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ABSTRACT
Most studies of series system assume the causes of failure are independent, which may not hold
in practice. In this paper, dependent causes of failure are considered by using a Marshall–Olkin
bivariateWeibull distribution.We derived four reference priors based on several grouping orders.
Gibbs sampling combined with the rejection sampling algorithm andMetropolis–Hastings algo-
rithm is developed to obtain the estimates of the unknown parameters. The proposed approach
is compared with the maximum-likelihood method via simulation. We find that the root-mean-
squared errors of the Bayesian estimates are much smaller for the case of small sample size, and
that the coverage probabilities of the Bayesian estimates are much closer to the nominal levels.
Finally, a real data-set is analysed for illustration.

1. Introduction

In reliability and survival analysis, it is quite com-
mon that a series system or an individual might fail
because of one of several causes of failure (or compet-
ing risks). A researcher is interested in a specific cause
in the presence of other causes. In the statistical liter-
ature, this problem is known as the competing risks
model, and the series system is a typical competing risk
model. Data for a competing risks model may consist of
failure times and other variables indicating the causes
of failure, which may be dependent or independent.
Most of the literature assumes the causes of failure are
independent. See, for example, Kozumi (2004), Kundu,
Kannan, and Balakrishnan (2003), Pareek, Kundu, and
Kumar (2009), Mazucheli and Achcar (2011), Cramer
and Schmiedt (2011), Xu and Tang (2011), Xu, Basu,
and Tang (2014) and AL-Hussaini, Abdel-Hamid, and
Hashem (2015).

However, the independence assumption among the
causes of failure is often unrealistic. For instance, in a
tug of war, failure of a player causes additional pressure
on the team and poses an increased risk of failure to the
remaining members. In other words, a positive depen-
dence between failure times is imposed. Thus, the
causes of failure being dependent are more practical.
Wang and Ghosh (2003) studied dependent competing
risks model with absolutely continuous bivariate expo-
nential lifetime distribution under two non-informative
priors (Laplace prior and Jeffreys prior). Lindqvist and
Skogsrud (2009) have focused on modelling depen-
dent competing risks in reliability by considering first
the passage times of Wiener processes. Dijoux and
Gaudoin (2009) proposed an alert-delay model which
is a new model of dependent competing risks for
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maintenance and reliability analysis. Dimitrova,
Haberman, and Kaishev (2013) demonstrated how
copula functions can be applied in modelling depen-
dence between lifetime random variables in the context
of competing risks and studied the impact of removing
one or more causes of death on the overall survival.
When there is a positive probability of simultaneous
failure, the most widely used model is the Marshall–
Olkin bivariate lifetime model. The Marshall–Olkin
bivariate exponential (MOBE) model, proposed by
Marshall and Olkin (1967), has been used extensively
to analyse two dependent causes of failure. Guan,
Tang, and Xu (2013) considered the objective Bayesian
analysis of dependent competing risks model using
MOBE distribution. However, the MOBE distribution
is very limited, because the hazard function is constant
or the marginal function is strictly decreasing. Then
the Marshall–Olkin bivariate Weibull (MOBW) distri-
bution which was raised by Marshall and Olkin (1967)
can make up this deficiency, and has been long enjoyed
popularity in reliability (see Kundu & Dey, 2009;
Kundu & Gupta, 2013; and the references therein).
Feizjavadian and Hashemi (2015) developed the
maximum-likelihood estimators (MLEs) and approx-
imated MLEs of the unknown parameters when the
lifetime of the two causes of failure follows MOBW
distribution.

In this paper, Bayesian method will be used to anal-
yse dependent competing risksmodelwhen theMOBW
distribution is assumed. Both subjective Bayesian anal-
ysis and objective Bayesian analysis are popular in prac-
tice. Subjective Bayesian analysis is based on informa-
tive priors, i.e. conjugate prior. In such a case, the prior
information is used to specify the hyperparameters in
the prior distribution.However, prior distribution is not
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easy to elicit, especially in complexmodels. Then objec-
tive Bayesian analysis by using non-informative pri-
ors is preferred. The three most used non-informative
priors are Laplace prior (Laplace, 1812), Jeffreys prior
(Jeffreys, 1961) and reference prior (Bernardo, 1979).
Laplace prior uses a constant prior distribution for the
unknown parameters, which is quite easy to specify.
However, it is not invariant under reparameterisation,
and usually leads to an improper posterior distribution.
Jeffreys prior, which is proportional to the square root
of the determinant of the Fisher information matrix,
has been proved to be successful in single-parameter
problems.However, Jeffreys prior is often seriously defi-
cient in multi-parameter problems. To overcome the
deficiencies of the Jeffreys prior, Bernardo (1979) pro-
posed the reference prior which works well in multi-
parameter problems. It is invariant under reparameter-
isation and typically produces proper posteriors. The
reference prior is the Jeffreys prior in usual single-
parameter problems. This approach is very successful
in various practical problems (see Xu & Tang, 2010; Xu,
Tang, & Sun, 2015). Thus, we will consider noninfor-
mative priors for the unknown parameters in the pro-
posed model. To the best of our knowledge, we are the
first to develop Bayesian approach, especially objective
Bayesianmethod, to analyse dependent competing risks
model using the MOBW distribution. In particular, the
reference priors are formally derived, and the properties
of these reference priors are studied.

The paper is organised as follows. In Section 2, we
describe the MOBW model. The Fisher information
matrices under the original and transformed param-
eters are presented in Section 3. Section 4 is devoted
to derive four reference priors under different group-
ing orders. In Section 5, the propriety of the poste-
rior distribution under different reference priors are
proved, and the Gibbs sampling procedures are given to
obtain the Bayesian estimates. In Section 6, a simulation
is given for illustration. A real data-set is analysed in
Section 7. Finally, some concluding remarks aremade in
Section 8.

