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ABSTRACT
There continues to be unfading interest in developing parametric max-stable processes for mod-
elling tail dependencies and clustered extremes in time series data. However, this comes with
some difficulties mainly due to the lack of models that fit data directly without transforming the
data and the barriers in estimating a significant number of parameters in the existing models. In
this work, we study the use of the sparsemaxima ofmovingmaxima (M3) process. After introduc-
ing random effects and hidden Fréchet type shocks into the process, we get an extended max-
linearmodel. The extendedmodel then enables us tomodel cases of tail dependence or indepen-
dence depending on parameter values. We present some unique properties including mirroring
the dependence structure in real data, dealing with the undesirable signature patterns found in
mostparametricmax-stableprocesses, andbeingdirectly applicable to real data. ABayesian infer-
ence approach is developed for the proposedmodel, and it is applied to simulated and real data.

1. Introduction

With financial crisis having hit the global market at dif-
ferent times, the requirement on risk analysts to bet-
ter estimate risk has become stronger; hence, accurately
estimating risk measures such as value at risk (VaR) or
expected shortfall (ES) is increasingly important. It is
easily noticeable thatwhen an extremeprice drop or rise
happens in financial markets, there is a high likelihood
for such event to reoccur or continue within a short
period; therefore, studying the dependence structure of
risk variables especially within tail regions is important.

The pioneering work of Box and Jenkins (1970)
introduced the autoregressive and moving average
(ARMA)model to model dependence structure in time
series data. On the other hand, the works of Fisher,
Tippett, and Gnedenko (see Fisher & Tippett, 1928;
Gnedenko, 1943) on the maximum of the sequence of
independent and identically distributed random vari-
ables pioneered the study of extremes. The role of their
theorem with regard to maxima is analogous to that of
the central limit theorem with regard to sample means.
In the study of extremes and tail dependence, these
pioneering works have been followed by several other
proposals with varying objectives.

As attention to risk analysis continues to increase, the
extreme value theory which has been well applied in
diverse fields of studies like meteorology, geology and
finance remains a useful tool in describing the prop-
erties of the usually heavy-tailed risk variables. Look-
ing towards the extreme value theory, we can find some
parametric max-stable processes adaptable to various
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dependence structures over time that have been pro-
posed in different forms. Among them is themaxima of
movingmaxima (M3) process with the following repre-
sentation proposed by Deheuvels (1983),

Xt = max
l≥1

max
−∞<k<∞

αlkZl,t−k, −∞ < t < ∞, (1)

where {αlk, −� < k < �, l � 1} is an array of
non-negative parameters such that �lkαlk = 1 and
{Zlt, −� < t < �, l � 1} is an array of iid unit Fréchet
random variables i.e. FZ(z) = exp (−1/z) for z > 0.
Some other examples are the max-autoregressive mov-
ing average (MARMA) process in Davis and Resnick
(1989), the extension of the M3 process to the mul-
tivariate (maxima of moving maxima (M4) process)
case in Smith and Weissman (1996) and recently the
sparse moving maxima model (SM4R) in Tang, Shao,
and Zhang (2013).

Most of the aforementioned moving maxima mod-
els have some shortcomings we intend to address. First
is the difficulty in estimating parameters as a result of a
vast number of parameters and sometimes an infinite
number of them (e.g. the M3 process). Also, the dif-
ficulty can be attributed to the often complex nature
of the distribution functions of the models and their
structures. These challenges make models with a par-
simonious number of parameters more attractive. Sec-
ond is the difficulty in suiting the lag tail-dependence
structures in real data (see Zhang, 2005). Third is due
to the lack of the ability of mirroring real data because
of inherent signature patterns, that is, ratios of obser-
vations having constant values as shown in Figure 1

©  East China Normal University. All rights reserved.
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Figure . Left side: Signature pattern of MM() process with Xt ′+1/Xt ′ = (1 − α)/α = 1/3. It is shown in Zhang and Smith () that
signature patterns will occur infinitely many times in amovingmaxima processes. Right side: The loading constant α is replaced with
a uniform random variable on the interval [, ] to remove the signature pattern.

illustrated using theMM(1) process1. To overcome this,
we add random effects to the loading constants of our
sparsematrix as proposed in Tang et al. (2013). The use-
fulness of these random effects can be seen on the right-
hand side of Figure 1. Finally, the existing models are
often not directly applicable to fit real data. Rather, they
are often applied to fit transformed data, for example,
residuals extracted fromARMA-GARCHfilters utilised
by McNeil and Frey (2000) among others. In this work,
we aim to tackle these problems bymodifying somepre-
viously proposed models.

We employ sparsity in the dependence structure of
our model to better mirror real data and aid estimation
of parameters, while random effects are employed to
deal with signature patterns. Another advantage of our
proposed model is that it is directly applicable to data
without the usual requirement for complex transforma-
tions in the max-stable process framework. To tackle
the estimation problem, we develop a Bayesian infer-
ence approach.

In the subsequent sections, we proceed as follows.
Section 2 discusses our proposed max-linear model
and estimation approach. Simulation examples are pre-
sented in Section 3. We further apply our model to
real data of currency prices in Section 4 and con-
clude in Section 5. Proofs and graphs are provided in
Section 6.

2. Model

In this section, we propose a model for modelling tail
(in)dependence and clustering of extremes in univariate
financial time series data. We apply Bayesian inference
for parameter estimation using theMetropolis–Hasting
algorithm from Metropolis, Rosenbluth, Rosenbluth,

Teller, and Teller (1953) and Hastings (1970) in tan-
dem with the Gibbs sampling technique by Geman
and Geman (1984) in the so-called hybrid MCMC (see
Robert & Casella, 2004).

2.1. Model set-up

Our aim is to have a model whose implied dependence
structure well describes what is in real data, its parame-
ters can be well estimated, and it can be fitted to data
directly so that interpretation from inference can be
easier.

The literature (Smith & Weissman, 1996) showed
that extremal properties of stationary time series could
be studied using limiting max-stable processes. They
also showed that the maxima of moving maxima pro-
cess could be used to approximate a broad class of
max-stable processes. The univariate M3 process is,
therefore, a useful model for studying extremes and
clustering in stationary time series. Below is a definition
of a max-stable process which considers unit Fréchet
marginals. As for other extreme value settings, note that
transformation can bemade back and forth between the
extreme value type distributions.

Definition 2.1: A randomprocess {Xt, t= 1, 2, …}with
unit Fréchet marginals such that

Pn(Xt ≤ nxt , 1 ≤ t ≤ s) = P(Xt ≤ xt , 1 ≤ t ≤ s)
(2)

for any s � 1 and n � 1 is a max-stable process.

