOVA E, KHAN S A, et al. Federated collaborative filtering for privacy-preserving personalized recommendation system [EB/OL]. (2019-01-29)[2024-02-01]. https://arxiv.org/abs/1901.09888.
|
| 14 |
LIN G Y, LIANG F, PAN W K, et al.. FedRec: Federated recommendation with explicit feedback. IEEE Intelligent Systems, 2021, 36 (5): 21- 30.
|
| 15 |
CHAI D, WANG L Y, CHEN K, et al.. Secure federated matrix factorization. IEEE Intelligent Systems, 2021, 36 (5): 11- 20.
|
| 16 |
LIN Y J, REN P J, CHEN Z M, et al. Meta matrix factorization for federated rating predictions [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2020: 981-990.
|
| 17 |
SOHN K, YAN X C, LEE H, et al. Learning structured output representation using deep conditional generative models [C]// Proceedings of the 29th International Conference on Neural Information Processing Systems. ACM, 2015: 3483-3491.
|
| 18 |
TIAN R Z, MAO Y Y, ZHANG R C. Learning VAE-LDA models with rounded reparameterization trick [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020: 1315–1325.
|
| 19 |
SUN F, LIU J, WU J, et al. BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer [C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. ACM, 2019: 1441-1450.
|
| 20 |
XIE X, SUN F, LIU Z Y, et al. Contrastive learning for sequential recommendation [C]// 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE, 2022: 1259–1273.
|
| 21 |
CHONG L, LIU X Y, ZHENG R Q, et al. CT4Rec: Simple yet effective consistency training for sequential recommendation [C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, 2023: 3901-3913.
|
| 22 |
WU C H, WU F Z, QI T, et al. FedCL: Federated contrastive learning for privacy-preserving recommendation [EB/OL]. (2022-04-21)[2024-02-01]. https://arxiv.org/abs/2204.09850.
|