2. Marshall–Olkin bivariateWeibull
distribution

The MOBW model can be described as follows. It is
assumed thatU0,U1 andU2 are three independent ran-
dom variables, and

U0 ∼ WE(α, λ0), U1 ∼ WE(α, λ1), U2 ∼ WE(α, λ2),

where ∼ means following in distribution andWE(α, λ)
denotes aWeibull distribution with the parameters α >

0 and λ > 0. For a WE(α, λ) distribution, the proba-
bility density function (PDF), the cumulative distribu-
tion function (CDF) and the survival function (SF) for

x > 0 are

fWE(x; α, λ) = αλxα−1e−λxα

,

FWE(x; α, λ) = 1 − e−λxα

and SWE(x; α, λ) = e−λxα

,

respectively.
Let X1 = min {U0, U1} and X2 = min {U0, U2}, then

(X1, X2) has the MOBW distribution with the parame-
ters (α, λ0, λ1, λ2), and it will be denoted as MOBW (α,
λ0, λ1, λ2). Thus, the joint SF of MOBW (α, λ0, λ1, λ2)
can be written as

SX1,X2 (x1, x2)

= P(X1 > x1,X2 > x2)

= P(U1 > x1,U2 > x2,U0 > max{x1, x2})
= SWE (x1; α, λ1)SWE (x2; α, λ2)SWE (max{x1, x2}; α, λ0)

=

⎧⎪⎨
⎪⎩
SWE (x1; α, λ1)SWE (x2; α, λ0 + λ2), if x1 < x2,

SWE (x1; α, λ0 + λ1)SWE (x2; α, λ2), if x1 > x2,

SWE (x; α, λ0 + λ1 + λ2), if x1 = x2 = x.
(2.1)

Therefore, the joint PDF ofX1 andX2 can be written as

fX1,X2 (x1, x2) =
⎧⎨
⎩

f1(x1, x2), if x1 < x2,
f2(x1, x2), if x1 > x2,
f0(x), if x1 = x2 = x,

(2.2)

where

f1(x1, x2) = fWE(x1; α, λ1) fWE(x2; α, λ0 + λ2),

f2(x1, x2) = fWE(x1; α, λ0 + λ1) fWE(x2; α, λ2),

f0(x) = λ0

λ0 + λ1 + λ2
fWE(x; α, λ0 + λ1 + λ2).

From the above equations, we note that theMOBWdis-
tribution has both an absolute continuous part ( f1(x1,
x2) and f2(x1, x2)) and a singular part ( f0(x)). For more
details about the MOBW distribution, we can refer to
Bemis, Bain, and Higgins (1972) and Kundu and Dey
(2009).

3. Data and Fisher informationmatrix

3.1. Data and likelihood function

Suppose that a series system (or a disease) has two
causes of failure. The lifetime of the jth cause of failure
is Xj (j = 1, 2), and (X1, X2) ∼ MOBW (α, λ0, λ1, λ2).
Then the distribution of the lifetime of the series sys-
tem T = min (X1, X2) isWE(α, λ0 + λ1 + λ2). Assume
that there are n series systems in a lifetime experiment.
Let (X1i, X2i) be the lifetime of the two causes of fail-
ure in the ith system. Therefore, the observed data are
(Ti, δ1i, δ2i), i = 1, 2,… , n, where Ti = min (X1i, X2i),
δ1i = I(X1i < X2i), δ2i = I(X1i > X2i), I(A) denotes the
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indicator function of event A. Let λ = λ0 + λ1 + λ2, we
can obtain the following facts easily.

Lemma 3.1: For i = 1,… , n, we have

(1) X1i ∼ WE(α, λ0 + λ1), X2i ∼ WE(α, λ0 + λ2),
(2) Ti and (δ1i, δ2i) are independent,

(3) (δ1i, δ2i) ∼ multinomial
(
1; λ1

λ
,
λ2

λ

)
.

Denote n1 =∑n
i=1 δ1i, n2 =∑n

i=1 δ2i and
n0 =∑n

i=1(1 − δ1i − δ2i), given the observed data
(Ti, δ1i, δ2i), i = 1, 2,… , n, the likelihood function

is

L1 = αnλ
n0
0 λ

n1
1 λ

n2
2 exp

{
−λ

n∑
i=1

Tα
i

} n∏
i=1

Tα−1
i . (3.1)

Then the log-likelihood function can be written as

l1 = ln L1 = n lnα + n0 ln λ0 + n1 ln λ1 + n2 ln λ2

+(α − 1)
n∑

i=1

lnTi − (λ0 + λ1 + λ2)

n∑
i=1

Tα
i .

3.2. Fisher informationmatrix

The second-order partial derivatives of the log-
likelihood function are as follows:

∂2l1
∂α2 = − n

α2 − (λ0 + λ1 + λ2)

n∑
i=1

Tα
i (lnTi)2,

∂2l1
∂α∂λq

= −
n∑

i=1

Tα
i lnTi,

∂2l1
∂λ2

q
= −nq

λ2
q
,

∂2l1
∂λq∂λρ

= 0,

where q = 0, 1, 2, ρ = 0, 1, 2, q � ρ. Denote Yi =
λTα

i , i = 1, 2, . . . , n, then Yi follows the exponential
distribution with hazard rate 1. For ν � 1, let rν =∫∞
0 (ln y)νe−ydy, which is the νth moment of lnYi.
Then,

E
(
Tα
i lnTi

) = 1
αλ

(1 + r1 − ln λ) ,

E
[
Tα
i (lnTi)2

] = 1
α2λ

[
2r1+r2−2(r1+1) ln λ+(ln λ)2

]
.

After some algebraic calculations, we get

−E
(

∂2l1
∂α2

)
= nk(λ)

α2 ,

−E
(

∂2l1
∂α∂λq

)
= n

αλ
(1 + r1 − ln λ),

−E

(
∂2l1
∂λ2

q

)
= n

λλq
, −E

(
∂2l1

∂λq∂λρ

)
= 0,

where k(x)= 1+ 2r1 + r2 − 2(r1 + 1)ln x+ (ln x)2, q=
0, 1, 2, ρ = 0, 1, 2, q � ρ. Thus, the Fisher information
matrix of (α, λ0, λ1, λ2) has the following form:

�0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

nk(λ)

α2

n
αλ

(1 + r1 − ln λ)
n
αλ

(1 + r1 − ln λ)
n
αλ

(1 + r1 − ln λ)

n
αλ

(1 + r1 − ln λ)
n

λλ0
0 0

n
αλ

(1 + r1 − ln λ) 0
n

λλ1
0

n
αλ

(1 + r1 − ln λ) 0 0
n

λλ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

3.3. Reparameterisation

In practice, the engineers may be interested in the haz-
ard rate function of the series system, which is αλtα − 1.
λ affects the scale of the hazard rate function, and α will
determine whether the hazard rate function is decreas-
ing (0< α < 1), constant (α = 1) or increasing (α > 1).
Thus, we take the following transformation:

θ1 ≡ λ = λ0 + λ1 + λ2, θ2 = λ1

λ
, θ3 = λ2

λ
,

where θ2 and θ3 are the probabilities that the failure
of series system is due to the first and second causes
of failure, respectively. The transformation from (α, λ0,
λ1, λ2) to (α, θ1, θ2, θ3) is one-to-one with the inverse
transformation

α = α, λ1 = θ1θ2, λ2 = θ1θ3, λ0 = θ1(1 − θ2 − θ3).