In our model set-up, we add sparsity and random
effects to the loading matrix of the M3 process. Note
that Zhang and Zhu (2016) proposed a similar model.
Here, we extend the model within the specification of
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random shocks. We, therefore, start with the following
form:

Vt = max [At · Zt ] , −∞ < t < ∞, (3)

where At · Zt is a component-wise product with

Zt =

⎛
⎜⎜⎜⎝
Z1t Z1,t−1 · · · Z1,t−L
Z2t Z2,t−1 · · · Z2,t−L
...

...
. . .

...
ZLt ZL,t−1 · · · ZL,t−L

⎞
⎟⎟⎟⎠ ,

and

At =

⎛
⎜⎜⎜⎝

α1U1t α1 (1 −U1t ) 0 · · · 0
α2U2t 0 α2 (1 −U2t ) · · · 0
...

...
...

. . .
...

αLULt 0 0 · · · αL (1 −ULt )

⎞
⎟⎟⎟⎠ .

We have max [At · Zt ] as the maximum of the compo-
nents of the matrix. αl � 0 for each l = 1,… , L and
�lαl = 1 (meaning Vt’s are marginally distributed as
unit Fréchet). {Zlt, l= 1,… , L,−� < t< �} are a dou-
ble sequence of iid unit Fréchet random variables. {Ult,
l = 1,… , L, −� < t < �} are iid random variables
on the interval [0,1] (uniformly distributed in our anal-
ysis and examples) independent of Zlt’s. Here, {αl} are
for scaling of the lag effects while {Ult} are for random
effects. These two together determine the dependence
structure in Vt.

The model in (3) which builds on the M3 pro-
cess specifies temporal dependence. However, there are
often transient effects or random shocks (not neces-
sarily unit Fréchet distributed) observable in real time
series. For example in financial data, there will be mar-
ket shocks that come and go away without any con-
tinuous impacts. To better mirror real data, we add
random shocks by introducing hidden max Fréchet
shock random variables (see for example Heffernan,
Tawn, & Zhang, 2007). This new addition also deter-
mines asymptotic dependence or independence struc-
ture of the model (see Proposition 2.2). We therefore
have,

Yt = max
(
Wt ,max

[
At · Zt

])
, −∞ < t < ∞.

(4)

{Wt, −� < t < �} is a sequence of iid Fréchet(β ,
1, τ ) random variables (with distribution function
exp (−(w − τ )−β) for w > τ ) independent of Zlt’s. β

> 0 is a shape parameter, τ ∈ R is a location parame-
ter and the scale parameter is fixed as 1. Based on the
above specifications, it should be noted thatWt and Vt
are independent processes. We also note that the exist-
ingmodels in the literature specified τ = 0. To have τ �=
0 makes the model more applicable to real data, which
also increases the estimation difficulty.

Our model in (4) has two parts, the sparse M3 part
and the hidden shock part. When β > 1, the hidden
shock is dominated by the sparse M3 process in the

upper tail region. The reverse is true when β < 1, while
neither dominates with β = 1. See the asymptotic prop-
erties in Proposition 2.2 for more details. As for the
location parameter, τ < 0 means the hidden shock has
a reduced impact in the lower tail region compared to
the sparseM3process, and the reverse is the case for τ >

0. See Figure A3 for illustration using the density func-
tions. β and τ therefore specify the role ofWt’s as shock
variables (or noise terms). An extreme value from Wt
implies thatYt will be largewhile extreme value fromZlt
implies Yt and Yt + l will likely both be large depending
on the scaling constants (αl’s) and random coefficients
(Ults’s).

It is unlikely, however, to observe data that will be on
the same scale as themodel in (4); hence, we scale it with
a parameter C. To further fit the shape of observable
datamore precisely, we add a shape parameterψ . These
parameterisations are reasonable. For example, the gen-
eralised extreme value distribution often applied to real
data has scale and shape parameters. Our final model is,
therefore, applicable to univariate financial time series
data without any complex transformation of the data.
Note that a data transformation can make interpreta-
tion of results difficult. Finally, we extend our model in
(4) in the following manner:

Xt = CY 1/ψ
t , −∞ < t < ∞, (5)

where C> 0 andψ > 0 are scale and shape parameters,
respectively.

Our models (4) and (5) share the same structure
of the models proposed in [26] where generalised
method of moments (GMM) estimation procedure was
utilised. In this work, we introduce an additional loca-
tion parameter τ and develop a Bayesian inference
approach which enables us to recover the strengths of
random shock effects ofWt and to estimate the location
parameter τ .

2.2. Model illustration

Two simulation examples of models (4) and (5) are
shown in Figure 2. These two examples are from the
same Vt and Wt latent processes. The parameters cho-
sen here are close to the estimated parameters in our
real data example in Section 4. The scaling parameters
in α (L set to 3), which determined the dependence
structure in Vt and hence in Yt and Xt, are set to (α1,
α2, α3) = (0.5, 0.3, 0.2).

To highlight the roles of the two latent processes,
using the same latent processes as the simulations in
Figure 2, we present more details in Figure 3. On the
left top-side we have the first 50 realisations. The dots
are values of the latent process Vt when it equals Yt. On
the top right, we have the 901st to the 950th realisations.
Similarly, the dots are values of the latent process Wt
when it equals Yt. As can be seen in the illustration, on
the left, when the realisations are high and coming from
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Figure . Simulation of models () (left) and () (right) with size = , (C, ψ , β , τ ) = (., , ., −.) and α = (., ., .). The
horizontal lines are the th percentiles.

Vt, they are high for extended periods. Although this
will not always be the case depending on the values of
scaling parameters in α and the random effects coming
from the pertinentUlt’s. On the right, it can be observed
that extreme realisations are isolated when they come
fromWt. Such a phenomenon is as a result of the inde-
pendence structure of the Wt process. At the bottom,
on the left of the figure, we present scatter plots of Yt
vs. Vt from the first 50 realisations. On the right, we
present scatter plots ofYt vs.Wt from the 901st to 950th
realisations. Points on the diagonal are indications of
when Yt equals the latent process, while points above
the diagonal are from observations where Yt is greater
than the latent process. Due to the specification of
β = 1.5 for the Frećhet processWt, the unit Frećhet Vt

dominates in the right tail region, again, see Figure A3.
As a result, Yt = Vt more often, therefore, there are
fewer values above the diagonal on the left than on the
right. It should be noted that ψ changes the impact of
extreme realisations in Yt significantly in Xt as can be
seen in Figures 2 and 4.

In Figures 4 and 5, we give more illustrations with
a change from (β , τ ) = (1.5, −0.5) to (β , τ ) = (0.7,
0.5). Vt remains the same as in the previous simulation
whileWt is different due to changes in shape and loca-
tion parameters although the underlying unit Fréchet
process remains the same. Comparing Figures 2 and
4, it can be seen that the values of Yt and Xt are sig-
nificantly higher in Figure 4. This observation is due
to the values of the β and τ , but more importantly
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β causing a heavier right tail. Comparing Figures 3 and
5, our observations in Figure 3 is quite different from
the observations in Figure 5. In Figure 5, with identical
time points as in Figure 3, it can be seen in the illustra-
tion on the top-left that there are more isolated extreme
realisations. This is due to the independent processWt
dominating in the right tail. On the right, it can still
be observed that extreme realisations are isolated when
they come fromWt. At the bottom, since Yt =Wt more
often, there are more values above the diagonal on the
left than on the right unlike in Figure 3.

