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ABSTRACT
Stratified cluster randomisation trial design is widely employed in biomedical research and clus-
ter size has been frequently used as the stratifying factor. Conventional sample size calculation
methods have assumed the cluster sizes to be constant within each stratum, which is rarely
true in practice. Ignoring the random variability in cluster size leads to underestimated sam-
ple sizes and underpowered clinical trials. In this study, we proposed to directly incorporate the
variability in cluster size (represented by coefficient of variability) into sample size calculation.
This approach provides closed-form sample size formulas, and is flexible to accommodate arbi-
trary randomisation ratio and varying numbers of clusters across strata. Simulation study shows
that the proposed approach achieves desired power and type I error over a wide spectrum of
design configurations, including different distributions of cluster sizes. An application example is
presented.

1. Introduction

Cluster randomisation trials are widely employed in
biomedical research (Bland, 2004), where groups of
subjects (denoted as clusters) instead of individuals
serve as randomisation units. The advantages of cluster
randomisation trials include the ability to study inter-
ventions that are delivered in a grouped fashion (such
as a radio campaign) and the ability to control for ‘con-
tamination’ across individuals within a group.One issue
frequently encountered by practitioners is that natu-
rally occurring clusters are varying in size. Cluster size
may be associated with important cluster-level factors,
and it has been recognised as a surrogate for within-
cluster dynamics that predicts outcome in cluster ran-
domisation trials (Donner & Klar, 2000). The conven-
tional randomisation procedure might fail to achieve
balance in cluster size between intervention arms when
the number of clusters is moderate, which in turnmight
lead to biased estimation of intervention effect. One
possible solution is to adopt the stratified cluster ran-
domisation design where clusters are first grouped into
strata based on size (e.g., small, medium and large), and
then randomised within each stratum to intervention
arms. In the following, this design is denoted as size-
stratified cluster randomisation design.

To the best of our knowledge, there are only two
published papers that investigate sample size require-
ment for size-stratified cluster randomisation trials. In
the context of binary outcomes,Donner andKlar (1996)
presented a sample-size approach for size-stratified
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cluster randomisation trials. The null hypothesis tested
is that the odds ratio equals to one. This approach
is an extension of the sample-size formula developed
by Woolson, Bean, and Rojas (1986), based on the
Cochran–Mantel–Haenszel statistic (Mantel, 1963). In
the context of continuous outcomes, Lewsey (2004)
conducted a simulation study to assess the benefit of
stratified randomisation by cluster size when the clus-
ter size is associated with an important cluster-level fac-
tor which is otherwise unaccounted for in the analy-
sis. Both Donner and Klar (1996) and Lewsey (2004)
assume cluster sizes to be equal within, but differ-
ent across, strata. This assumption might be unreal-
istic because clusters are naturally formed with ran-
dom sizes. Practitioners are rarely able to construct
strata that consist of equal-sized clusters. A more likely
scenario is that each stratum contains clusters with
sizes of similar magnitude. It is hence more appropri-
ate to characterise the cluster sizes within a stratum
by a distribution (e.g., with specific mean and vari-
ance) instead of a single value (Lauer, Kleinman, &
Reich, 2015). Currently, the common practice is to plug
the average cluster size within each stratum into for-
mula to assess sample-size requirement. This approach,
however, ignores the additional variability caused by
random cluster sizes, which leads to underestimated
sample sizes and underpowered studies. Manatunga,
Hudgens, & Chen (2001) proposed a method that
incorporates the random variability in cluster size into
sample-size calculation for cluster randomisation trials.
Specifically, their approach modifies the conventional
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sample-size formula by a correction term that involves
the coefficient of variation of cluster sizes.

In this study, we propose to extend Manatunga’s
method to size-stratified cluster randomisation trials
where the outcome evaluated is continuous. This exten-
sion allows researchers to directly take randomvariabil-
ity in cluster size into consideration at the design stage.
Furthermore, the derived sample-size formula has a
closed form which is easy to use in practice. The rest of
the paper is organised as follows. In Section 2, deriva-
tion of sample-size formulas for size-stratified cluster
randomisation trials under two assumptions, constant
or random cluster size within stratum, are presented.
We also investigate how random variability in clus-
ter size affects sample-size requirement and what other
designing factors are involved. In Section 3, we con-
duct simulation studies to assess the performance of
the proposed approach under a wide range of design
configurations. An application example is presented in
Section 4. Finally, we discuss the pros and cons of the
proposed approach and potential future development in
Section 5.

