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ABSTRACT

Finite mixture models are widely used in scientific investigations. Due to their non-regularity,
there are many technical challenges concerning inference problems on various aspects of the
finite mixture models. After decades of effort by statisticians, substantial progresses are recorded
recently in characterising large sample properties of some classical inference methods when
applied to finite mixture models, providing effective numerical solutions for mixture model-based
data analysis, and the invention of novel inference approaches. This paper aims to provide a
comprehensive summary on large sample properties of some classical statistical methods and
recently developed modified likelihood ratio test and EM-test for the order of the finite mixture
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model. The presentation de-emphasises the rigour in order to gain some insights behind some
complex technical issues. The paper wishes to recommend the EM-test as the most promising
approach to data analysis problems from all models with mixture structures.

1. Introduction

Let flx; 0) for each 0 in a parameter space ® be a
density function with respect to some o-finite mea-
sure. A parametric distribution family is formed as the
collection of distributions {f(x; ): 8 € ©®}. Naturally,
a family is not formed by an arbitrary collection of
distributions. Classical distribution families contain
distributions connected through some common scien-
tific background. For instance, a binomial distribution
family is made of distributions modelling the number
of successes in a fixed number of independent trials
repeated under identical conditions.

A finite mixture model builds on a classical distribu-
tion family so that its density functions are finite con-
vex combinations of the densities in some parametric

family {f(x; 6): 6 € ©}:
FE G =3 mif(x: 0 = /@ £ 0)dG©). (1)
j=1

Let 1(-) be an indicator function. The mixing distribu-
tion G in the above definition refers to its cumulative
distribution function (c.d.f. ) or its probability masses
on some support points:

GO)=)Y ml@O;<0) =) 76} ()
j=1 j=1

Clearly, even if G has continuous support rather than
being a finite discrete distribution, f(x; G) remains a
well-defined density function. We focus on inference
problems when G has form (2).

A distribution is also a mathematical way to charac-
terise a population. Imagine taking some measurements
of interest on a random unit from a population. The dis-
tribution of these measurements represents one aspect
of this population. Suppose a population is made of m
subpopulations, each equating a distribution in a para-
metric family {f(x; 6): 0 € ©}. A random unit from such
a population is also a unit from one of these subpop-
ulations: with probability 7z; for the jth subpopulation,
j=1,2,..., m. Without knowing the subpopulation, we
work with the marginal distribution of this unit which
is (1).

Finite mixture model finds its applications in a
wide range of disciplines and goes back deep into his-
tory. When a biological population made of a single
species has reached equilibrium, the random variations
between individuals are then completely attributed
to cumulative effect of numerous minor factors. The
resulting uncertainty is therefore well approximated by
a normal distribution, according to the classical central
limit theory. Normal model is hence broadly assumed in
biometrics. If a data set displays non-normality, a finite
mixture model is a natural alternative and extension.

Figure 1 contains, among others, the histogram of
a data set containing measurements of 1000 crabs
sampled from Bay of Naples provided to Pearson by
a biologist (Pearson, 1894). The histogram displays
an apparent departure from normality. The departure
can be sensibly explained by the possibility that the
crab population contains two subpopulations (species).
If so, a two-component finite normal mixture model
should fit the data well. Indeed, Pearson (1894) found a
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Figure 1. Histogram of the crab data and the fitted density of two-component normal mixture.

satisfactory fit via the method of moments to the data
set by a finite normal mixture model of order m = 2. We
remark that the data can also be well fitted by a Gamma
distribution. A finite normal mixture is preferred not
for its fit, but for its natural justification.

Based on the same interpretation as in Pearson
(1894), finite mixture models are routinely used to
accommodate the genetic heterogeneity thought to
underlie many human diseases. See Chernoft and
Lander (1995), Friedlander and Leitersdorf (1995),
Schork, Allison, and Thiel (1996) and Ott (1999) for
many examples. There are also abundant application
examples in Titterington, Smith, and Makov (1985),
McLachlan and Peel (2004), and Frithwirth-Schnatter
(2006) in other disciplines. We further recommend
Lindsay (1995) for some insightful discussions on mix-
ture models.

