Computer Science

High resolution panorama generation method for irregular cylindrical murals

  • Wei HE ,
  • Weiqing TONG
Expand
  • 1. School of Computer Science and Technology, East China Normal University, Shanghai 200062, China
    2. Shanghai Commercial Digital Printing Co. Ltd., Shanghai 200041, China

Received date: 2021-09-10

  Online published: 2022-11-22

Abstract

The issue of how to unfold an irregular cylindrical mural from the top surface of a cave corridor into a panorama is a challenge for researchers involved with ancient mural protection and secondary development. This paper presents a method of dividing cylindrical murals into many overlapping small areas for sampling firstly, and then stitching these sampled images into a panorama. The constituents of this method include the following key elements: ① Reconstructing the 3D model with the sampled image set; ② Mapping the image texture to the 3D model; ③ Fitting the reconstructed irregular 3D cylindrical surface to the ideal cylindrical surface which is closest to the original form; and ④ Projecting the mural of the ideal cylindrical surface to a panorama. The method proposed in this paper was verified on an actual cave image set. The experimental results showed that the proposed method can generate the panorama in full; moreover, there was no evidence of stitching traces or texture deformation on the panorama. The proposed method offers practical value for mural protection.

Cite this article

Wei HE , Weiqing TONG . High resolution panorama generation method for irregular cylindrical murals[J]. Journal of East China Normal University(Natural Science), 2022 , 2022(6) : 102 -122 . DOI: 10.3969/j.issn.1000-5641.2022.06.011

References

1 郑晓瑞. 林区无人机航拍图像拼接算法研究 [D]. 北京: 北京林业大学, 2020.
2 袁兴峰. 基于快速标定的车载全景影像系统设计与实现 [D]. 合肥: 合肥工业大学, 2020.
3 邹宇. 基于鱼眼相机的车载全景图像拼接技术研究 [D]. 南京: 南京航空航天大学, 2019.
4 王曼, 李涛. 视频拼接系统与我院手术示教系统的结合应用. 中国医疗设备, 2018, 33 (11): 168- 171.
5 代少升, 姚俐. 基于ROI的高精度红外全景拼接方法研究. 半导体光电, 2020, 39 (4): 306- 314.
6 ANUTA P E. Spatial registration of multispectral and multi-temporal digital imagery using fast Fourier transform techniques. IEEE Transactions on Geoscience Electronics, 1970, 8 (4): 353- 368.
7 KUGLIN C D, HINES D C. The phase correlation image alignment method [C]//Proceedings of IEEE International Conference on Cybernetics and Society. 1975: 163-165.
8 DE CASTRO E, MORANDI C. Registration of translated and rotated images using finite fourier transforms.. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9 (5): 700- 703.
9 DJAMDJI J P, BIJAOUI A, MANIERE R. Geometrical registration of images: The multiresolution approach. Photogrammetric Engineering and Emote Sensing, 1993, 59 (5): 645- 653.
10 LOWE D G. Object recognition from local scale-invariant features [C]//Proceedings of the 7th IEEE International Conference on Computer Vision. IEEE, 1999(2): 1150-1157.
11 LOWE D G. Distinctive image features from scale-invariant key-points [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
12 赵向阳, 杜利民. 一种全自动稳健的图像拼接融合算法. 中国图象图形学报, 2004, 9 (4): 417- 422.
13 BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF). Computer Vision and Image Understanding, 2008, 110 (3): 346- 359.
14 RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF [C]//2011 International Conference on Computer Vision. IEEE, 2011: 2564-2571.
15 BROWN M, LOWE D G. Automatic panoramic image stitching using invariant features. International Journal of Computer Vision, 2007, 74 (1): 59- 73.
16 GAO J H, KIM S J, BROWN M S. Constructing image panoramas using dual-homography warping [C]//Conference on Computer Vision and Pattern Recognition (CVPR) 2011. IEEE, 2011: 49-56.
17 LIN W Y, LIU S, MATSUSHITA Y, et al. Smoothly varying affine stitching [C]//Conference on Computer Vision and Pattern Recognition (CVPR) 2011. IEEE, 2011: 345-352.
18 ZARAGOZA J, CHIN T J, BROWN M S, et al. As-projective-as-possible image stitching with moving DLT [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2013: 2339-2346.
19 CHEN Y S, CHUANG Y Y. Natural image stitching with the global similarity prior [C]//European Conference on Computer Vision. Cham : Springer, 2016: 186-201.
20 YI K M, TRULLS E, LEPETIT V, et al. Lift: Learned invariant feature transform [C]//European Conference on Computer Vision. Cham : Springer, 2016: 467-483.
21 陈小杜. 基于改进AKAZE和RANSAC的全景图像拼接算法研究 [D]. 南昌: 南昌大学, 2020.
22 MELEKHOV I, YLIOINAS J, KANNALA J, et al. Relative camera pose estimation using convolutional neural networks [C]//International Conference on Advanced Concepts for Intelligent Vision Systems. Cham: Springer, 2017: 675-687.
23 FU Y, GUO T T, ZHAO X F. Intelligent splicing method of virtual reality Lingnan cultural heritage panorama based on automatic machine learning [J]. Mobile Information Systems, 2021: 8693436. DOI: 10.1155/2021/8693436.
24 刘礼铭. 基于三维重建的超高分辨率壁画快速数字化技术研究 [D]. 杭州: 浙江大学, 2016.
25 张园林. 基于三维模型的碑刻数字拓片生成技术及应用 [D]. 杭州: 浙江大学, 2018.
26 闫冰. 基于深度图的三维重建算法的优化研究 [D]. 杭州: 浙江大学, 2019.
27 李敏. 基于非朗伯光度立体的三维重建研究 [D]. 杭州: 浙江大学, 2020.
28 李淑芬. 基于局部几何约束的自适应特征匹配技术研究 [D]. 杭州: 浙江大学, 2020.
29 ULLMAN S. The interpretation of structure from motion. Proceedings of the Royal Series B, 1979, 203 (1153): 405- 426.
30 LOURAKIS M I A, ARGYROS A A. SBA: A software package for generic sparse bundle adjustment. ACM Transactions on Mathematical Software (TOMS), 2009, 36 (1): 1- 30.
31 SHEN S. Accurate multiple view 3D reconstruction using patch-based stereo for large-scale scenes. IEEE Transactions on Image Processing, 2013, 22 (5): 1901- 1914.
32 JANCOSEK M, PAJDLA T. Exploiting visibility information in surface reconstruction to preserve weakly supported surfaces [J/OL]. International Scholarly Research Notices, 2014: 798595. (2014-08-11)[2021-08-01]. https://doi.org/10.1155/2014/798595.
33 WAECHTER M, MOEHRLE N, GOESELE M. Let there be color! Large-scale texturing of 3D reconstructions [C]//European Conference on Computer Vision. Cham: Springer, 2014: 836-850.
34 TORR P H S, ZISSERMAN A. MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 2000, 78 (1): 138- 156.
Outlines

/