2. Methods

We assume that in a cluster randomisation trial, the
clusters are grouped into L strata based on their sizes.
The number of clusters within each stratum is denoted
by Jl (l = 1,… , L). We assume the cluster sizes within
the lth stratum, denoted by nlj (j = 1,… , Jl), to be
independent samples from a certain discrete distribu-
tion with mean θ l and variance τ 2

l . The total sample
size of a stratified cluster randomisation trial is n =∑L

l=1
∑Jl

j=1 nl j, which depends on the number of strata
(L), the number of clusters in each stratum ( Jl), and
cluster sizes (nlj).

We use Ylji to denote the continuous outcome mea-
sured on the ith (i= 1,… , nlj) subject from the jth clus-
ter of the lth stratum, and xlj = 0/1 to indicate that all
patients in the (l, j)th cluster are assigned to the con-
trol/treatment arm. We use randomisation probability
r � P(xlj = 1) to generally accommodate balanced (r =
0.5) and unbalanced randomisation. We employ the
generalised estimating equation (GEE) approach (Liang
& Zeger, 1986), which only requires specifying models
for the first two moments of Ylji. The mean model is
specified as

E(Yl ji) = β0 + β1xl j, (1)

whereβ0 is the intercept representing the baselinemean
response under control, andβ1 represents the treatment
effect. The null hypothesis of interest isH0 : β1 = 0. The
covariance ofY l j = (Yl j1, . . . ,Yl jnl j )′, defined as �l j =
Var(Y l j), is assumed to be an nlj × nlj matrix with the
diagonal elements being σ 2 and off-diagonal elements
being ρσ 2. Here σ 2 is the variance of random error

and ρ is the intracluster correlation coefficient quanti-
fying the similarity of subjects within the same cluster
(Rutterford, Copas, & Eldridge, 2015; Zou & Donner,
2004). The observations are assumed to be independent
across clusters.

Define β = (β0, β1)
′, X l j = 1xl j and Zl j = (1,X l j).

Here 1 denotes a vector with all elements being 1. Then
we have E(Y l j) = Zl jβ. Using an independent working
correlation structure, it is easy to show that the GEE
estimator of β is

β̂ =
⎛
⎝ L∑

l=1

Jl∑
j=1

Z′
l jZl j

⎞
⎠

−1
L∑

l=1

Jl∑
j=1

Z′
l jY l j.

According to Liang and Zeger (1986), as n → �,√
n(β̂ − β) approximately follows a normal distribu-

tion with mean 0 and varianceV , which is consistently
estimated by

V̂ = n

⎛
⎝ L∑

l=1

Jl∑
j=1

Z′
l jZl j

⎞
⎠

−1 ⎛
⎝ L∑

l=1

Jl∑
j=1

Z′
l j êl j ê

′
l jZl j

⎞
⎠

×
⎛
⎝ L∑

l=1

Jl∑
j=1

Z′
l jZl j

⎞
⎠

−1

.

Here êl j = Y l j − Zl jβ̂ is the residual term.We rejectH0:
β1 = 0, if

√
n|β̂1|/σ̂1 > z1−α/2, where σ̂ 2

1 is the (2,2)th
element of V̂ , α is the level of two-sided type I error, and
z1 − α/2 is the 100(1 − α/2)th percentile of the standard
normal distribution.

After algebraical simplification, it can be shown that
σ 2
1 = limn→∞σ̂ 2

1 = n(v1 + v2) with

v1 = σ 2 ∑L
l=1

∑Jl
j=1 xl j

[
nl j + nl j

(
nl j − 1

)
ρ
]

(∑L
l=1

∑Jl
j=1 xl jnl j

)2 ,

v2 = σ 2 ∑L
l=1

∑Jl
j=1(1 − xl j)

[
nl j + nl j

(
nl j − 1

)
ρ
]

(∑L
l=1

∑Jl
j=1(1 − xl j)nl j

)2 .