2.3. Theoretical properties

To look at the theoretical properties of our model, we
first look at the distribution functions. The marginal

distribution of our model (4) is exp(− 1
(yt−τ )β

− 1
yt

) for
any yt > 0 and any index t, as shown in Section A.2.1.

The joint distribution takes the form:

P
(
Yt ≤ yt , 1 ≤ t ≤ r

) = E
[
P
(
Yt ≤ yt , 1 ≤ t ≤ r|U)]

for r � 1 and yt > 0. U is the set of all relevant random
variables on the interval [0, 1] and

P
(
Yt ≤ yt , 1 ≤ t ≤ r|U)

= exp

⎧⎨
⎩− r

(yt − τ )β
−

L∑
l=1

αl

⎡
⎣ r∑

j=max(r−l,0)+1

(
Ul j

y j

)

+
max(r−l,0)∑

j′=1

max
(
Ul j′

y j′
,
(1 −Ul, j′+l )

y j′+l

)
+

min(l,r)∑
j′′=1

(1 −Ul j′′ )

y j′′

⎤
⎦
⎫⎬
⎭ .

(6)
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We note that the marginal does not depend on α, but
the joint does. Hence, when β < 1, implyingWt is more
dominant in the right tail, the estimation of α becomes
harder than the estimation of α when β > 1, and the
difficulty levels increase when β < 1 gets smaller. See
Section A.2.2 for more detailed steps of the joint distri-
bution.

To investigate the temporal dependence, we apply
the asymptotic dependence index among other mea-
sures.

Definition 2.2: Two random variables X1 and X2 with
identical distribution function F are said to be asymp-
totically dependent (tail dependent) if,

lim
u→x+

P (X1 > u|X2 > u) > 0, (7)

where x+ = sup{x ∈ R : F(x) < 1}. If the limit of the
above conditional probability is equal to 0, we say that
X1 and X2 are asymptotically independent (tail inde-
pendent).

The above definition of asymptotic dependence
between two random variables is due to Sibuya (1959)
and an extension given by Ledford and Tawn (2003),
Zhang (2005) and Zhang and Huang (2006) is the lag-r
asymptotic dependence index defined as follows.

Definition2.3: LetX1,X2, …be a stationary time series
with distribution function F. If

λr = lim
u→x+

P (Xr+1 > u|X1 > u) > 0

while

lim
u→x+

P (Xr+k > u|X1 > u) = 0, k > 1,

where x+ = sup{x ∈ R : F(x) < 1}, we say that the
series is asymptotically dependent up to lag-r and λr is
the lag-r asymptotic dependence index.

Next, we look at the asymptotic properties based on
Definition 2.3 above. It should be noted that the asymp-
totic dependence index of model (4) is identical to that
of its counterpart, model (5), as the transformation is
continuous.

Proposition 2.1: The process (4) is lag-L asymptotically
dependent.

Proposition 2.2: The process (4) has asymptotic depen-
dence index λl as

� E
[
αl
(
min

[
Ult ,

(
1 −Ul,t+l

)])]
when β > 1;

�
E[αl(min[Ult ,(1−Ul,t+l )])]

2 when β = 1;
� 0 when β < 1,

for 1 � l � L. When l > L, λl = 0.

The proofs of Propositions 2.1 and 2.2 are provided
in Section A.2.4.

... Stationarity andmax-stablility
The next properties we look at are the stationarity of
model (4) and the max-stability of the sparse M3 part.
This is necessary as we aim to model stationary time
series data and we need max-stability following the ear-
lier stated results of Smith and Weissman (1996). From
(6) it can be seen that the process is stationary as

P
(
Y1 ≤ y1, . . . ,Yr ≤ yr

)
= P

(
Yk ≤ y1, . . . ,Yk+r−1 ≤ yr

)
for any r � 1 and k � 1. Also from (6), excluding the
random shock part (or when β = 1 and τ = 0), it can
be seen that the sparse M3 process is max-stable as
Definition 2.1 is satisfied.

Result 2.1: For any x> 0, the following holds formodel
(5),

P (Xt+l > x|Xt > x)

= 2 −
1 − exp

(
− 2

(y−τ )β
− 2

y

)
2 y2

α2
l

[
exp

(
αl
y

)
− αl

y − 1
]

1 − exp
(
− 1

(y−τ )β
− 1

y

) ,

where y = [ x
C

]ψ .
Result 2.1 can be used to study serial time depen-

dence and we also apply it in our estimation approach
for the αl’s. The proof of Result 2.1 is in Section A.2.3.

Result 2.2: A property of model (5) is that when τ = 0,
P(Xt � C) = exp (−2).

This is from the following and setting τ = 0 and xt =
C.

P (Xt ≤ xt ) = P
(
Yt ≤

[xt
C

]ψ
)

= exp

(
−
([xt

C

]ψ

− τ

)−β

−
[xt
C

]−ψ

)
.

2.4. Estimation approach

There are previous works in the literature on the esti-
mation of parameters of moving maxima processes.
For example, Tang et al. (2013) and Zhang and Zhu
(2016) used GMM due to Hansen (1982). Bootstrap
and empirical distribution techniques have also been
proposed by Hall, Peng, and Yao (2002), while Zhang
and Smith (2010) proposed the use of signature pat-
terns among other methods. Here, we use Bayesian
inference like Chamú-Morales (2005) and Kunihama,
Omori, and Zhang (2011). In this section, we discuss
relevant Markov chain Monte Carlo (MCMC) methods
based on Robert and Casella (2004) and Gelman, Car-
lin, Stern, and Rubin (2003), and then proceed to our
approach.
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Notation
Let �[S] = (�1, �2,… , �S) be a d-dimensional chain
and θ s

1:d = (
θ s
1, . . . , θ

s
d

)
be a d-dimensional vector real-

isation of �s for s = 1,… , S.
Our main focus here is on numerically evaluating

integrals of the form∫
g(θ1, . . . , θd )p(θ1, . . . , θd )dθ1 . . . dθd, (8)

without having to simulate samples directly from p
mostly due to difficulty of doing so.

... HybridMCMC
Since we have a multidimensional parameter space,
we apply the Metropolis–Hasting algorithm from
Metropolis et al. (1953) and Hastings (1970) in tan-
dem with the Gibbs sampling technique from Geman
and Geman (1984) in what is called the hybrid MCMC
shown below in Algorithm 1. Detailed discussion of our
estimation approach is given in Appendix A.1.