In addition to their importance in applications, mix-
ture models form a fertile and challenging field of sta-
tistical research. The most urgent tasks include point
estimation of the mixing distribution G and the related
numerical calculation. Interestingly, under mild condi-
tions on {f(x; 0): ®}, even the nonparametric maximum
likelihood estimator (MLE) of G is consistent, given a
set of independent and identically distributed (i.i.d. )
observations (Chen, 2016; Kiefer & Wolfowitz, 1956).
Geometric properties of the nonparametric MLE were
nicely illustrated in Lindsay (1995). These discussions
form the solid foundation for numerical computations
(Bohning, 2000).

This paper focuses on the hypothesis test problem
for order m of the finite mixture model. Due to partial
loss of identifiability and its induced non-regularity, the
likelihood ratio test (LRT) losses its well-behaved large
sample property represented by the famous Wilks theo-
rem (Wilks, 1938). The research activities on this topic
may be divided into several stages. Early researchers
such as Hartigan (1985) and Ghosh and Sen (1985)
revealed the ill effect of the non-regularity. Subsequent

research contains rigorous mathematical answers to
the asymptotic properties. Some representative results
are Chernoff and Lander (1995), Dacunha-Castelle and
Gassiat (1999), Liu and Shao (2003) and Chen and Chen
(2003). These results are interesting but also conclude
that the straightforward LRT is generally impractical.
For instance, there are currently no effective numerical
methods to evaluate the p-value according to these lim-
iting distributions.

One way to circumvent this obstacle is the famous
C(a) test proposed by Neyman and Scott (1965) which
is locally optimal and easy to use. However, it is limited
to test for homogeneity: namely for Hy: m = 1 when the
population contains only one subpopulation. Another
line of approach was proposed by Chen (1998) and fur-
ther developed in Chen, Chen, and Kalbfleisch (2001)
and Chen, Chen, and Kalbfleisch (2004). This approach
partially restores the regularity through placing a soft
bound on mixing proportions. The modified likelihood
ratio test (mLRT), as it is now called, leads to Wilks-like
asymptotic properties for many but still limited number
of commonly used mixture models.

The latest invention, EM-test, enjoys many advan-
tages over the mLRT. When the mLRT works, the EM-
test shares its asymptotic properties. The Wilks-like
asymptotic properties of the EM-test hold much more
broadly. The design of the EM-test comes with many
build-in flexibilities. They allow users to utilise features
of the specific mixture model to find one version of
the EM-test with Wilks-like asymptotic properties. We
anticipate advances of the EM-test for multi-parameter
mixture models, location-scale mixture models, hid-
den Markov models (HMMs) and other models with
non-i.i.d. data.

This paper is organised as follows. In Section 2, we
explain the non-regularity and its implication to clas-
sical results on the LRT for homogeneity. Section 3 is
devoted to a classical C(«) test for homogeneity. Section
4 contains results on restricted LRT which seem to have



limited usage but form a conceptual step-stone for fur-
ther development. Section 5 presents mLRT and EM-
test for homogeneity. Sections 6-8 show how the idea
of EM-test is developed to obtain interesting results for
the order of finite mixture of single parameter distribu-
tion, normal distribution, or data from HMM. We end
the paper with some discussions on the future develop-
ment of the EM-test.

2. Properties of finite mixture models

2.1. Partial identifiability

A parametric model is viable in applications only if it is
identifiable. Being identifiable means that

fe; 01) = f(x;6,)

for almost all x (with respect to the underlying o -finite
measure) must imply 6; = 0,. A mixture model is iden-
tifiable if

flx; G = f(x; Gy)

for almost all x implies G; = G,. We may regard G in (2)
as a functional valued parameter for mixture model (1).
On this platform, most commonly used finite mixture
models are identifiable. If G is allowed to be any distri-
bution on ©, the mixture model (1) is still identifiable
for many important families of f(x; 9).