Using the fact that E(nlj) = θ l and Var(nl j) = τ 2
l , for

large Jl, we have

v1 ≈ σ 2 ∑L
l=1 rJl

{
E

[
nl j + nl j

(
nl j − 1

)
ρ
]}

[∑L
l=1 rJlE

(
nl j

)]2

=
σ 2 ∑L

l=1 Jlθ
2
l

[
1
θl

(1 − ρ) + (
1 + ξ 2

l

)
ρ
]

r
(∑L

l=1 Jlθl
)2 .

Here ξ l = τ l/θ l is the coefficient of variation (CV)
within stratum l. Similarly, v2 can be approximated by

v2 ≈
σ 2 ∑L

l=1 Jlθ
2
l

[
1
θl

(1 − ρ) + (
1 + ξ 2

l

)
ρ
]

(1 − r)
(∑L

l=1 Jlθl
)2 .
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It is obvious that v1 = v2 under balanced randomisation
(r = 0.5).

The power analysis of a stratified cluster randomi-
sation trial requires the specification of the following
parameters: the type I error α, true treatment effect
b1, randomisation probability r, variance σ 2, intra-
cluster correlation coefficient ρ, the number of strata
L, the numbers of clusters within strata J = {Jl : l =
1, . . . , L}, the stratum-specific mean cluster sizes θ =
{θl : l = 1, . . . , L}, and the stratum-specific CVs ξ =
{ξl : l = 1, . . . , L}. The testing power under sample size
n = ∑L

l=1
∑Jl

j=1 nl j can be evaluated by

	

( |b1|√
v1 + v2

− z1−α/2

)
, (2)

where 	(·) is the standard normal cumulative distri-
bution function. This power analysis approach (2) is
flexible to accommodate a wide spectrum of realis-
tic trial scenarios, including unbalanced randomisa-
tion (through r), different numbers of clusters across
strata (through J = {Jl : l = 1, . . . , L}), arbitrary aver-
aged cluster sizes within strata (through θ = {θl : l =
1, . . . , L}), and different variability in cluster size within
each stratum (through ξ = {ξl : l = 1, . . . , L}.

Sample-size calculation is more complicated because
the total sample size n = ∑L

l=1
∑Jl

j=1 nl j ≈ ∑L
l=1 Jlθl

involves many variables: L and {( Jl, θ l) : l = 1,… , J}.
We explore a relatively simpler scenario of balanced
randomisation (r = 0.5) and equal number of clusters
across strata ( J1 = ��� = JL = J), to help understand the
impact of various parameters on sample-size require-
ment in a size-stratified cluster randomisation trial. By
setting Expression (2) to the target power 1− γ , we can
solve the required number of clusters per stratum ( J)
given L, θ = {θl : l = 1, . . . , L}, and other parameters:

J = 4(z1−α/2 + z1−γ )2σ 2

b21

·
∑L

l=1 θ2
l

[
1
θl

(1 − ρ) + (
1 + ξ 2

l

)
ρ
]

(∑L
l=1 θl

)2 . (3)

When L= 1, the second term in (3) simplifies to [ 1
θl
(1 −

ρ) + (1 + ξ 2
l )ρ], which is identical to the correction

term derived by Manatunga et al. (2001) for conven-
tional cluster randomisation trials with varying cluster
sizes.

When there is no variability in cluster size ξ l = 0 for
l = 1,… , L, and hence nlj = θ l, the number of clusters
per stratum required is

J∗ = 4(z1−α/2 + z1−γ )2σ 2

b21
·
∑L

l=1 θ2
l

[
1
θl

(1 − ρ) + ρ
]

(∑L
l=1 θl

)2 .

Wedefine the relative change in sample size due to vary-
ing cluster size by

R = J
J∗

− 1 = ρ
∑L

l=1 θ2
l ξ

2
l∑L

l=1 θ2
l

[
1
θl

(1 − ρ) + ρ
] . (4)

To investigate the impact of different factors on sample
size, we equivalently write R as

1
R

=
∑L

l=1 θ2
l∑L

l=1 θ2
l ξ

2
l

+
(
1
ρ

− 1
) ∑L

l=1 θl∑L
l=1 θ2

l ξ
2
l

. (5)

We have several observations:

� In real cluster randomisation trials, we usually
have 0 < ρ < 1. Under this assumption, (5) shows
that R is always positive. That is, variability in
cluster size always leads to increased sample-size
requirement. The common practice of using the
average cluster size in each stratum for sample-
size computation will lead to underpowered clini-
cal trials.