After reparameterisation, the likelihood function (3.1)
becomes

L2 = αnθn
1 θ

n1
2 θ

n2
3 (1 − θ2 − θ3)

n0 exp

×
{

−θ1

n∑
i=1

Tα
i

} n∏
i=1

Tα−1
i . (3.2)

The Jacobian matrix of the transformation is

H = ∂(α, λ0, λ1, λ2)

∂(α, θ1, θ2, θ3)
=

⎛
⎜⎜⎜⎜⎝
1 0 0 0
0 1 − θ2 − θ3 −θ1 −θ1
0 θ2 θ1 0
0 θ3 0 θ1

⎞
⎟⎟⎟⎟⎠ ,

where 0 < θ1 < �, 0 < θ2 + θ3 < 1.
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Lemma 3.2: The Fisher informationmatrix of (α, θ1, θ2,
θ3) has the following form:

� = H
′
�0H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

nk(θ1)
α2

n(1 + r1 − lnθ1)
αθ1

0 0
n(1 + r1 − lnθ1)

αθ1

n
θ2
1

0 0

0 0
n
θ2

+ n
1 − θ2 − θ3

n
1 − θ2 − θ3

0 0
n

1 − θ2 − θ3

n
θ3

+ n
1 − θ2 − θ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Due to the practical meanings of (α, θ1, θ2, θ3), all
the derivations will be based on the new parameters in
the following sections. If one is interested in the original
parameters, the proposed method in this paper is also
suitable.

4. Reference priors

Berger and Bernardo (1992) developed a general algo-
rithm to derive the reference prior. The algorithmneeds
to divide the parameters into several groups according
to the importance of interest. Jeffreys prior treats all
the parameters equally, and is shown to yield a decid-
edly inferior posterior distribution in multivariate-
parameter problems (Yang & Berger, 1994). Sometimes,
Jeffreys prior will result in an inconsistent estimator of
the parameters. The benefit of grouping the parame-
ters is that the prior can be obtained in terms of infer-
ential importance of parameters, and usually results
in a proper posterior distribution. Thus, before deriv-
ing the reference priors, we should divide the parame-
ters {α, θ1, θ2, θ3} according to the inferential impor-
tance. For example, the notation {α, (θ1, θ2, θ3)} will
be used to represent the case that the parameters are
divided into two groups, with α being the most impor-
tant and θ1, θ2, θ3 being of equal importance. Similarly,
{α, θ1, (θ2, θ3)} represents that the parameters are sep-
arated into three groups, with α being the most impor-
tant and (θ2, θ3) being the least important. Ghosh and
Mukerjee (1991) and Berger and Bernardo (1992) sug-
gested that switching the role of the parameters of inter-
est and nuisance parameters sometimes gives a rea-
sonable reference prior. We will consider the grouping
orders {(α, θ1), (θ2, θ3)}, {(θ2, θ3), (α, θ1)}, {α, (θ1, θ2,

Table . Possible reference prior of (α, θ , θ , θ ).

Ordered Reference prior Reference prior for
grouping for (α, θ , θ , θ ) (α, λ, λ, λ)

{(α, θ ), (θ , θ )} ω(α, θ , θ , θ ) π (α, λ, λ, λ)
{(θ , θ ), (α, θ )} ω(α, θ , θ , θ ) π (α, λ, λ, λ)
{(θ , θ ), α, θ } ω(α, θ , θ , θ ) π (α, λ, λ, λ)
{α, (θ , θ , θ )} ω(α, θ , θ , θ ) π (α, λ, λ, λ)
{α, θ , θ , θ } ω(α, θ , θ , θ ) π (α, λ, λ, λ)
{θ , θ , θ , α} ω(α, θ , θ , θ ) π (α, λ, λ, λ)
{θ , (α, θ , θ )} ω(α, θ , θ , θ ) π(α, λ, λ, λ)
{(θ , θ ), θ , α} ω(α, θ , θ , θ ) π(α, λ, λ, λ)

θ3)}, {(θ2, θ3), α, θ1}, {α, θ1, θ2, θ3}, {θ3, θ2, θ1, α}, {θ1,
(α, θ2, θ3)}, {(θ2, θ3), θ1, α}.

Theorem 4.1: The possible grouping ordering reference
priors of (α, θ1, θ2, θ3) are listed in Table 1, and

ω1(α, θ1, θ2, θ3) = 1√
α2θ2

1 θ2θ3(1 − θ2 − θ3)
,

π1(α, λ0, λ1, λ2) = 1√
α2λ3λ0λ1λ2

,

ω2(α, θ1, θ2, θ3) = 1√
α2θ2

1 θ2θ3(1 − θ2)(1 − θ2 − θ3)
,

π2(α, λ0, λ1, λ2) = 1√
α2λ2λ0λ1λ2(λ0 + λ2)

,

ω3(α, θ1, θ2, θ3) = 1√
α2θ2

1 θ2θ3(1−θ3)(1−θ2−θ3)k(θ1)
,

π3(α, λ0, λ1, λ2) = 1√
α2λ2λ0λ1λ2(λ0 + λ1)k(λ)

,

ω4(α, θ1, θ2, θ3) = 1√
α2θ2

1 θ2θ3(1 − θ2 − θ3)k(θ1)
,

π4(α, λ0, λ1, λ2) = 1√
α2λ3λ0λ1λ2k(λ)

.