In applications, our interest goes beyond generic G to
include its compositions. Under a finite mixture model,
we call m the order of the mixture, 77; the mixing pro-
portions and 6; the component parameter values of the
component distribution f{x; 8). Clearly, we have X T =
land 7r; > 0. When any 77; = 0, then the imaginary jth
subpopulation does not show up in the mixture. When
0j, = 0, forsome 1 < j; # j, < m, then these two sub-
populations are the same. In both cases, the number of
distinct subpopulations is reduced at least by 1 and the
model has lost identifiability in this respect. We gener-
ally refer them as two types of partial loss of identifia-
bility. They are largely responsible for abnormal asymp-
totic properties.

2.2. Likelihood ratio test for homogeneity

Let Xj, ..., X, be an i.i.d. sample from a finite mixture
model of order m = 2:
T f(x,01) + maf(x,05). (3)

The problem of testing for homogeneity is specified by
two opposing hypotheses

Hy : mym(6, — 61) = 0 against
H : mym2(6, — 61) # 0. (4)

LRT for homogeneity is the first choice, but we need a
solid statistical foundation.

STATISTICAL THEORY AND RELATED FIELDS . 17

Let us first consider a simpler and more specific
homogeneity problem (Hartigan, 1985):

Hy: N(0,1) against H; : (1 —7)N(0,1) +7N(9,1)
(5)
for 8 € R. Its non-regularity is rooted in the fact that
when 7 = 0, the model becomes a null model for any 6
value. In fact, both 7 and 6 only present in Hy, a situa-
tion of particular interest (Davies, 1977, 1987).
Under the full model, the log likelihood function is
given by

C(m;6) = ) log$(X; 0, 1)

i=1
+ > logll + m{exp(6X; — 67/2) — 1}],
i=1

where ¢(x; 11, o) is the density function of N(u, 02).
Define the log likelihood ratio function:

Ry(;0) =2 logll + m{exp(6X; — 6°/2) — 1}].

i=1

Let

Y;(0) = exp(6X; — 07/2) — 1, Y,(0) =n"" > Yi(0),

i=1

and o¢2(0) = var(Y;(9)). For fixed 6, Yi(0) are
i.i.d. with zero mean and finite variance o(6) under
Hy. Some asymptotic algebra shows that,

sup R, (3 0) = no 2 (O){[Y,]7 ()} 4 0,(1) (6)

— 0.5x3 + 0.5x7, (7)

where [V, ]* is the positive part of Y;, for each § + 0. The
leading term in (6) is a quadratic approximation to the
log likelihood ratio function R,(7; 6).

The authentic LRT statistic for homogeneity without
having 0 fixed is clearly

R, = sup{sup R, (7r; 6)}.
6 b4

Over any finite interval, say 6 € [0, M] with M < oo,
n'2c71(0)Y,()

is easily seen to converge in distribution to a well-
defined Gaussian process {Z(0): 0 < 6 < M}. Let 6,
03, ..., 0k be K arbitrarily selected values in R. Then,

Ry = lgljg{nd_z(%){[?nﬁ(@j)}z + 0p(1)}
~ a2 6)F

By choosing sufficiently dispersed 6; over R and large
K, we can make

max {Z*(6)))?

1<j<K
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arbitrarily large in probability. This leads to the conclu-
sion that R, — o in probability, a result that bans the
use of usual LRT for homogeneity.

The above result does not totally diminish the
enthusiasm on LRT for homogeneity. One aberration
observed in Hartigan’s example can be avoided by plac-
inga compact condition on ©: |6| < M < co. Under this
additional condition, it can be shown that

R, — sup {Z7(0)) ®)
0<6<M

in distribution, a potentially applicable result. At the
same time, a rigorous proof of (8) is not obvious because
the quadratic approximation (6) is valid for each 6 # 0,
but not uniformly over 6 € ©.