� More specifically, (5) shows a linear relationship
between 1/R and 1/ρ. The same variability in clus-
ter size would lead to a greater increase in sample
size when the intracluster correlation is stronger.

� Under the extreme case of ρ = 0, a cluster ran-
domised trial is equivalent to an individual ran-
domisation trial. The variability in cluster size has
no impact on sample size (R = 0).

� Equation (4) shows that R is a linear function of ξ 2
l

for every l = 1,… , L. That is, increased variabil-
ity of cluster size within any stratum would lead to
increase in the total sample size.

� When the CVs are equal across strata, ξ l = ξ for
l = 1,… , L, we can further simplify (5) as

1
R

= 1
ξ 2 + 1

ξ 2

(
1
ρ

− 1
) ∑L

l=1 θl∑L
l=1 θ2

l

= 1
ξ 2 + 1

ξ 2

(
1
ρ

− 1
)

θ̄

θ̄2 + s2θ
, (6)

where θ̄ = ∑L
l=1 θl/L and s2θ = 1

L
∑

(θl − θ̄2). θ̄ is
the overall mean of cluster sizes across strata. As
for s2θ , we borrow the concept of between-group
variability from ANOVA and consider s2θ a mea-
surement of between-stratum variability in cluster
size. Recall that within-stratum variability in clus-
ter size ismeasured by τ 2

l or ξ l (l= 1,… , L). Hence
(6) shows that a greater between-stratum variabil-
ity in cluster size is associated with a larger sample
size requirement, even if the overall mean of clus-
ter sizes (θ̄) remains the same.

For illustration, in Figure 1, we plot R versus ρ in a
simple scenario where the numbers of clusters and CVs
are equal across strata. Without loss of generality, we
set ξ = 1. Two sets of θ are explored: θ1 = {10, 30, 50}



124 J. WANG ET AL.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ

R

θ1 = (10, 30, 50)
θ2 = (20, 30, 40)

Figure . Percentage increase in sample size (R) versus intraclass correlation coefficient (ρ). The vertical axis corresponds to R and
the horizontal axis corresponds to ρ. We assume the numbers of clusters and CVs to be equal across strata. The common CV is set at
ξ = .

and θ2 = {20, 30, 40}. We can see that the curve corre-
sponding to θ1 is always higher than that correspond-
ing to θ2, because θ1 has a greater between-stratum
variability in cluster size than θ2 although their overall
mean cluster sizes are the same. It is noteworthy that the
assumed value of ξ only affects the range of the vertical
axis. The shape and relative position of the two curves
remain unchanged.

3. Simulation

We conduct simulation studies to assess the perfor-
mance of the proposed sample-size approach. We
assume that in a size-stratified cluster randomisation
trial, the clusters are stratified into L= 3 groups accord-
ing to their sizes: small, medium and large.We consider
two types of within-stratum distributions for the cluster
sizes: discrete uniform (DU) and zero-truncated neg-
ative binomial (tNB) distribution (Ahn, 1997; Speigel,
1975). Let m be an integer random variable, and the
probability mass function of DU(a, b) is

P (m) = 1
b− a + 1

, m ∈ {a, a + 1, . . . , b− 1, b} .

Here integers a and b (b � a) are the lower and upper
limits, respectively. The mean and variance of DU(a, b)

are

E (m) = (a + b) /2,

Var (m) = [
(b− a + 1)2 − 1

]
/12.

The probability mass function of tNB(s, P) is

P (m) = (s + m − 1)! (1 + P)−s [P/ (1 + P)]m

(s − 1)!m!
[
1 − (1 + P)−s] .

The mean and variance are

E (m) = sP/
[
1 − (1 + P)−s] , (7)

Var (m) = E (m)

{
1 + P − sP

[
(1 + P)−s][

1 − (1 + P)−s]
}

. (8)

In Scenario D1 we assume the distributions of cluster
sizes in the small, medium and large strata to be DU(1,
8), DU(9, 24) andDU(25, 100), respectively. In Scenario
D2, the distributions of cluster sizes are assumed to be
tNB, with parameters (s, P) solved to have matching
means and variances (and hence CV) to those under
Scenario D1. For example, DU(25, 100) corresponds to
mean θ l = 62.5, variance τ 2

l = 481.25 and CV ξ l =
0.35. Using Equations (7) and (8), we can solve for tNB
parameters s = 9.33 and P = 6.70. Details of D1 and D2
are presented in Table 1. Considering D1 and D2 in the
simulation study allows us to assess the robustness of
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Table . Specification of scenarios D and D.