See the proof in the Appendix 1.

Remark 4.1: From Table 1, it can be noted that there
are four different reference priors for the eight group-
ing orders. Actually, the number of grouping orders is
much greater than eight. We choose the eight group-
ing orders because they have some practical meanings.
For example, the grouping order {(θ2, θ3), (α, θ1)} can
reflect our interest of the failure probabilities of series
system due to the first and second causes of failure.
While the grouping order {α, (θ1, θ2, θ3)} indicates that
more attention is paid to the shape parameter of the
MOBW distribution. Of course, someone could choose
some other grouping orders. However, the closed form
of the reference priormay not be obtained. For instance,
when the grouping order is {θ1, θ2, θ3, α}, the refer-
ence prior does not have closed form. If all the param-
eters are interested, the overall objective priors (Berger,
Bernardo, & Sun, 2015) may be considered. However,
the derivation of the overall objective priors ismuch dif-
ferent from the reference priors. and it is not the scope
of our paper. In the following sections, we will study the
properties of the four reference priors in detail.
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5. Posterior analysis

5.1. Propriety of the posteriors

Since the reference priors listed in Table 1 are improper,
we need to check the propriety of the posteriors before
doing the Bayesian analysis.

Theorem 5.1: When n > 1, the posterior distributions
of (α, θ1, θ2, θ3) based on the priors ω1(α, θ1, θ2, θ3),
ω2(α, θ1, θ2, θ3), ω3(α, θ1, θ2, θ3), ω4(α, θ1, θ2, θ3) are
all proper.

See the proof in the Appendix 2. Theorem 5.1 shows
the conditions that the reference priors can be used
when at least two failures are observed in the experi-
ment.

5.2. Bayesian estimation

For the sake of convenience, we write the reference pri-
ors in a general way:

ω(α, θ1, θ2, θ3) =
1√

α2θ2
1 θ2θ3(1−θ2−θ3)(1−θ2)c1 (1−θ3)c2 (k(θ1))c3

,

(5.1)

where c1, c2 and c3 take the particular values when one
of the reference priors is used. For example, whenω1(α,
θ1, θ2, θ3) is used, c1 = c2 = c3 = 0. Based on (3.2) and
(5.1), the joint posterior density of (α, θ1, θ2, θ3) is

p(α, θ1, θ2, θ3|Data)
∝ L2 × ω(α, θ1, θ2, θ3)

∝ αn−1θn−1
1 θ

n1− 1
2

2 θ
n2− 1

2
3

× (1 − θ2 − θ3)
n0− 1

2 exp

{
−θ1

n∑
i=1

Tα
i

}( n∏
i=1

Tα−1
i

)

× (1−θ2)
−c1/2(1−θ3)

−c2/2 (k(θ1))−c3/2 .

(5.2)

From (5.2), we see that (α, θ1) and (θ2, θ3) are inde-
pendent, which will make posterior sampling efficient.
To obtain the Bayesian estimation of the parameters, the
Gibbs sampling procedure can be implementedwith the
full conditional posterior distributions as follows.

(1) The conditional posterior density function of α,
p(α|θ1, Data), is proportional to

αn−1 exp

{
−θ1

n∑
i=1

Tα
i

} n∏
i=1

Tα
i ,

which is log-concave. Thus, the adaptive rejec-
tion sampling algorithm (Gilks & Wild, 1992)
can be used to generate the posterior samples
of α.

Table . The RB(%), CPs and RMSEs of the parameters when
(α, λ, λ, λ)= (., ., , .).

n Method α θ  θ  θ 

MLE RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

 ω RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

MLE RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

 ω RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

MLE RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

 ω RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

(2) The conditional posterior density function of
θ1, p(θ1|α, Data), is proportional to

θn−1
1 exp

{
−θ1

n∑
i=1

Tα
i

}
(k(θ1))−c3/2 . (5.3)

� When the reference priors ω1(α, θ1, θ2, θ3)
and ω2(α, θ1, θ2, θ3) are used, c3 = 0. Thus,
given α and the observed data, the conditional
posterior distribution of θ1 is gammadistribu-
tion with the shape parameter n and the scale
parameter

∑n
i=1 T

α
i . Denote the gamma dis-

tribution as �(n,
∑n

i=1 T
α
i ).

� When the reference priors ω3(α, θ1, θ2, θ3)
and ω4(α, θ1, θ2, θ3) are utilised, c3 = 1. The
rejection sampling algorithm is used to gen-
erate the posterior samples of θ1. We choose
�(n,

∑n
i=1 T

α
i ) as the proposal distribution.

The algorithm proceeds in two steps:
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Table . The RB(%), CPs and SRMSEs of the parameterswhen
(α, λ, λ, λ)= (, ., , .).

n Method α θ  θ  θ 

MLE RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .

 CP . . . .
ω RMSE . . . .

RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

MLE RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .

 CP . . . .
ω RMSE . . . .

RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

MLE RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
 RB(%) . . . .

CP . . . .
ω RMSE . . . .

RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

(a)Sample θ
(s)
1 at random from

�(n,
∑n

i=1 T
α
i ).

(b)With probability
(
k
(
θ

(s−1)
1

))−1/2, accept θ (s)
1 as

a draw from p(θ1|α, Data), where θ
(s−1)
1 is

the value of θ1 at the (s − 1)th iteration
in the sampling step. If the drawn θ

(s)
1 is

rejected, return to step (a).
(3) The joint marginal posterior distribution of (θ2,

θ3) is proportional to

θ
n1− 1

2
2 θ

n2− 1
2

3 (1 − θ2 − θ3)
n0− 1

2

(1 − θ2)
−c1/2(1 − θ3)

−c2/2.

� When the reference priors ω1(α, θ1, θ2, θ3)
and ω4(α, θ1, θ2, θ3) are used, c1 = c2 = 0.
Thus, (θ2, θ3)|Data ∼ Dir(n1 + 1/2, n2 + 1/2,
n0 + 1/2), where Dir(b1, b2, b3) denotes the
Dirichlet distribution with parameters b1, b2
and b3.

Table . The RB(%), CPs and RMSEs of the parameters when
(α, λ, λ, λ)= (, ., , .).

n Method α θ  θ  θ 

MLE RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .

 CP . . . .
ω RMSE . . . .

RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

MLE RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .

 CP . . . .
ω RMSE . . . .

RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

MLE RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

 ω RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

ω RMSE . . . .
RB(%) . . . .
CP . . . .

� When the reference prior ω2(α, θ1, θ2, θ3) is
utilised, c1 = 1 and c2 = 0.We useMetropolis–
Hastings algorithm to generate the posterior
samples of (θ2, θ3), and choose Dir(n1 + 1/2,
n2 + 1/2, n0 + 1/2) as the proposal distribu-
tion. Thus, the procedure is as follows:
(a)Generate (θ

(s)
2 , θ

(s)
3 ) at random from

Dir(n1 + 1/2, n2 + 1/2, n0 + 1/2).
(b)Accept (θ

(s)
2 , θ

(s)
3 ) with probability

min
{
1,
√

(1 − θ
(s−1)
2 )/(1 − θ

(s)
2 )

}
,

where θ
(s−1)
2 is the value of θ2 at the (s −

1)th iteration in the Metropolis step. Oth-
erwise, let θ (s)

2 = θ
(s−1)
2 .

(c)Repeat the above two steps until the
Markov chain converges.
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Table . Minimum time to blindness in days and its causes for  patients with diabetic retinopathy.

i T δ∗ i T δ∗ i T δ∗ i T δ∗ i T δ∗

              
              
              
              
              
              
              
              
              
              
              
           
           
           
           

� When the reference prior ω3(α, θ1, θ2, θ3)
is used, c1 = 0 and c2 = 1. The Metropolis–
Hastings algorithm used here is similar to the
above case.

After running the above Gibbs sampling procedure
M times and discarding the initial B burn-in iterations,
then we have (M − B) iterations kept. Since the gen-
erated samples are not independent, we need to mon-
itor the auto-correlations of the generated values and
select a sampling lag L > 1 after which the correspond-
ing auto-correlation is low, that is, the length of the
thinning interval is L. Considering the length of the
thinning interval, the final number of iterations kept is
M′ = (M − B)/L, and these independent samples will
be used for posterior analysis. Then we can use the
means of the posterior samples to estimate the param-
eters, and construct 100(1 − γ )% credible intervals of
the parameters via the quantiles of posterior samples,
where 0 < γ < 1.

6. Simulation study

In this section, we conduct some simulation studies to
compare the Bayesian estimators and the MLEs for dif-
ferent parameter values and different sample sizes. We
take the shape parameter α = 0.5, 1, 1.5, the sample size
n = 15, 30, 50, and (λ0, λ1, λ2) = (0.7, 1, 1.5). The rel-
ative bias (RB), the root-mean-squared error (RMSE)
and also the coverage percentages (CPs) based on 95%
credible (or confidence) intervals are calculated based
on 1000 replications. The RB is defined as follows:

RB = 1
1000

1000∑
i=1

ξ̂i − ξ

ξ
∗ 100%,

where ξ denotes the true value, and ξ̂i denotes its esti-
mator of the ith iteration. The results are listed in
Tables 2–4, where ‘ωu’ denotes that the estimates are
obtained under the reference prior ωu(α, θ1, θ2, θ3),
u = 1, 2, 3, 4.
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Figure . The Weibull probability plot.
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Table . The estimates of the parameters for the DRS data.

Method α %CI θ  %CI θ  %CI θ  %CP

MLE . (.,.) . (.,.) . (.,.) . (.,.)
ω . (.,.) . (.,.) . (.,.) . (.,.)
ω . (.,.) . (.,.) . (.,.) . (.,.)
ω . (.,.) . (.,.) . (.,.) . (.,.)
ω . (.,.) . (.,.) . (.,.) . (.,.)

Some of the points are quite clear from the simu-
lation study. In all the cases, the estimates are slightly
biased, mainly for small sample sizes, but the RBs and
RMSEs decrease as the sample size increases. The CPs
based on the maximum-likelihood method are a little
far from the nominal level, especially when the sample
size is small; this is because the asymptotic normality
results are used to construct confidence intervals.While
all the CPs based on the Bayesian method are close to
the nominal level. However, for the case of large sample
size, i.e. n = 50, the estimates based on both two meth-
ods are similar in terms of RBs and RMSEs. Among the
four priors, it is hard to tell which one is better. When
estimating α and θ1, the reference priorsω3 andω4 per-
form better.When estimating the parameters θ2 and θ3,
ω1, ω3 and ω4 are superior to ω2, because the RBs of θ2
and θ3 based on ω2 are the largest even the sample size
is 50. As we have indicated before, the reference prior
can be selected according to our inferential importance
of the parameters. For example, when the parameter θ3
is of interest, the reference prior ω3 is preferred. As is
shown in Tables 2–4, the CPs of θ3 based onω3 aremost
close to the nominal level 0.95 for all the cases, although
the RBs and RMSEs of θ3 are close to those based on the
maximum-likelihood method and other priors.

7. Real data analysis

The data come from the Diabetic Retinopathy Study
(DRS) conducted by the National Eye Institute to esti-
mate the effect of laser treatment in delaying the onset
of blindness in patients with diabetic retinopathy. There
are 71 patients involved in the study. At the beginning
of the study, for each patient, one eye was randomly
selected for laser treatment by one of three methods
(argon laser, xenon arc or a combined treatment), while
the other eye was given no treatment. Let X1 represent
the times to blindness of one eye under laser treatment,
and X2 represent the times to blindness of the other eye
under no treatment. The observed data of (X1, X2) can
be found in Csorgo and Welsh (1989). In Table 5, we
list the minimum time to blindness (T = min {X1, X2})
and the index (δ∗) for specifying the causes of failure for
each patient, where

δ∗ =
⎧⎨
⎩
1, if X1 < X2,

2, if X1 > X2,

0, if X1 = X2.

From Table 5, we note that some realisations of δ∗ are
0, which indicates that blindness of two eyes happens
simultaneously.

