Chemistry and Chemical Engineering

Preparation and fluorescence detection properties of ZnO nanostructure based on microdroplets

  • HUANG Binbing ,
  • XIE Yan ,
  • XIE Wenhui ,
  • ZHAO Zhenjie ,
  • LI Xin
Expand
  • Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China

Received date: 2019-04-03

  Online published: 2020-03-16

Abstract

In this paper, we discuss ZnO nanostructures synthesized by a hydrothermal method in a droplet microreactor. The microfluidic chip used integrates a multi-function unit that includes a T-channel for droplet formation, a Y-channel for droplet fusion, and an S-channel for rapid mixing and observation of the nanoparticle formation process. By adjusting the flow rates of the aqueous phase and the oil phase, we studied the morphology and size of droplets; fluorescence detection of the ZnO nanostructure synthesized, moreover, was evaluated by an FITC-labeled goat anti-bovine IgG. This work shows that ZnO nanostructures can be prepared by fluid dynamic coupling of droplets and that the morphology and size of the nanostructures vary with droplet size. When the flow rates of the oil phase, ammonia water, and ferric solution were 600, 30, and 90 μL/h, respectively, the ZnO nanostructure synthesized at 75 ℃ showed optimal fluorescence detection performance.

Cite this article

HUANG Binbing , XIE Yan , XIE Wenhui , ZHAO Zhenjie , LI Xin . Preparation and fluorescence detection properties of ZnO nanostructure based on microdroplets[J]. Journal of East China Normal University(Natural Science), 2020 , 2020(2) : 131 -139 . DOI: 10.3969/j.issn.1000-5641.201933001