The non-uniformity leads to a technical challenging
issue, especially for the original homogeneity problem
(4). To avoid this difficulty, Ghosh and Sen (1985) intro-
duced a separation condition |#; — 6,| = € for some
€ > 0 in addition to compact constraints |61| < M, |0,|
< M for (4). Over the space of (61, 6,) such that |6,
— 03| = € a uniform quadratic approximation simi-
lar to (6) is obtained. The corresponding LRT statis-
tic was then shown to have a limiting distribution in
the familiar form sup, 5 -){Z"(6)}*. The Gaussian
process Z(#) and its range are decided by the data-
generating distribution f(x; 6) and the specific compo-
nent parameter space ©.

Subsequent attempts were made to establish the
limiting distribution without the separation condition.
Chernoff and Lander (1995) were the first to succeed
when the component distribution is binomial. Their
technique is to transform the parameter space so that
the space of H; becomes a cone and Hy becomes a single
point on the tip of H;. Because the component parame-
ter space © is naturally compact, they obtained the lim-
iting distribution without placing artificial constraints.

For more general component distribution fx; ),
Chen and Chen (2001) used a difterent approach. Sim-
ilar to Ghosh and Sen (1985), they also obtained a uni-
form quadratic approximation to the likelihood func-
tion over |6; — 6, > €. At the same time, they obtained
both lower and upper bounds for the likelihood ratio
function over |07 — 6;,| < €. For finite mixture mod-
els of binomial, Poisson, normal with known variance,
the difference between the upper and lower bounds
reduces to zero as € — 0. The limit perfectly matches the
quadratic approximation obtained earlier when applied
to 81 = 0,. Therefore, the LRT statistics indeed has a
limiting distribution in the form of supy, , {Z*(6)}.
Since the limit at 8; = 0, is obtained by squeezing two
bounds, the technique is named as sandwich method.

Interestingly, for normal mixture model of order
m = 2 with structural variance parameter:

(1—m)N(b,0?) + N6, 0?),

the limit obtained by sandwich method is stochasti-
cally a sum of two independent standard normally dis-
tributed random variables. Hence, the limiting distri-
bution of the LRT statistic for homogeneity turns out to
have a generic form

Z; + sup {ZT(0)).
161=M
See Chen and Chen (2003) for details.

Two key intermediate results established in Chen
and Chen (2001) are: a uniform quadratic approxima-
tion to the likelihood ratio function over |0, — 6,]
> ¢, and its smooth limit when € — 0 coincides with
the quadratic approximation within |§; — 6| < €. To
some degree, the most general results on homogeneity
test and beyond given by Dacunha-Castelle and Gassiat
(1999) are obtained by streamline conditions that lead
to validity of these two intermediate results.

3. C(«x) test for homogeneity

In the past few decades, statisticians succeeded at deter-
mining the large sample properties of the LRT statis-
tics. In most cases, these results do not lead to practical
homogeneity tests due to numerical difficulty of com-
puting p-values. A C(«) test developed for composite
hypotheses by Neyman and Scott (1965) is an attractive
alternative.

Consider the situation where an ii.d. sample from
a one-parameter distribution family { f(x; 0) : 0 € R}
is available for testing a simple null hypothesis 6 = 6.
When the distribution family is regular, the score func-
tion of 0 is given by

f'(Xi; 0)
(0= Z fXi;0)

where f (x; 0) is the derivative of fwith respect to 6. It is
well known that

Eg{S,(0)} =0

for any 0. Hence, substantial deviation of S,(6y) from
value 0 is an evidence against Hy: @ = 0. The degree of
deviation is decided by comparing T,, = (ul )~1/28,,(6y)
to the reference standard normal distribution where I is
the Fisher information. Score test as such is known to be
locally optimal against one-sided alternative.

Consider now a null hypothesis Hy: 6 = 6, under a
model with multi-parameter 6 and £. In the presence of
nuisance parameter &, H is composite such that it con-
tains a set of distributions. We have available two zero-
expectation functions:

SiXi;6,8)
Z fXi;6,8)°

f3(Xi; 6, 8)
Si(0,&) = Z ;(X” 55"

Sm(0,8) =



where f| and f, are derivatives with respect to 6 and &.
Since & value is not specified under Hy, a root-n consis-
tent estimator & will be utilised. The C(ct) test seeks a
statistic from a linear combination:

Ty, = aS,1 (60, £) + bS,2 (6o, £), (9)

with a and b chosen by some optimality consideration.