Algorithm 1: Hybrid MCMC
For k = 1, 2,… , d, from the most recent value(
θ s+1
1 , . . . , θ s+1

k−1, θ
s
k, . . . , θ

s
d

) ;
Step1.Generate �̃k ∼ qk

(
θk|θ s+1

1 , . . . , θ s+1
k−1, θ

s
k, . . . , θ

s
d

) ;
Step2. Set �s+1

k as follow:

�s+1
k =

{
�̃k, with probability P(θ s

k, �̃k),

θ s
k, with probability 1 − P(θ s

k, �̃k),

where

P(θk, θ̃k) = min

⎧⎨
⎩1,

pk
(
θ̃k|θ s+1

1:(k−1), θ
s
(k+1):d

)
pk
(
θk|θ s+1

1:(k−1), θ
s
(k+1):d

)

×
qk
(
θk|θ s+1

1:(k−1), θ̃k, θ
s
(k+1):d

)
qk
(
θ̃k|θ s+1

1:(k−1), θk, θ
s
(k+1):d

)
⎫⎬
⎭ .

3. Simulation

The aim is to see how comparable estimated values
are with true values. We have done extensive simula-
tions with various parameter values. In this section,
we present results for parameter values close to the
estimated values from real market data in Section 4.
We simulated a sample from model (5) with a size of
T = 5,000 and true parameter values as:

α = (α1, α2, α3) = (0.5, 0.3, 0.2),
C = 0.001, ψ = 2.0, β = 1.5, τ = −0.5.

We set δ = 0.2 for estimation of parameters in α and
the standard deviation for proposals chosen by trial-
and-error as σκ = 0.02, ση = 0.03, kζ = 4, k′

ζ = 0.01,
kτ = 5 and k′

τ = 0.005. For ρ l(x∗), we chose x∗ as the
90th percentile. The values were chosen so that we can

have an acceptance rate of about 40% each time we
attempted to change a transformation parameter and
about 25% for α (two parameters) as recommended by
Gelman, Roberts, andGilks (1996),Gelman et al. (2003)
for multidimensional problems. We ran the chain for
210,000 iterations and then discarded the first 10,000 as
burn-in period. Due to autocorrelation, we thinned the
remaining 200,000 by picking every 100th realisations
and keeping them as samples drawn.

To monitor convergence, we apply the following
diagnostic methods: (1) time plots to show the mix-
ing of the chains; (2) density plots to show the esti-
mated posterior distributions; (3) autocorrelation plots
to show the autocorrelation function of the kept sam-
ples; and (4) acceptance rate from the original samples,
which gives the ratio of the number of times that pro-
posals are accepted to the number of iterations.

The MCMC outputs are presented in Figure 6. They
include time plots, estimated posterior distributions,
and autocorrelation plots. Looking at the outputs and
results in Table 1 and Figure 6, we can conclude that our
estimation approach works well as we are able to suc-
cessfully recover true parameter values with reasonable
convergence measures.

In our tables, θp means 100× pth percentile and ‘Acc.
Rate’ means acceptance rate.

To further test convergence property of our estima-
tion approach, we use the test suggested byGelman et al.
(2003). For M > 1 parallel draws, each of length S, we
label each simulation drawn as {θ sm, s = 1,… , S, m =
1,… ,M}. Define

B = S
M − 1

M∑
m=1

(
θ̄.m − θ̄..

)2
, where,

θ̄.m = 1
S

S∑
s=1

θsm, θ̄.. = 1
M

M∑
m=1

θ̄.m,

W = 1
M

M∑
m=1

s2m, where,

s2m = 1
S − 1

S∑
s=1

(
θsm − θ̄.m

)2
,

then the variance between (B) and within (W)
sequences are compared. We can estimate the marginal
posterior variance, Vθ of each parameter, defined as a
weighted average of B andW in the following form,

Vθ = S − 1
S

W + 1
S
B.

Convergence can be monitored by checking the factor
by which the scale of the current distribution for θ can
be reducedwhen the chain is allowed to run indefinitely.
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Figure . Simulation Result .: Graph of MCMC results for all parameters of model (), showing time plot, estimated posterior distri-
bution and autocorrelation.

The scale factor takes the form,

R̂ =
√
Vθ

W

with R̂ → 1 as the size of the chains goes to �. In
Gelman et al. (2003), it was stated that R̂ < 1.1 is accept-
able for most examples.

Following this approach, we tested convergence as
follows. We ran M = 10 chains in parallel using the



100 T. IDOWU AND Z. ZHANG

Table . Results of estimation for simulation example of model ().

θ True Mean Std. Dev. θ. [θ., θ.] Acc. Rate

C . . .e- . [., .] .
ψ . . . . [., .] .
β . . . . [., .] .
τ −. −. . −. [−.,−.] .
α . . . . [., .] .
α . . . . [., .] .
α . . . . [., .] .

same simulated data and set-up as above. We let ran-
domly chosen starting points be dispersed over a certain
interval for each parameter. For C, we started between
0.0008 and 0.00012, and chose a starting point between
1 and 3 for β and ψ , while we started τ between −1
and 0. We started α1 and α2 between 0 and 0.5. We let
each chain run for 210,000 iterations and discarded the
first 10,000 as in the previous example. We, however,
did not thin the draws. The R̂ value for each param-
eter is presented in Table 2. The results suggest that
at 200,000 iterations, we attain convergence with each
chain.

To check for sensitivity to prior, instead of using the
unnormalised uniform priors on κ , η, ζ and τ (or log-
arithmic priors on κ , η, and ζ ) as used previously, we
use uniform priors on C, ψ and β over the range [0,
�). This implies that the prior densities then take the
form fκ�exp (κ), fη�exp (η), fζ �exp (ζ ) and for τ we
leave it as before since it is not reparameterised. Table 3
gives results from estimation on the same data using
the newly chosen priors (uniform priors) versus results
from the original priors (logarithmic priors). Although
both choices of priors are locally uniform, they are dif-
ferent. The logarithmic prior places lower likelihood on
larger values, hence penalising larger values, while the
uniform prior does not. Based on results in Table 3 and
several other runs, we conclude that results from both
are comparable.

Finally, as outputs in Table 1 and Figure 6 are based
on a single simulated sample, we further examined the
performance of our proposed estimation approach for
model (5) onmultiple samples. The results presented in
Table 4 are for 500 different simulated samples eachwith
a size of T = 5,000 and true parameter values chosen as
before.

To achieve this, we used parallel computing on a
computer with multiple cores. For each sample, since
the convergence was quickly reached, we let the chains
run for 20,000 iterations and discarded the first 5000.

Table . Results of sensitivity analysis for simulation example
of model ().

Mean Median

θ True Logarithmic Uniform Logarithmic Uniform

C . . . . .
ψ . . . . .
β . . . . .
τ −. −. −. −. −.
α . . . . .
α . . . . .
α . . . . .