References

[1] TONG H, OUYANG S X, BI Y P, et al. Nano-photocatalytic materials:Possibilities and challenges[J]. Advanced Materials, 2012, 24(2):229-251. DOI:10.1002/adma.201102752.
[2] LIM S Y, SHEN W, GAO Z Q. Carbon quantum dots and their applications[J]. Chemical Society Reviews, 2015, 44(1):362-381. DOI:10.1039/C4CS00269E.
[3] LI Q L, MAHENDRA S, LYON D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control:Potential applications and implications[J]. Water Research, 2008, 42(18):4591-4602. DOI:10.1016/j.watres.2008.08.015.
[4] HUANG X, ZENG Z Y, ZHANG H. Metal dichalcogenide nanosheets:preparation, properties and applications[J]. Chemical Society Reviews, 2013, 42(5):1934-1946. DOI:10.1039/c2cs35387c.
[5] GUO L X, SHI Y C, LIU X F, et al. Enhanced fluorescence detection of proteins using ZnO nanowires integrated inside microfluidic chips[J]. Biosensors and Bioelectronics, 2018, 99:368-374. DOI:10.1016/j.bios.2017.08.003.
[6] SURESH G, RAMANUJAN R V, CHONG T W, et al. Poly(N-isopropyl acrylamide) coated magnetite nanoparticles as contrast agents for magnetic resonance imaging[J]. Nanoscience and Nanotechnology Letters, 2015, 7(1):15-19. DOI:10.1166/nnl.2015.1944.
[7] DEATSCH A E, EVANS B A. Heating efficiency in magnetic nanoparticle hyperthermia[J]. Journal of Magnetism and Magnetic Materials, 2014, 354:163-172. DOI:10.1016/j.jmmm.2013.11.006.
[8] WANG Z L. From nanogenerators to piezotronics-A decade-long study of ZnO nanostructures[J]. MRS Bulletin, 2012, 37(9):814-827. DOI:10.1557/mrs.2012.186.
[9] ARYA S K, SAHA S, RAMIREZ-VICK J E, et al. Recent advances in ZnO nanostructures and thin films for biosensor applications:Review[J]. Analytica Chimica Acta, 2012, 737:1-21. DOI:10.1016/j.aca.2012.05.048.
[10] DORNIANI D, BIN HUSSEIN M Z, KURA A U, et al. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system[J]. Drug Design Development and Therapy, 2013(7):1015-1026.
[11] WANG H Y, XU L, WU Y Q, et al. Plasmon resonance-induced photoluminescence enhancement of CdTe/Cds quantum dots thin films[J]. Applied Surface Science, 2016, 387:1281-1284. DOI:10.1016/j.apsusc.2016.06.092.
[12] GIL S, SILVA J M, MANO J F. Magnetically multilayer polysaccharide membranes for biomedical applications[J]. Acs Biomaterials Science & Engineering, 2015, 1(10):1016-1025.
[13] ZHOU X T, LIN T H, LIU Y H, et al. Structural, optical, and improved field-emission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation[J]. Acs Applied Materials & Interfaces, 2013, 5(20):10067-10073.
[14] GUO L X, SHI Y C, ZHAO Z J, et al. Fabrication and fluorescence biodetection of ZnO nanorods using microfluidic technology[J]. Journal of Inorganic Materials, 2018, 33(10):1103-1109. DOI:10.15541/jim20180005.
[15] ALIVISATOS A P. Birth of a nanoscience building block[J]. Acs Nano, 2008, 2(8):1514-1516. DOI:10.1021/nn800485f.
[16] BURDA C, CHEN X B, NARAYANAN R, et al. Chemistry and properties of nanocrystals of different shapes[J]. Chemical Reviews, 2005, 105(4):1025-1102. DOI:10.1021/cr030063a.
[17] GAO M R, XU Y F, JIANG J, et al. Nanostructured metal chalcogenides:Synthesis, modification, and applications in energy conversion and storage devices[J]. Chemical Society Reviews, 2013, 42(7):2986-3017. DOI:10.1039/c2cs35310e.
[18] MARRE S, JENSEN K F. Synthesis of micro and nanostructures in microfluidic systems[J]. Chemical Society Reviews, 2010, 39(3):1183-1202. DOI:10.1039/b821324k.
[19] WANG J M, SONG Y J. Microfluidic synthesis of nanohybrids[J]. Small, 2017, 13(18):19.
[20] DUFFY D C, MCDONALD J C, SCHUELLER O J A, et al. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)[J]. Analytical Chemistry, 1998, 70(23):4974-4984. DOI:10.1021/ac980656z.
[21] CARRUTHERS C W, GERDTS JR C, JOHNSON M D, et al. A microfluidic, high throughput protein crystal growth method for microgravity[J]. PloS One, 2013, 8(11):e82298.
[22] FEUERBORN A, PRASTOWO A, COOK P R, et al. Merging drops in a teflon tube, and transferring fluid between them, illustrated by protein crystallization and drug screening[J]. Lab on a Chip, 2015, 15(18):3766-3775. DOI:10.1039/C5LC00726G.
[23] NIU G, RUDITSKIY A, VARA M, et al. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors[J]. Chemical Society Reviews, 2015, 44(16):5806-5820. DOI:10.1039/C5CS00049A.
[24] SAUTER C, DHOUIB K, LORBER B. From macrofluidics to microfluidics for the crystallization of biological macromolecules[J]. Crystal Growth & Design, 2007, 7(11):2247-2250.
[25] PHILLIPS T W, LIGNOS I G, MACEICZYK R M, et al. Nanocrystal synthesis in microfluidic reactors:Where next?[J]. Lab on a Chip, 2014, 14(17):3172-3180. DOI:10.1039/C4LC00429A.
[26] PAN L J, TU J W, MA H T, et al. Controllable synthesis of nanocrystals in droplet reactors[J]. Lab on a Chip, 2018, 18(1):41-56. DOI:10.1039/C7LC00800G.
[27] REDDY L H, ARIAS J L, NICOLAS J, et al. Magnetic nanoparticles:Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications[J]. Chemical Reviews, 2012, 112(11):5818-5878. DOI:10.1021/cr300068p.
[28] BARET J C. Surfactants in droplet-based microfluidics[J]. Lab on a Chip, 2012, 12(3):422-433. DOI:10.1039/C1LC20582J.
[29] COSSAIRT B M. Shining light on indium phosphide quantum dots:Understanding the interplay among precursor conversion, nucleation, and growth[J]. Chemistry of Materials, 2016, 28(20):7181-7189. DOI:10.1021/acs.chemmater.6b03408.
[30] DEMIANETS L N, KOSTOMAROV D V, KUZ'MINA I P, et al. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions[J]. Crystallography Reports, 2002, 47:S86-S98. DOI:10.1134/1.1529962.
[31] JANG J M, KIM S D, CHOI H M, et al. Morphology change of self-assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process[J]. Materials Chemistry and Physics, 2009, 113(1):389-394. DOI:10.1016/j.matchemphys.2008.07.108.
[32] LIZAMA-TZEC F I, GARCIA-RODRIGUEZ R, RODRIGUEZ-GATTORNO G, et al. Influence of morphology on the performance of ZnO-based dye-sensitized solar cells[J]. Rsc Advances, 2016, 6(44):37424-37433. DOI:10.1039/C5RA25618F.
[33] MOHAMMED M I, DESMULLIEZ M P Y. Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers:A review[J]. Lab on a Chip, 2011, 11(4):569-595. DOI:10.1039/C0LC00204F.
Outlines

/