Physics and Electronics

Subwavelength lithium niobate film guided mode resonance structure design and second harmonic conversion efficiency optimization

  • Chunyu CAO ,
  • Minni QU ,
  • Wei XIE
Expand
  • 1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
    2. Center for Advanced Electronic Materials and Devices, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2022-05-10

  Online published: 2023-07-25

Abstract

The optical response characteristics of a subwavelength lithium niobate film guided-mode resonance metasurface were investigated via simulations. The influences of parameters such as the period, filling factor and etching depth of the etched micro–nano structure on the transmission spectrum were examined, and the effects of light sources with different polarization states and incidence angles on the spectral linewidth were imvestigated. Because of the asymmetric grating structure design, the bound states in the continuum (BIC) decay into a quasi-BIC mode with a high Q value (>10 000), and the second harmonic conversion efficiency of the subwavelength lithium niobate film increases by five orders of magnitude as a result of the local field enhancement effect of the bound state. The simulation results show that a high-efficiency conversion of the second harmonic can be realized in the ultraviolet band when the peak power density of the incident fundamental wave is on the order of ~1 GW/cm2, that is, the ultraviolet second harmonic conversion efficiency emitted after a single pass through the subwavelength lithium niobate film is up to 10–3 orders of magnitude. This study affords ideas and design schemes for improving the nonlinear response characteristics of a micro–nano structure and optical table interface system.

Cite this article

Chunyu CAO , Minni QU , Wei XIE . Subwavelength lithium niobate film guided mode resonance structure design and second harmonic conversion efficiency optimization[J]. Journal of East China Normal University(Natural Science), 2023 , 2023(4) : 127 -136 . DOI: 10.3969/j.issn.1000-5641.2023.04.014

References

1 WEIS R S, GAYLORD T K. Lithium niobate: Summary of physical properties and crystal structure. Applied Physics A, 1985, 37 (4): 191- 203.
2 WOOTEN E L, KISSA K M, YI-YAN A, et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6 (1): 69- 82.
3 ARIZMENDI L. Photonic applications of lithium niobate crystals. Physica Status Solidi (A), 2004, 201 (2): 253- 283.
4 GUARINO A, POBERAJ G, REZZONICO D, et al. Electro–optically tunable microring resonators in lithium niobate. Nature Photonics, 2007, 1 (7): 407- 410.
5 SOHLER W, HU H, RICKEN R, et al. Integrated optical devices in lithium niobate. Optics and Photonics News, 2008, 19 (1): 24- 31.
6 POBERAJ G, HU H, SOHLER W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser and Photonics Reviews, 2012, 6 (4): 488- 503.
7 BOES A, CORCORAN B, CHANG L, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser and Photonics Reviews, 2018, 12 (4): 1700256.
8 QI Y F, LI Y. Integrated lithium niobate photonics. Nanophotonics, 2020, 9 (6): 1287- 1320.
9 VOLK M F, SUNTSOV S, RüTER C E, et al. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing. Optics Express, 2016, 24 (2): 1386- 1391.
10 SIEW S Y, CHEUNG E J H, LIANG H D, et al. Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening. Optics Express, 2018, 26 (4): 4421- 4430.
11 WANG J, BO F, WAN S, et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation . Optics Express, 2015, 23 (18): 23072- 23078.
12 ZHANG M, WANG C, CHENG R, et al. Monolithic ultra-high-Q lithium niobate microring resonator . Optica, 2017, 4 (12): 1536- 1537.
13 LIN J T, YAO N, HAO Z Z, et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Physical Review Letters, 2019, 122 (17): 173903.
14 PAN A, HU C R, ZENG C, et al. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide. Optics Express, 2019, 27 (24): 35659- 35669.
15 WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562 (7725): 101- 104.
16 WANG C, ZHANG M, STERN B, et al. Nanophotonic lithium niobate electro-optic modulators. Optics Express, 2018, 26 (2): 1547- 1555.
17 HE M B, XU M Y, REN Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit?s?1 and beyond . Nature Photonics, 2019, 13 (5): 359- 364.
18 XU M Y, HE M B, ZHANG H G, et al. High-performance coherent optical modulators based on thin-film lithium niobate platform [J]. Nature Communications, 2020, 11(1): Article number 3911.
19 LU J J, SURYA J B, LIU X W, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica, 2019, 6 (12): 1455- 1460.
20 WANG C, ZHANG M, YU M J, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation [J]. Nature Communications, 2019, 10(1): Article number 978.
21 ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568 (7752): 373- 377.
22 JIANG H W, LIANG H X, LUO R, et al. Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities. Applied Physics Letters, 2018, 113 (2): 021104.
23 LI M X, LIANG H X, LUO R, et al. High‐Q 2D lithium niobate photonic crystal slab nanoresonators . Laser and Photonics Reviews, 2019, 13 (5): 1800228.
24 LI M X, LING J W, HE Y, et al. Lithium niobate photonic-crystal electro-optic modulator [J]. Nature Communications, 2020, 11(1): Article number 4123.
25 WANG C, LANGROCK C, MARANDI A, et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 2018, 5 (11): 1438- 1441.
26 WANG C, LI Z Y, KIM M H, et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides [J]. Nature Communications, 2017, 8(1): Article number 2098.
27 FEDOTOVA A, YOUNESI M, SAUTTER J, et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Letters, 2020, 20 (12): 8608- 8614.
28 LI Y, HUANG Z J, SUI Z, et al. Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation. Nanophotonics, 2020, 9 (11): 3575- 3585.
29 MA J J, XIE F, CHEN W J, et al. Nonlinear lithium niobate metasurfaces for second harmonic generation. Laser and Photonics Reviews, 2021, 15 (5): 2000521.
30 CARLETTI L, LI C, SAUTTER J, et al. Second harmonic generation in monolithic lithium niobate metasurfaces. Optics Express, 2019, 27 (23): 33391- 33398.
31 YUAN S, WU Y K, DANG Z Z, et al. Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity [J]. Physical Review Letters, 2021, 127(15) : 153901.
32 QUARANTA G, BASSET G, MARTIN O J F, et al. Recent advances in resonant waveguide gratings. Laser and Photonics Reviews, 2018, 12 (9): 1800017.
33 BYKOV D A, DOSKOLOVICH L L. Spatiotemporal coupled-mode theory of guided-mode resonant gratings. Optics Express, 2015, 23 (15): 19234- 19241.
34 HSU C W, ZHEN B, STONE A D, et al. Bound states in the continuum [J]. Nature Reviews Materials, 2016, 1(9): Article number 16048.
35 HSU C W, ZHEN B, LEE J, et al. Observation of trapped light within the radiation continuum. Nature, 2013, 499 (7457): 188- 191.
36 KANG L, BAO H, WERNER D H. Efficient second-harmonic generation in high Q-factor asymmetric lithium niobate metasurfaces . Optics Letters, 2021, 46 (3): 633- 636.
37 WU F, LUO M, WU J J, et al. Dual quasibound states in the continuum in compound grating waveguide structures for large positive and negative Goos-H?nchen shifts with perfect reflection [J]. Physical Review A, 2021, 104(2) : 023518.
38 WANG S S, MAGNUSSON R, BAGBY J S, et al. Guided-mode resonances in planar dielectric-layer diffraction gratings. Journal of the Optical Society of America A, 1990, 7 (8): 1470- 1474.
39 ZELMON D E, SMALL D L, JUNDT D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. ?% magnesium oxide-doped lithium niobate. Journal of the Optical Society of America B, 1997, 14 (12): 3319- 3322.
Outlines

/