We thinned the remaining 15,000 iterations by pick-
ing every 50th realisations and keeping the observed
median values from each sample. Hence, we had a total
of 500 estimated medians from each sample. Results of
the medians are presented in Table 4. The results fur-
ther suggest that our estimation approachworkswell for
multiple samples.

For more tests of our estimation approach on model
(5), we further tested the performance with the case
where β < 1. We simulated a sample from model (5)
with a size of T = 5000 and true parameter values as:

α = (α1, α2, α3) = (1/3, 1/3, 1/3) ,C = 0.0012,
ψ = 1.5, β = 0.7, τ = 0.5.

For estimation, we set δ = 0.6 for α, σκ = 0.02, ση =
0.045, kζ = 10, k′

ζ = 0.01, kτ = 20 and k′
τ = 0.005.

For ρ l(x∗), we chose x∗ as the 90th percentile. We ran
the chains for 210,000 iterations and then discarded
the first 10,000 as burn-in period. Due to autocorre-
lation, we thinned the remaining 200,000 by picking
every 100th realisations and keeping them as samples
drawn. Looking at the outputs and results in Table 5
and Figure A4, we can conclude that our estimation
approachworkswell aswe have been able to successfully
recover true parameter values with reasonable conver-
gence measures.

Table . Results of convergence test for simulation example of
model ().

θ C ψ β τ α α α

R̂ . . . . . . .
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Table . Results of estimation for  simulation examples, using
median values of the parameters from each simualtion. [Int. C.P.
means Interval Coverage Probability.]

θ True Mean Std. Dev. [θ., θ.] % Int. C.P.

C . . .e- [., .] .
ψ . . . [., .] .
β . . . [., .] .
τ −. −. . [−.,−.] .
α . . . [., .] .
α . . . [., .] .
α . . . [., .] .

4. Real data example

In this section, we carry out analysis of real data. We
consider the univariate time series of intra-daily max-
ima of exchange returns from the US Dollar (USD)
versus the Japanese Yen (JPY). The raw data contains
3-minute intra-daily prices for a time period between
31 December 2007, to 27 June 2013. The currencies
traded six days weekly from Sunday to Friday. Hence,
we have a total of 1720 trading days. There are four
missing days that were filled by interpolation. The
data was obtained from the University of Wisconsin-
Madison Business School database. For each 3-minute
period, we derived the negative log-return2 of the clos-
ing price versus the opening price, that is,

negative log-return = − log
closing price
opening price

.

We further derived the daily (block) maxima of these
values and used these as the values to which we applied

model (5). By taking block maxima, the distribution
of the observations is of the extreme value type. This
means we can apply extreme value approaches tomodel
tail dependence, clustering of extremes and to explain
the volatility of the series. The time plot of the intra-
daily maxima (which looks similar to the plot in
Figure 2) is available in Figure 7. We carried out aug-
mented Dickey–Fuller and Phillips–Perron tests, both
having p-values less than 0.01, suggesting that the series
is stationary as it appears to be. For the lag value L, we
chose L = 6 as there are six trading days each week.
Hence, we can capture up to weekly lag effects.

We apply our estimation approach to estimate
parameters that best fit the data. The values δ = 0.4,
σκ = 0.035, ση = 0.05, kζ = 2, k′

ζ = 0.01, kτ = 3
and k′

τ = 0.005 were chosen so that we could have an
acceptance rate of about 40% each time we attempted
to change a transformation parameter and about 25%
for α (5 parameters) as recommended by Gelman et al.
(1996) and Gelman et al. (2003) for multidimensional

Table . Results of estimation for simulation example of model ().

θ True Mean Std. Dev. θ. [θ., θ.] Acc. Rate

C . . .e- . [., .] .
ψ . . . . [., .] .
β . . . . [., .] .
τ . . . . [., .] .
α / . . . [., .] .
α / . . . [., .] .
α / . . . [., .] .

0.0
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Figure . Intra-daily maxima of the US Dollars vs. Japanese Yen -minute negative log-returns. The horizontal line is the th
percentile.
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Figure . Real data analysis of USD vs JPY: Graph of MCMC results for transformation parameters of model (), showing time plot,
estimated posterior distribution and autocorrelation.
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Figure . Real data analysis of USD vs JPY: Graph of MCMC results for alpha parameters of model (), showing time plot, estimated
posterior distribution and autocorrelation.
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Table . Results of estimation for real data example of intra-daily
maxima of -minute negative log-returns of USD vs. JPY.

θ Mean Std. Dev. θ. [θ., θ.] Acc. Rate

C .e- .e- .e- [.e-, .e-] .
ψ . . . [., .] .
β . . . [., .] .
τ −. . −. [−.,−.] .
α . . . [., .] .
α . . . [., .] .
α . . . [., .] .
α . . . [., .] .
α . . . [., .] .
α . . . [., .] .

problems. For ρ l(x∗), we chose x∗ as the 85th percentile.
We ran the chain for 210,000 iterations and then dis-
carded the first 10,000 as burn-in period. We thinned
the remaining 200,000 by picking every 50th realisa-
tions and keeping them as samples drawn.

Our results are presented inTable 6. TheMCMCout-
puts are presented in Figures 8 and 9. They include time
plots, estimated posterior distributions and autocorre-
lation plots. Looking at the outputs in Figures 8 and 9,
we can conclude that our estimation approach works
well with reasonable convergence measures. From the
posterior distributions in Table 6, the shape and scale
parameters are significantly different from 1 as the cred-
ible intervals do not contain 1. Also, the location param-
eter τ is significantly different from 0, as the poste-
rior mean of τ is −0.72, and the credible interval does
not contain 0. From probabilistic properties of model
4 and the values of the estimated parameters, the ran-
dom shock takes effect (Wt > Vt) about 30% of the
time. To see how our estimated values fit the data, we
use a quantile-quantile plot of real data versus simulated
data using mean values and median values juxtaposed
in Figure 10. The plots suggest that our estimates fit the
data well including in the right tail which is the main
objective.

5. Conclusion

We are able to develop a model for financial time
series, starting with the M3 process. Our model (5)
can directly fit the data type without any transforma-
tions. The model also deals with random signature pat-
terns and has sparsity in its loading matrix to better
mirror real data. Given moving maxima models were
often applied to filters obtained from some assumed
processes, our proposed model is widely applicable.

Our estimation approach has been demonstrated to
work. The use of adaptive jumping rules leads to the
convergence of Markov chains. We conclude that adap-
tively scaling jumping kernels by the magnitude of cur-
rent states gives stability to the samples drawn by the
MCMC algorithm. Our work also shows that Bayesian
inference can be useful in extreme value theory and esti-
mation in parametric moving maxima processes.