Scenarios Mean Variance CV

Stratum D D (θ l) (τ 2
l ) (ξl )

 DU(, ) tNB(., .) . . .
 DU(, ) tNB(., .) . . .
 DU(, ) tNB(., .) . . .

the proposed sample-size approach to different distri-
butions of cluster sizes.

We set the levels of type I error at α = 0.05, power
at 1− γ = 0.9. We assume 1:1 randomisation (r= 0.5),
and consider five levels of intracluster correlation (ρ):
0.01, 0.02, 0.03, 0.05, 0.1, as well as three levels of true
treatment effect (b1): 0.2, 0.25, 0.3. Without loss of gen-
erality, we specify the true value of intercept β0 = 0 and
variance σ 2 = 1. We useD to indicate ScenariosD1 and
D2, which implicitly specifies themean (θ l) and CV (ξ l)
of cluster sizes in each stratum. We assume an equal
number of clusters across strata, and compute the num-
ber of clusters per stratumwith and without accounting
for variability in cluster size ( J and J∗) under each com-
bination of design parameters (α, γ , r, L, σ 2, β0, b1, ρ,
D). For each computed J, we assess the empirical power
according to the following algorithm: at iteration k, (k=
1,… , K):

(1) Based on the distributions specified in D, gen-
erate sets of cluster sizes within each stratum
n(k)
l = {n(k)

l1 , . . . , n(k)
lJ }, l = 1,… , L. The total

sample size is n(k) = ∑L
l=1

∑J
j=1 n

(k)
l j .

(2) For the (l, j)th (l = 1,… , L; j = 1,… , J)
cluster, generate treatment indicator x(k)

l j from
the Bernoulli distribution with probability r,
and the vector of observations Y (k)

l j from a
multivariate normal distribution with mean
1(β0 + x(k)

l j b1) andn
(k)
l j × n(k)

l j covariancematrix
σ 2[I(1 − ρ) + 11′ρ]. Here I indicates the iden-
tity matrix.

(3) Obtain estimates β̂
(k)
1 and σ̂

2(k)
1 .

The empirical power is estimated by∑K
k=1 I

{√
n|β̂ (k)

1 |/σ̂ (k)
1 > z1−α/2

}
/K. Here I{·} is an

indicator function. The total number of iterations is
set at K = 10000. The same algorithm can be used
to compute the empirical type I error by setting the
true treatment effect b1 = 0. The empirical power and
type I error for J∗ can be evaluated similarly, where
we simulate the situation that sample size is calculated
assuming constant cluster size but the cluster sizes are
actually random.

In Table 2, we present the estimated numbers of
clusters per stratum ( J and J∗) and empirical powers
under different design configurations. The empirical
powers corresponding to J are all close to their nominal

Table . Empirical power from , simulations for the fixed
cluster size method and proposed method.

b

ρ Method D . . .

. J∗ D .% () .% () .% ()
D .% () .% () .% ()

J D .% () .% () .% ()
D .% () .% () .% ()

. J∗ D .% () .% () .% ()
D .% () .% () .% ()

J D .% () .% () .% ()
D .% () .% () .% ()

. J∗ D .% () .% () .% ()
D .% () .% () .% ()

J D .% () .% () .% ()
D .% () .% () .% ()

. J∗ D .% () .% () .% ()
D .% () .% () .% ()

J D .% () .% () .% ()
D .% () .% () .% ()

. J∗ D .% () .% () .% ()
D .% () .% () .% ()

J D .% () .% () .% ()
D .% () .% () .% ()

Note: In each cell, we present empirical power (number of clusters per
stratum) under a combination of trial parameters.