Before using the MOBW distribution to analyse the
data, we will check the distribution of X1, X2 and
min(X1, X2), respectively. In the following analysis, the
original data are divided by 365 and computed in terms
of year. The function wblplot in MATLAB software is
used to graphically assess whether the data come from
aWeibull distribution. If the data are fromWeibull dis-
tribution, the plotted line will be linear. Other distri-
butions might introduce curvature in the plot. From
Figure 1, we can intuitively tell that X1, X2 and min(X1,
X2) fit Weibull distribution. The Kolmogorov–Smirnov
distances between the empirical CDF and the hypothe-
sised CDF forX1,X2 andmin(X1,X2) are 0.0744, 0.0912
and 0.0563, and the corresponding p values are 0.8124,
0.7671 and 0.9745, respectively. Thus, based on the p-
values Weibull distribution cannot be rejected for the
marginal and for theminimumalso. In fact, theMLEs of
the shape and scale parameters of the respectiveWeibull
distribution for X1, X2 and min(X1, X2) are (1.6456,
0.2511), (1.6382, 0.2955) and (1.5582, 0.4691), and the
confidence intervals of the shape parameter for X1 and
X2 are [1.3699, 1.9768] and [1.3715, 1.9568], respec-
tively, which means the hypothesis of the same-shape
parameter of theWeibull distribution forX1 andX2 can-
not be rejected.

Naturally, we can choose the MOBW distribution
to analyse the data. The estimates and 95% confidence
(credible) intervals for the parameters are summarised
in Table 6. FromTable 6, it can be seen that the estimates
of parameters are close to each other. Table 6 also shows
that the shape parameter α > 1 whichmeans the hazard
rate function of the lifetime of the two eyes is increasing.
Moreover, the failure probability of the laser-treated eye
is much smaller than the untreated one, which indicates
that the laser treatment has positive effect on delaying
the onset of blindness in patientswith diabetic retinopa-
thy.

8. Conclusion

In this paper, we have considered the dependent com-
peting risks model by using an MOBW distribution.
The objective Bayesian method is proposed to esti-
mate the parameters. Based on different grouping
orders, four reference priors are derived. Then the
Bayesian approaches are compared with themaximum-
likelihood method in terms of RMSE, RB and CP via a
simulation study. The simulation results show that the
Bayesian estimates perform better in terms of the CPs
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and RMSEs, and that we can choose a suitable reference
prior to estimate the parameters according to the infer-
ential importance.
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Appendices

Appendix 1

A. The reference prior of theMOBWdistribution
Following the notions of Berger and Bernardo (1992),
according to the inferential importance, we order a
multi-dimensional parameter τ = (τ 1,… , τ l) and sep-
arate it into m groups of sizes n1, n2,… , nm, and these
groups are given by

τ(1) = (τ1, . . . , τn1 ), τ(2)

= (τn1+1, . . . , τn1+n2 ), . . . ,

τ(i) = (τNi−1+1, . . . , τNi ), . . . , τ(m)

= (τNm−1+1, . . . , τl ),

where Nj =∑ j
i=1 ni. Define

τ[ j] = (τ(1), . . . , τ( j)) = (τ1, . . . , τNj ), τ[∼ j]

= (τ( j+1), . . . , τ(m)) = (τNj+1, . . . , τl ),

then τ [ ∼ 0] = τ and τ [0] is vacuous.
The same as Berger and Bernardo (1992), the nota-

tion I(τ ) is the Fisher information matrix and S(τ ) =
(I(τ ))−1. We will substitute I and S for I(τ ) and S(τ ) in
the following sections.

Write S as

S =

⎛
⎜⎜⎜⎝

A11 At
21 · · · At

m1
A21 A22 · · · At

m2
...

...
. . .

...
Am1 Am2 · · · At

mm

⎞
⎟⎟⎟⎠ ,

so that Aij is a ni × nj matrix, and define Sj = upper left
(Nj ×Nj) corner of S, with Sm = S, andHj = S−1

j . Then
the matrices

h j ≡ lower right (nj × nj) corner ofHj,

j = 1, . . . ,m,

play an importance role in deriving the reference priors.
In particular, h1 = H1 = A−1

11 and, if S is a block diago-
nal matrix (i.e. Aij = 0 for all i � j), then h j = A−1

j j , j =
1, . . . ,m.

Lemma A.1: If |hj(τ )| depending only on τ [j] holds, for j
= 1,… , m, then the reference prior

π(τ ) = lim
�→∞

π�(τ )

π�(τ ∗)
,

where π�(τ ) =
(

m∏
j=1

|h j |1/2∫
�(τ[ j−1] )

|h j |1/2dτ( j)

)
I�(τ ),|hj(τ )| is the

determinant of hj(τ ), τ ∗ is any fixed point in�, and� is
a compact subset.

One can refer to Berger and Bernardo (1992) for the
proof. By using this lemma, the derivation of the m-
group reference prior is greatly simplified.

There are four parameters in the MOBW distribu-
tion, in the following, we consider three cases, where
the parameters are separated into two, three and four
groups. We take {α, (θ1, θ2, θ3)}, {(θ2, θ3), α, θ1)} and
{α, θ1, θ2, θ3} as an example.

(I) The reference prior of {α, (θ1, θ2, θ3)} is ω1(α,
θ1, θ2, θ3).

Proof: Based on the Fisher information matrix �, we
can easily derive

S = �−1 =⎛
⎜⎜⎜⎝

α2

n(r2−r21 )
−αθ1(1+r1−ln θ1)

n(r2−r21 )
0 0

−αθ1(1+r1−ln θ1)

n(r2−r21 )
θ2
1 k(θ1)

n(r2−r21 )
0 0

0 0 θ2(1−θ2)
n − θ2θ3

n
0 0 − θ2θ3

n
θ3(1−θ3)

n

⎞
⎟⎟⎟⎠ .

According to Sj = upper left (Nj ×Nj) corner of S,Hj =
S−1
j , we can obtain

S1 = α2

n(r2 − r21 )
, S2 = S,

H1 = n(r2 − r21 )
α2 , H2 = �.

Due to hj = lowerright (nj × nj) cornerof Hj, j = 1, 2,
then

h1 = H1 = n(r2 − r21 )
α2 , h2

=

⎛
⎜⎝

n
θ2
1

0 0
0 n

θ2
+ n

1−θ2−θ3

n
1−θ2−θ3

0 n
1−θ2−θ3

n
θ3

+ n
1−θ2−θ3

⎞
⎟⎠ .