We now discuss how a specific C(«) test is derived for
homogeneity in the context of mixture model. Consider
the mixture model with density function given by

f:G) = [ f(x60)dG(6)
(C]

with its parameter space G containing all distributions
on ©. We narrow the space G down slightly so that all
its members have finite second moment. When ® = R,
we may rewrite the mixture density function as

9(x;0,0,G) = | f(x;0+o&)dGE)  (10)
®

such that the standardised mixing distribution G(-) has
mean 0 and variance 1. Under new parameterisation,
the null hypothesis becomes Hy: 0 = 0. Both 6 and the
mixing distribution G are nuisance parameters.

The partial derivative oflog ¢(x; 0, o, G) with respect
to o is given by

dp(x:0,0,G) _ Jo & f (%0 4 /o&)dG(§)
do 20 [ f(x: 0 + Jo&)dG(E)'
Ato =0 orlet 0] 0, we find (and define it to be)
0p(x; 0,0, G) . f"(x;0)
do 10 2f(x;0)

This is the score function for o based on a single obser-
vation. The choice of /o is to get a non-degenerate
score function.

The partial derivative oflog ¢(x; 0, o, G) with respect
to 0 is given by

I9(x:0,0,G) _ [o /(%0 +J0§)dG(§)

00 Jof(s0+o8)GE)
which leads to score function for 6 based on a single
observation as

00(x;0,0,G)  f'(x;0)
30 T fxo)

We have now identified two zero-expectation func-
tions (under Hy):

_ (x5 0) _ f(xi30)
fxi;0)’ 2f(x;;0)

where x;’s are ii.d. observations from the mixture
model. The score functions based on the entire sam-
ple are > | Z;(0) and >, Yi(0) for the mean and
variance of G. The optimal combination is given by
w;i(0) = zi(0) — B(6)yi(0), with B being the regression

i(0) zi(0) (11)
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coeflicient
E{Y1(0)Z,(9)}

0) =
e E{Y/(0)}

We have capitalised Y and Z to indicate their status as
random variables in the above operation. The expecta-
tion is with respect to a homogeneous null distribution
flx; 6).

Replacing the unspecified 6 by its MLE under homo-
geneous model f(x, 0), the C(«) statistic arrives at a sim-
ple form:

_ XL Wi0) _ YL Zi6)

\/nv(é) \/nv(é)

with v(0) = E{W?(0)}. Clearly, W, has standard nor-
mal limiting distribution under some general moment
conditions on Y and Z. At a given significance level o,
we reject the homogeneity hypothesis Hy when W, >
z4. This is the C(«) test for homogeneity.

In deriving the C(w) statistic, we assumed that the
parameter space ® = R. Note that when G() is a mix-
ing distribution on 0, so is G((6 — 6*)/c*) for any 6*
and o* > 0. If instead ® = R as in the Poisson mix-
ture model in which component distribution has mean
0 = 0, G((6 — 6*)/c*) is not a legitimate mixing dis-
tribution for some 6* and ¢ *. One may re-parameterise
the model through £ =log 6 in this case. However, there
is no unified approach in general.

Regardless of the hidden validity issue of the math-
ematical derivation, W, remains a useful metric on
homogeneity hypothesis. Hence, it remains an effective
test statistic.

Many commonly used distributions in statistics
belong to a group of natural exponential families
with quadratic variance function (NEF-QVF; Morris
(1982)). The examples include normal, Poisson, bino-
mial, and exponential. The density function in one-
parameter natural exponential family has a unified ana-
Iytical form

f(x;0) = h(x) exp{x¢ — A(¢)},

with respect to some o -finite measure, where 6 = A’(¢)
is the mean parameter. Let 02 = A”(¢) be the variance
under f(x; 0). To be a member of NEF-QVF, the variance
must be a quadratic function of the mean:

02 =A"(¢) = alA($)})> + bA'(¢p) + ¢
= ah® + bo +c. (13)

W, (12)

Take Poisson distribution as an example; it satisfies (13)
witha=0,b=1andc=0.