For future work, we could consider similar mod-
els applicable to non-stationary series. This task can be
achieved for example by havingC to be time dependent,
hence as Ct. Also, we could consider cases where the lag
dependence structure in our sparse M3 process is dif-
ferent, and the random coefficients could take other dis-
tributions on the [0,1] interval. For example, based on
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104 T. IDOWU AND Z. ZHANG

Beta or Dirichlet distributions. Our model can also be
extended to the multivariate case building on the mul-
tivariate maxima of moving maxima process (M4).

Notes

1. The process Xt = max {αZt, (1 − α)Zt − 1} is called an
MM(1) process where − � < t < �, α � (0, 1), Zt’s
are unit Fréchet random variables. If Zt ′ is considerably
larger than Zt ′+1 and Zt ′−1 then we would have Xt′+1

Xt′
=

(1−α)Zt′
αZt′

= (1−α)

α
.

2. A nice property of log-return is its time-additivity.
Let rt,k = log( pt

pt−k
), then rt,k = log( pt

pt−1

pt−1
pt−2

· · · pt−k+1
pt−k

) =
rt, 1 + rt − 1, 1 + ��� + rt − k, 1.

3. 3The subcase where C > min (X) and τ � 1 is not possi-
ble under the constraint.
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Appendix

A.. Estimation of parameters
Here, we give details of our estimation approach to
the directly applicable model (5). The goal is to draw
samples from the joint posterior distribution using
Algorithm 1.

The target distribution is the joint posterior distribu-
tion of parameters given observations x = (x1,… , xT).
The full set of parameters is:

θ = (
α, logC, logψ, logβ, τ

)
,

hence,

p (θ |x) = p
(
α, logC, logψ, logβ, τ |x) ,

x = (x1, . . . , xT ) . (A.1)

Based on Bayes’ theorem, we have:

p (θ |x) = p (x|θ ) p (θ )∫
p (x|θ ) p (θ ) d(θ )

∝ p (x|θ ) p(θ ),

(A.2)
where p(x|θ) is the likelihood of θ and p(θ) is its prior
density with prior independence assumed among the
parameters. We begin with some initial value θ1 that
satisfies model constraints. In our examples, we use
α1
l = 1/L for l = 1,… , L, ψ1 = 1, β1 = 1, τ 1 = 0 and

C1 = exp (−2) × 100th percentile of the data based on
Result 2.2. Numerically obtained maximum likelihood
estimates can also be used as there are no analytic solu-
tions.

We then iteratively draw S samples from θ |x with
steps as follows and densities later defined:

αs+1 ∼ p1
(
α|Cs, ψ s, βs, τ s, x

)
,

Cs+1 ∼ p2
(
C|αs+1, ψ s, βs, τ s, x

)
,

ψ s+1 ∼ p3
(
ψ |αs+1,Cs+1, βs, τ s, x

)
,

βs+1 ∼ p4
(
β|αs+1,Cs+1, ψ s+1, τ s, x

)
,

τ s+1 ∼ p5
(
τ |αs+1,Cs+1, ψ s+1, βs+1, x

)
,

for s = 1,… , S.

A.1.1. Sampling α. For α = (α1,… , αL) with
dimension L (model is up to lag-L), we assume a uni-
formprior, that is, f(α)� constant. For each of the first L
− 1 components of α, (α1,… , αL − 1), we generate pro-
posals as follows. For state s + 1 with the current state
as s, for each l = 1,… , L − 1, generate α̃l ∼ q1

(
αl |αs

l

)
where q1

(·|αs
l

)
is the density function of the uniform

distribution, Uni f
(
max

[
αs
l − δ, 0

]
,min

[
αs
l + δ, 1

])
,

with δ as a fixed disturbance. When we successfully
simulate (α̃1, . . . , α̃L−1) such that

∑L−1
l α̃l < 1, we set

α̃L = 1 −∑L−1
l α̃l . We therefore have

q1
(·|αs) =

L−1∏
l=1

1
min

[
αs
l + δ, 1

]− max
[
αs
l − δ, 0

] ,

which implies

q1 (αs|α̃)

q1 (α̃|αs)
=

L−1∏
l=1

min
[
αs
l + δ, 1

]− max
[
αs
l − δ, 0

]
min [α̃l + δ, 1] − max [α̃l − δ, 0]

.

For the likelihood, we use the tail dependence prop-
erties through the conditional probabilities of exceed-
ing a given threshold. For a high threshold value x∗,
we introduce, ρ l(x∗) = ρ l(x∗; α, C, ψ , β , τ ), nl(x∗) and
ωl(x∗) defined as follows:

ρl (x∗) = P
(
Xt+l > x∗|Xt > x∗)

= P

(
Yt+l >

[
x∗

C

]ψ ∣∣∣∣Yt >

[
x∗

C

]ψ
)

;

nl (x∗) =
T−l∑
t=1

I
(
Xt > x∗)

=
T−l∑
t=1

I

(
Yt >

[
x∗

C

]ψ
)

;

ωl (x∗) =
T−l∑
t=1

I
(
Xt+l > x∗|Xt > x∗)

=
T−l∑
t=1

I

(
Yt+l >

[
x∗

C

]ψ ∣∣∣∣Yt >

[
x∗

C

]ψ
)

=
T−l∑
t=1

Ilt (x
∗),

where I is the indicator function.E[Ilt (x∗)] = ρl (x∗) for
each t = 1,… , T − l.

Calculation of ρ l(x∗) is based on Result 2.1. From
many simulations, we find x∗ equal to the 85th, 90th and
95th percentiles appropriate.

With ρ̃l (x∗) = ρl (x∗; α̃,C, ψ, β, τ ) and treating the
Ilt (x∗)’s as Bernoulli random variables with the proba-
bility of success as ρ l(x∗), we have the likelihood for this
step as:

p1 (x|α̃,C, ψ, β, τ )

=
L∏

l=1

ρ̃l (x∗)ωl (x∗)(1 − ρ̃l (x∗))[nl (x
∗)−ωl (x∗)], (A.3)

p1 (x|α,C, ψ, β, τ )

=
L∏

l=1

ρl (x∗)ωl (x∗)(1 − ρl (x∗))[nl (x
∗)−ωl (x∗)]. (A.4)

We therefore accept α̃ = (α̃1, . . . , α̃L) with probabil-
ity:

P(αs, α̃) = min
{
1,

p1 (x|α̃,C, ψ, β, τ )

p1 (x|α,C, ψ, β, τ )

q1 (αs|α̃)

q1 (α̃|αs)

}
.

(A.5)

A.1.2. Sampling (log C, logψ, logβ, τ). Set κ =
logC, η = logψ and ζ = logβ . For all the steps, we use
unnormalised uniform priors. The prior densities fκ , fη,
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fζ and fτ are therefore flat over the range of possible val-
ues for each parameter. For the likelihood we have:

p (x|κ, η, ζ , τ )

= p (x|C, ψ, β, τ )

=
T∏
t=1

exp

{
−
([xt

C

]ψ

− τ

)−β

−
[xt
C

]−ψ

}
×

(A.6)[
β

([xt
C

]ψ

− τ

)−β−1

+
[xt
C

]−2ψ
][

ψ

C

[xt
C

]ψ−1
]

,

defined on the set {x :
[ x
C

]ψ − τ > 0} with C > 0, ψ >

0, β > 0 and τ ∈ R.
Given the constraint {x :

[ x
C

]ψ − τ > 0}, we look at
the range of values such that each parameter satisfies the
constraint. We define min (X) as the smallest value in
our observed data. We obtain the following ranges for
parameters.