Choose �k = �1k × �234k = {α|a1k < α < b1k} ×
{(θ1, θ2, θ3)|a2k < θ1 < b2k, a3k < θ2, a4k < θ3, θ2 +
θ3 < dk}, such that a1k, a2k, a3k, a4k −→ 0, b1k, b2k −→
∞, dk −→ 1. Note that h1 and h2 satisfy Lemma A.1,
then after some calculations, the reference prior for {α,
(θ1, θ2, θ3)} is

ω1(α, θ1, θ2, θ3) = lim
k→∞

π k(α, θ1, θ2, θ3)

π k(1, 1, 0.2, 0.3)

= 1√
α2θ2

1 θ2θ3(1 − θ2 − θ3)
.

(II) The reference prior of {(θ2, θ3), α, θ1} is ω1(α,
θ1, θ2, θ3).

�
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Proof: The Fisher information matrix of {(θ2, θ3), α, θ1} is

�1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

n
θ2

+ n
1 − θ2 − θ3

n
1 − θ2 − θ3

0 0
n

1 − θ2 − θ3

n
θ3

+ n
1 − θ2 − θ3

0 0

0 0
nk(θ1)

α2

n(1 + r1 − ln θ1)

αθ1

0 0
n(1 + r1 − ln θ1)

αθ1

n
θ2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus

S = �−1
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ2(1 − θ2)

n
−θ2θ3

n
0 0

−θ2θ3

n
θ3(1 − θ3)

n
0 0

0 0
α2

n(r2 − r21 )
−αθ1(1 + r1 − ln θ1)

n(r2 − r21 )

0 0
−αθ1(1 + r1 − ln θ1)

n(r2 − r21 )
θ2
1 k(θ1)

n(r2 − r21 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S1 =

⎛
⎜⎝

θ2(1 − θ2)

n
−θ2θ3

n−θ2θ3

n
θ3(1 − θ3)

n

⎞
⎟⎠ , S2 =

⎛
⎜⎜⎜⎜⎜⎝

θ2(1 − θ2)

n
−θ2θ3

n
0

−θ2θ3

n
θ3(1 − θ3)

n
0

0 0
α2

n(r2 − r21 )

⎞
⎟⎟⎟⎟⎟⎠ , S3 = S.

According to Hj = S−1
j , and hj = lower right (nj × nj) corner of Hj, j = 1, 2, 3, we can obtained that H1 =

⎛
⎝ n

θ2
+ n

1−θ2−θ3

n
1−θ2−θ3

n
1−θ2−θ3

n
θ3

+ n
1−θ2−θ3

⎞
⎠, H2 =

⎛
⎜⎜⎜⎝

n
θ2

+ n
1−θ2−θ3

n
1−θ2−θ3

0
n

1−θ2−θ3

n
θ3

+ n
1−θ2−θ3

0
0 0 n(r2−r21 )

α2

⎞
⎟⎟⎟⎠, H3 = �1. Then h1 = H1, h2 = n(r2−r21 )

α2 ,

h3 = n
θ2
1
.

Choose �k = {((θ2, θ3), α, θ1)|a1k < α < b1k,
a2k < θ1 < b2k, a3k < θ2, a4k < θ3, θ2 + θ3 < dk}, such that a1k, a2k, a3k, a4k −→ 0, b1k, b2k −→ ∞, dk −→ 1.
According to Lemma A.1, it is not difficult to obtain that the reference prior for {(θ2, θ3), α, θ1} is also

ω1(α, θ1, θ2, θ3) = 1√
α2θ2

1 θ2θ3(1 − θ2 − θ3)
.

(III) The reference prior of {α, θ1, θ2, θ3} is ω2(α, θ1, θ2, θ3).
�

Proof: Due to S = �−1, we can obtain

S1 = α2

n(r2 − r21 )
, S2 =

⎛
⎜⎜⎝

α2

n(r2 − r21 )
−αθ1(1 + r1 − ln θ1)

n(r2 − r21 )−αθ1(1 + r1 − ln θ1)

n(r2 − r21 )
θ2
1 k(θ1)

n(r2 − r21 )

⎞
⎟⎟⎠ ,

S3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

α2

n(r2 − r21 )
−αθ1(1 + r1 − ln θ1)

n(r2 − r21 )
0

−αθ1(1 + r1 − ln θ1)

n(r2 − r21 )
θ2
1 k(θ1)

n(r2 − r21 )
0

0 0
θ2(1 − θ2)

n

⎞
⎟⎟⎟⎟⎟⎟⎠

, S4 = S.
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Thus

H1 = n(r2 − r21 )
α2 ,H2 =

⎛
⎜⎜⎝

nk(θ1)
α2

n(1 + r1 − ln θ1)

αθ1
n(1 + r1 − ln θ1)

αθ1

n
θ2
1

⎞
⎟⎟⎠ ,

H3 =

⎛
⎜⎜⎜⎜⎜⎝

nk(θ1)
α2

n(1 + r1 − ln θ1)

αθ1
0

n(1 + r1 − ln θ1)

αθ1

n
θ2
1

0

0 0
n

θ2(1 − θ2)
,

⎞
⎟⎟⎟⎟⎟⎠ ,

H4 = �.

Then h1 = n(r2−r21 )
α2 , h2 = n

θ2
1
, h3 = n

θ2(1−θ2)
, h4 =

n(1−θ2)
θ3(1−θ2−θ3)

.
Choose �k = {(α, θ1, θ2, θ3)|a1k < α < b1k, a2k

< θ1 < b2k, a3k < θ2, a4k < θ3, θ2 + θ3 < dk}, such
that a1k, a2k, a3k, a4k −→ 0, b1k, b2k −→ ∞, dk −→ 1.
According to Lemma A.1, we can obtain the reference
prior for {α, θ1, θ2, θ3} is

ω2(α, θ1, θ2, θ3) = 1√
α2θ2

1 θ2θ3(1 − θ2)(1 − θ2 − θ3)
.