levels, suggesting that the proposed method allows
size-stratified cluster randomisation trials to be ade-
quately powered in the presence of randomcluster sizes.
Furthermore, the performance of J is similar under D1
and D2, indicating the general applicability of the pro-
posed method to different distributions of cluster sizes.
On the other hand, if the variability in cluster size is
ignored, the sample sizes ( J∗) is underestimated, result-
ing in underpowered clinical trials. Note that due to the
integer constraint, J and J∗ are rounded to the same val-
ues under certain configurations (such as when b1 = 0.3
and ρ = 0.01 and 0.02). In such cases, the powers of
J and J∗ are identical. Table 2 also confirms our theo-
retical conclusion that intracluster correlation (ρ) has a
great impact on sample-size requirement.With all other
design parameters fixed, stronger intracluster correla-
tion is associated with larger sample sizes. For exam-
ple, under b1 = 0.2, the numbers of clusters ( J) under
ρ=0.01, 0.02, 0.03, 0.05 and 0.1 are 20, 27, 34, 48 and 83,
respectively. Finally, in Table 2, we have explored a wide
range of sample sizes ( J from 9 to 83), suggesting that,
although developed based on the large sample theory,
the proposed method can maintain the desired power
and type I error in scenarios where the sample size is
relatively small.

4. An application example

An investigator is interested in assessing the effect of
an information technology (IT)-based novel interven-
tion platform on the well-being of patients with a triad
of chronic kidney disease, diabetes and hypertension.
The size-stratified cluster randomisation design will be
employed. Patients are clustered by clinics, which are
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stratified by the size of clinic and randomly allocated at a
1:1 ratio to either the IT-based intervention group or the
control group (standard medical care) within each stra-
tum. Here, clinics are stratified to three groups – small,
medium and large – based on their sizes. Based on the
assignment of his or her clinic, each patient will receive
either the intervention or control treatment. The pri-
mary outcome of well-being will be measured using the
instrument of Bradley (1994) after three-month inter-
vention.We estimate the sample size based on the com-
parison of well-being scores between the control and
IT-based intervention groups. From preliminary data,
we observe that themeanof thewell-being score at three
months was 30 with a standard deviation of 12 across
all three strata in the control group.We hypothesise that
themeanwell-being scores in the IT-based intervention
groupwill be 10%higher than that in the standardmed-
ical care group. We assumed an equal standard devia-
tion between two groups, From a preliminary data-set,
we obtained an intracluster correlation coefficient (ρ)
of 0.03. To be conservative, we assume ρ = 0.05 for
sample-size calculation. The average cluster sizes (i.e.
the average numbers of patients in a clinic) are 5, 17 and
65 in the small, medium and large strata, respectively,
with variances 6, 25 and 500. With an equal number of
30 clinics for small, medium and large strata, the power
of the study is 90.13% at a two-sided 5% significance
level. When the number of clinics is unequal with 40,
30 and 20 clinics in small, medium and large strata, the
power of the study becomes 84.32%.

5. Discussion

In this study, we proposed a sample-size calculation
method for size-stratified cluster randomisation trials
which no longer requires the unrealistic assumption
of constant cluster size within each stratum. Further-
more, this method is flexible to accommodate arbi-
trary randomisation ratio and arbitrary numbers of
clusters within each stratum. The random variability
in cluster size is incorporated into sample-size formula
through CV, which only requires information about the
first two moments instead of the specific distribution,
improving the applicability of the proposed method in
practice. The simulation studies demonstrate robust
performance of this approach under different types of
distributions.

The proposed sample-size formulawas derived using
the independent working correlation structure, which
greatly simplifies computation (allowing us to obtain
a closed-form sample size formula) and the param-
eter estimators remain consistent (Crowder, 1995;
McDonald, 1993). It has been shown that the estimators
under the independent working correlation are highly
efficient compared with those under the true correla-
tion structure (Liang & Zeger, 1986). The slight loss in
efficiency due to not using the true correlation structure

means that the proposed approach provides a conserva-
tive estimation of sample size.

We have theoretically shown that random variabil-
ity in cluster sizes always leads to increased sample-size
requirement in realistic scenarios (intracluster correla-
tion 1 > ρ > 0). The common practice of assuming
equal cluster size (ignoring variability) within each stra-
tum for sample-size calculation underestimates sam-
ple size and results in underpowered clinical trials. We
further show that the impact of varying cluster sizes
depends on intracluster correlation. Stronger intraclus-
ter correlation is associated with greater increase in
sample size given the same variability in cluster size
(measured by CV).

The proposed sample-size method is developed for
size-stratified cluster randomisation trials with contin-
uous outcomes. In many cluster randomisation trials,
patients are followed longitudinally, contributing mul-
tiple measurements. Extending this approach to trials
with binary or ordinal outcomes, or longitudinal mea-
surements, will be the topic of our future research.
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