� C > 0: Two cases, τ � 0 and τ > 0.
Case 1: When τ � 0;
Any C > 0 satisfies the constraint ⇒ log(C) ∈ R.
Case 2: When τ > 0;
C < min(X )

τ 1/ψ ⇒ log(C) < log
[
min(X )

τ 1/ exp(η)

]
.

� ψ > 0: Two cases. τ � 0 and τ > 0.
Case 1: When τ � 0;
Anyψ > 0 satisfies the constraint⇒ log(ψ) ∈ R.
Case 2: When τ > 0; Three subcases3;

Subcase 1: C < min (X) and 0 < τ < 1;
Any ψ > 0 satisfies the constraint ⇒ log(ψ) ∈
R.
Subcase 2: C < min (X) and τ � 1;
ψ >

log(τ )

log
(
min(X )

C

) ⇒ exp(η) >
log(τ )

log
(
min(X )

exp(κ)

) .
Subcase 3: C > min (X);
ψ <

log(τ )

log
(
min(X )

C

) ⇒ exp(η) <
log(τ )

log
(
min(X )

exp(κ)

) .

� β > 0:
Any β > 0 satisfies the constraint ⇒ log(β) ∈ R.

� τ ∈ R:
τ <

[
min(X )

C

]ψ

⇒ τ <
[
min(X )

exp(κ)

]exp(η)

.

We define T N
(
μ, σ 2, a, b

)
as a truncated normal

distribution with mean μ, variance σ 2, lower bound a
and upper bound b. For state s+ 1with the current state
as s, simulate proposals for each parameter based on
data and the current states of parameters as follows:

(1) κ̃ ∼ q2(κ|κ s) which is
T N

(
κ s, κ2

σ , −∞, log
[ min(X )

τ 1/ exp(ηs )

])
when τ > 0

and N (κ s, κ2
σ ) when τ � 0, the standard devi-

ation κσ is fixed so that the acceptance rate is
within the desired interval.

Accept κ̃ with probability:

min
{
1,

p (x|κ̃, ηs, ζ s, τ s) fκ (κ̃ )

p (x|κ s, ηs, ζ s, τ s) fκ (κ s)

q2(κ s|κ̃ )

q2(κ̃|κ s)

}
.

(2) η̃ ∼ q3(η|ηs) which is N
(
ηs, η2

σ

)
, the standard

deviation ησ is fixed so that the acceptance rate
is within the desired interval except in the fol-
lowing cases.
Case 1: exp (κ s) < min (X) and τ s � 1
exp(η̃) ∼ q3(exp(η)| exp(ηs)) which is
T N

(
exp(ηs), η2

σ ,
log(τ )

log
(

min(X )

exp(κs )

) , ∞)
, the stan-

dard deviation ησ is fixed so that the acceptance
rate is within the desired interval.
Case 2: exp (κ s) > min (X)
exp(η̃) ∼ q3(exp(η)| exp(ηs)) which is

T N
(
exp(ηs), η2

σ , 0, log(τ )

log
(

min(X )

exp(κs )

)
)
, the stan-

dard deviation ησ is fixed so that the acceptance
rate is within the desired interval.
Accept η̃ (or exp(η̃)) with probability:

min

{
1,

p
(
x|κ s+1, η̃, ζ s, τ s) fη(η̃)

p (x|κ s+1, ηs, ζ s, τ s) fη(ηs)

q3(ηs|η̃)

q3(η̃|ηs)

}
.

(3) ζ̃ ∼ q4(ζ |ζ s) which is N
(
ζ s, ζ 2

σ

)
, the standard

deviation ζσ = |ζ s|
kζ

+ k′
ζ . kζ > 0 and k′

ζ > 0 are
fixed so that the acceptance rate is within the
desired interval.
Accept ζ̃ with probability:

min

⎧⎨
⎩1,

p
(
x|κ s+1, ηs+1, ζ̃ , τ s

)
fζ (ζ̃ )

p (x|κ s+1, ηs+1, ζ s, τ s) fζ (ζ s)

q4(ζ s|ζ̃ )

q4(ζ̃ |ζ s)

⎫⎬
⎭ .

(4) τ̃ ∼ q5(τ |τ s) which is
T N

(
τ s, τ 2

σ , −∞,
[min(X )

exp(κ s)

]exp(ηs)), the standard
deviation τσ = |τ s|

kτ
+ k′

τ . kτ > 0 and k′
τ > 0 are

fixed so that the acceptance rate is within the
desired interval.
Accept τ̃ with probability:

min

{
1,

p
(
x|κ s+1, ηs+1, ζ s+1, τ̃

)
fτ (τ̃ )

p (x|κ s+1, ηs+1, ζ s+1, τ s) fτ (τ s)

q5(τ s|τ̃ )

q5(τ̃ |τ s)

}
.

Use of Adaptive Jumping Kernels. Adaptively scaling
jumping kernels has been shown to improve conver-
gence (see, for example, Pasarica & Gelman, 2010). In
items 3 and 4 above, where we sample for ζ and τ ,
we use adaptive jumping kernels. The reason for this
is the rapidly changing correlations between param-
eters in the model (for illustration, see Figure A2).
The correlations can sometimes lead to rapid increase
in the states of C and β while τ decreases rapidly
(for illustration, see Figure A1 ). This is the case even
under several re-parameterisations. However, by scal-
ing the jumping kernels by the magnitude of the cur-
rent state, we preempt such arbitrary fluctuations and
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Figure A. Simulation result: Graph of MCMC results showing
rapid fluctuation of parameters.

even when they occur, and then the chains quickly
move back to more probable states. The role of k′

ζ and
k′

τ is to help the chain move away from states where
ζ 	 0 (β 	 1) and τ 	 0, respectively. Without adap-
tively scaling jumping kernels, the chain could be stuck
within those regions for long periods and even stay still
in cases of equality.

A.. Proofs
A.2.1. Marginal distribution.

P (Xt ≤ xt ) = P
(
CY 1/ψ

t ≤ xt
)

= P
(
Yt ≤

[xt
C

]ψ
)

= P
(
Yt ≤ yt

)
= P

(
Wt ≤ yt

) · P (max [At · Zt ] ≤ yt
)

= exp
(

− 1
(yt − τ )β

)
·

L∏
l=1

P
(
αlUltZlt ≤ yt

)
· P (αl (1 −Ult )Zl,t−l ≤ yt

)
= exp

(
− 1

(yt − τ )β

)

· E

(
exp

( L∑
l=1

[
−αlUlt

yt
− αl (1 −Ult )

yt

]))

= exp
(

− 1
(yt − τ )β

− 1
yt

)
. (A.7)

A.2.2. Joint distribution. For r � 1, xt > 0 and yt >
0 where t = 1,… , r.