The reference prior for πu(α, λ0, λ1, λ2) can be
obtained fromωu(α, θ1, θ2, θ3), u= 1, 2, 3, 4, according
to the one-to-one transformation from (α, λ0, λ1, λ2) to
(α, θ1, θ2, θ3). �

Appendix 2

Proving Theorem 5.1 needs the following two results
(Guan et al., 2013):∫

0<x+y<1
xζ yβ (1 − x − y)μdxdy

= B(ζ + 1, β + μ + 2)B(β + 1, μ + 1), (B.1)

∫
0<x+y<1

xζ yβ (1 − x)κ (1 − x − y)μdxdy

= B(ζ + 1, β + κ + μ + 2)B(β + 1, μ + 1),(B.2)

where B( ·, ·) is a beta function.
(I) The likelihood function under parameters (α, θ1,

θ2, θ3) is

L2 = αnθn
1 θ

n1
2 θ

n2
3 (1 − θ2 − θ3)

n0

× exp

{
−θ1

n∑
i=1

Tα
i

} n∏
i=1

Tα−1
i ,

then the joint posterior distribution of (α, θ1, θ2, θ3)
under the prior ω1 can be written as

p1(α, θ1, θ2, θ3|Data) ∝ αn−1θn−1
1 θ

n1− 1
2

2 θ
n2− 1

2
3

×(1 − θ2 − θ3)
n0− 1

2 exp

{
−θ1

n∑
i=1

Tα
i

} n∏
i=1

Tα−1
i . (B.3)

Denote the right side of (B.3) as R, using (B.1), we have

R1 =
∫
0<θ2+θ3<1

Rdθ2dθ3

= B
(
n1 + 1

2
, n0 + n2 + 1

)
B
(
n0 + 1

2
, n2 + 1

2

)

× αn−1θn−1
1 exp

{
−θ1

n∑
i=1

Tα
i

} n∏
i=1

Tα−1
i ,

R2 =
∫ ∞

0
R1dθ1 = B

(
n1 + 1

2
, n0 + n2 + 1

)

× B
(
n0 + 1

2
, n2 + 1

2

)
�(n)

αn−1∏n
i=1 T

α−1
i(∑n

i=1 Tα
i
)n .

Denote c = B
(
n1 + 1

2 , n0 + n2 + 1
)
B
(
n0 + 1

2 , n2 + 1
2

)
�(n)

∏n
i=1 T

−1
i , then c is a constant. For any 0 < ε < 1,

we have

R3 =
∫ ∞

0
R2dα = c

∫ ∞

0

αn−1∏n
i=1 T

α
i(∑n

i=1 Tα
i
)n dα

= c
∫ ε

0

αn−1∏n
i=1 T

α
i(∑n

i=1 Tα
i
)n dα + c

∫ ∞

ε

αn−1∏n
i=1 T

α
i(∑n

i=1 Tα
i
)n dα.

Obviously, c
∫ ε

0
αn−1∏n

i=1 T
α
i

(
∑n

i=1 Tα
i )n

dα < ∞.

∫ ∞

ε

αn−1∏n
i=1 T

α
i(∑n

i=1 Tα
i
)n dα =

∫ ∞

ε

αn−1

∏n
i=1

∑n
i=1 T

α
i

Tα
i

dα

≤
∫ ∞

ε

αn−1

∏n
i=1

Tα
(n)

Tα
i

dα

=
∫ ∞

ε

αn−1e
−α
∑n

i=1 ln

⎛
⎝T(n)

Ti

⎞
⎠
dα < ∞,

where T(n) is the largest order statistic of Ti, i= 1, 2,… ,
n, then R3 < �. Thus

∫ ∞

0

∫ ∞

0

∫ 1

0

∫ 1

0
Rdαdθ1dθ2dθ3 < ∞.

Therefore, the posterior distribution of (α, θ1, θ2, θ3)
under the prior ω1 is proper. Similarly, using (B.2), we
can prove that the posterior distribution under the prior
ω2 is also proper.

(II) The posterior distribution of (α, θ1, θ2, θ3) under
the prior ω3 iss

ω3(α, θ1, θ2, θ3|data)
∝ αn−1θn−1

1 θ
n1− 1

2
2 θ

n2− 1
2

3 (1 − θ3)
− 1

2

×(1 − θ2 − θ3)
n0− 1

2

×(k(θ1))−
1
2 exp{−θ1

n∑
i=1

Tα
i }

n∏
i=1

Tα−1
i . (B.4)
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We denote the right side of (B.4) as P, using (B.2), we
have

P1 =
∫
0<θ2+θ3<1

Pdθ2dθ3

= B
(
n2 + 1

2
, n0 + n1 + 1

2

)
B
(
n0 + 1

2
, n1 + 1

2

)

αn−1θn−1
1 (k(θ1))−

1
2 exp{−θ1

n∑
i=1

Tα
i }

n∏
i=1

Tα−1
i ,

P2 =
∫ ∞

0
P1dθ1

= B
(
n2 + 1

2
, n0 + n1 + 1

2

)
B
(
n0 + 1

2
, n1 + 1

2

)

αn−1
n∏

i=1

Tα−1
i

∫ ∞

0
θn−1
1 (k(θ1))−

1
2

× exp

{
−θ1

n∑
i=1

Tα
i

}
dθ1,

denoteQ = B
(
n2 + 1

2 , n0 + n1 + 1
2

)
B
(
n0 + 1

2 , n1 + 1
2

)∏n
i=1 T

−1
i , then Q is a constant. For any θ1 > 0, there

exists a constant M0 satisfying |(k(θ1))− 1
2 | < M0.

Then

P2 < QMαn−1
n∏

i=1

Tα
i

∫ ∞

0
θn−1
1 exp

{
−θ1

n∑
i=1

Tα
i

}
dθ1

= QM�(n)αn−1∏n
i=1 T

α
i

(Tα
i )n

,

according to (I),

P3 =
∫ ∞

0
P2dα < ∞.

Therefore,∫ ∞

0

∫ ∞

0

∫ 1

0

∫ 1

0
Pdαdθ1dθ2dθ3 < ∞.

Thus the posterior distribution of (α, θ1, θ2, θ3) under
the prior ω3 is proper. Similarly, we can prove that
the posterior distribution under the prior ω4 is also
proper.
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