P (Xt ≤ xt , 1 ≤ t ≤ r) = E
[
P
(
Yt ≤ yt , 1 ≤ t ≤ r|U)] ,

yt =
[xt
C

]ψ

,
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where

P
(
Yt ≤ yt , 1 ≤ t ≤ r|U)

= P
(
Wt ≤ yt , 1 ≤ t ≤ r

)
· P (max [At · Zt ] ≤ yt , 1 ≤ t ≤ r|U) (A.8)

=
r∏

t=1

exp
(

− 1
(yt − τ )β

)

×
L∏

l=1

exp

⎧⎨
⎩−

⎡
⎣ r∑

j=max(r−l,0)+1

(
αlUl j

y j

)

+
max(r−l,0)∑

j′=1

max
(

αlUl j′

y j′
,
αl (1 −Ul, j′+l )

y j′+l

)

+
min(l,r)∑
j′′=1

αl (1 −Ul j′′ )

y j′′

⎤
⎦
⎫⎬
⎭

= exp

⎧⎨
⎩− r

(yt − τ )β
−

L∑
l=1

αl

⎡
⎣ r∑

j=max(r−l,0)+1

(
Ul j

y j

)

+
max(r−l,0)∑

j′=1

max
(
Ul j′

y j′
,
(1 −Ul, j′+l )

y j′+l

)

+
min(l,r)∑
j′′=1

(1 −Ul j′′ )

y j′′

⎤
⎦
⎫⎬
⎭ .

(A.9)

A.2.3. Proof of Result 2.1. For 1 � l � L and y =
(x/c)ψ .

ρl (x) = P (Xt+l > x|Xt > x) = P
(
Yt+l > y|Yt > y

)
.

P
(
Yt+l > y|Yt > y

)
= P

(
Yt+l > y,Yt > y

)
P
(
Yt > y

)
= P

(
Yt+l > y

)+ P
(
Yt > y

)− [
1 − P

(
Yt+l < y,Yt < y

)]
P
(
Yt > y

) .

(A.10)

P
(
Yt+l < y,Yt < y

) = E
[
P
(
Yt+l < y,Yt < y|U)]

= E

[
exp

(
− 2

(y − τ )β

−
[
2(1 − αl ) + αl

((
Ul,t+l + (1 −Ult )

)+ max
[
Ult ,

(
1 −Ul,t+l

)])
y

])]

= E

[
exp

(
− 2

(y − τ )β
−
[
2 + αl

((
Ul,t+l −Ult − 1

)+ max
[
Ult ,

(
1 −Ul,t+l

)])
y

])]

= E

[
exp

(
− 2

(y − τ )β
−
[
2 − αl

(
min

[
Ult ,

(
1 −Ul,t+l

)])
y

])]
.
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Figure A. Simulation Result .: Graph of MCMC results for all parameters of model (), showing time plot, estimated posterior dis-
tribution and autocorrelation.
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(A.10) equals

=
2
(
1 − exp

(
− 1

(y−τ )β
− 1

y

))
−
[
1 − E

[
exp

(
− 2

(y−τ )β
− 2

y + αl(min[Ult ,(1−Ur,t+l )])
y

)]]
1 − exp

(
− 1

(y−τ )β
− 1

y

)

= 2 −
E

[
1 − exp

(
− 2

(y−τ )β
− 2

y + αl(min[Ult ,(1−Ul,t+l )])
y

)]
1 − exp

(
− 1

(y−τ )β
− 1

y

) (A.11)

= 2 −
1 − exp

(
− 2

(y−τ )β
− 2

y

)
E

[
exp

(
αl(min[Ult ,(1−Ul,t+l )])

y

)]
1 − exp

(
− 1

(y−τ )β
− 1

y

) .

E

[
exp

(
αl
(
min

[
Ult ,

(
1 −Ul,t+l

)])
y

)]
= E

[
exp

(
αl (min [U1,U2])

y

)]

=
∫ 1

0

∫ u1

0
exp

(
αlu2
y

)
du2du1 +

∫ 1

0

∫ u2

0
exp

(
αlu1
y

)
du1du2

= 2
y2

α2
l

[
exp

(
αl

y

)
− αl

y
− 1

]
.

Therefore,

ρl (x) = P (Xt+l > x|Xt > x) = 2 −
1 − exp

(
− 2

(y−τ )β
− 2

y

)
2 y2

α2
l

[
exp

(
αl
y

)
− αl

y − 1
]

1 − exp
(
− 1

(y−τ )β
− 1

y

) .

A.2.4. Proofs of Propositions 2.1 and 2.2. Using Equation (A.11), for 1 � l � L and y = (x/c)ψ .

λl = lim
x→∞ P (Xt+l > x|Xt > x) = lim

y→∞ P
(
Yt+l > y|Yt > y

)

= lim
y→∞ 2 −

E

[
1 − exp

(
− 2

(y−τ )β
− 2

y + αl(min[Ult ,(1−Ul,t+l )])
y

)]
1 − exp

(
− 1

(y−τ )β
− 1

y

) .

From Taylor’s expansion and DCT, as y → �.
Case 1: β > 1,

2 −
E

[
1 − exp

(
− 2

(y−τ )β
− 2

y + αl(min[Ult ,(1−Ul,t+l )])
y

)]
1 − exp

(
− 1

(y−τ )β
− 1

y

)

= 2 −
E

[
2
y − αl(min[Ult ,(1−Ul,t+l )])

y

]
+ O

(
1
y

)
1
y + O

(
1
y

) ≈ E
[
αl
(
min

[
Ult ,

(
1 −Ul,t+l

)])]
.

Case 2: β = 1,

2 −
E

[
1 − exp

(
− 2

(y−τ )β
− 2

y + αl(min[Ult ,(1−Ul,t+l )])
y

)]
1 − exp

(
− 1

(y−τ )β
− 1

y

)

= 2 −
E

[
4
y − αl(min[Ult ,(1−Ul,t+l )])

y

]
+ O

(
1
y

)
2
y + O

(
1
y

) ≈ E
[
αl
(
min

[
Ult ,

(
1 −Ul,t+l

)])]
2

.
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Case 3: β < 1,

2 −
E

[
1 − exp

(
− 2

(y−τ )β
− 2

y + αl(min[Ult ,(1−Ul,t+l )])
y

)]
1 − exp

(
− 1

(y−τ )β
− 1

y

)

= 2 −
E

[
2
yβ

]
+ O

(
1
yβ

)
1
yβ + O

(
1
yβ

) ≈ 0.
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