C(«) statistic has a particularly simple analytical
form under NEF-QVE,

Y — %)% — né?

W, =
" V2n(a + 1)62

wherex =n"' Y% x;and 6% = ax* + bx +c.
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Let X be a random variable with a NEF-QVF mix-
ture distribution and 0 be a random variable with dis-
tribution G. Denote u = E{E(X|0)} = E(6). When G
degenerates, the variance of X is given by o(u) = au?
+ by + c. When G does not degenerate,

VAR(X) = E{var(X|0)} + VAR{E(X|0)}
= E(a6* + b + ¢) + VAR(H).

Combining these calculations, we find
VAR(X) — o2(i) = (a+ 1)var(9) > 0.

This inequality shows that the presence of mix-
ture inflates the variance of X by a quantity of size
(a4 1)var(6). The test statistic W, is an over-
dispersion measure. Because of this, C(x) test coin-
cides with the detection of over-dispersion in the case
of exponential family mixtures.

4. Restricted likelihood ratio test

C(a) test is simple and easy to implement. Yet statisti-
cians are not ready to completely give up the likelihood
approach. Many slightly altered likelihood approaches
are developed and are effective to some degree. The
likelihood method also has potential to test for general
order of the mixture model.

As mentioned earlier, there are two types of partial
loss of identifiability in the context of homogeneity test.
One is when a subpopulation has a very small mixing
proportion so that it is practically absent from any sam-
ple, the other is when two subpopulations are nearly
identical. They are the culprits of the non-standard large
sample properties of the LRT. The artificial separation
condition is to partly restore regularity to attain some
useful results.

Placing a similar condition on mixing proportion is
also possible to partly restore the regularity. Chen and
Cheng (2000) and Lemdani and Pons (1999) investi-
gated the asymptotic distribution of the LRT under the
restriction of min {m, 75} = € for some € > 0. Under
this restriction, the model defined by (3) becomes “reg-
ular” in some sense.

Assume that we have an i.i.d. sample from (3). Under
mild regularity conditions on component distribution
flx; 6), the MLE én of Gis consistent (Chen, 2016). The
consistency in the functional space G is best interpreted
as

/ 1Ga(6) — G(6)| exp(—16])d6 — 0

almost surely as the sample size n goes to infinite. This
conclusion is not affected when min {7, 7,} = € is

applied as long as the true mixing distribution G* satis-
fies this restriction. When G*(0) = 1(6* < ), the con-
sistency leads to

6, —0* = o(1); and 6, — 6* = o(1). (14)

This leads to a useful expansion of the log-likelihood
function. Let m; and m, be moments of G, centred at

0*:
m; = ﬁ'l(él —-0") + 7%2(52 —0%);
my = 71(01 — 0%) + 72 (0, — 6%)7.

By Taylor’s expansion, one gets

log f(xi; G,) — log f(xi; G*)
~ myy;(0*) + myz;(6™)
—(1/2){myi(0%) + maz;(0%)Y

after the high-order terms are ignored.

The further development is algebraically simplest
when the random versions of y;, z; are uncorrelated.
When this is the case, the above expansion leads to

0a(Ga) = £a(G) X my Y yi(0%) +my Yy zi(07)
i=1 i=1
—(1/2)m} )"y} (6%)

—(1/2)my Y 7 (0).

i=1

Because én by definition maximises £,(G) among all
two-point mixing distributions satisfying min {r;, 7}
> ¢, and because of the above expansion, we infer that
the moments of G, must satisfy

i i) 2z O]
MmN So o MmN e
2im1 i (0%) PIREAC)
taking note that m, is nonnegative.
Under the null hypothesis that the true mixing distri-

bution G* degenerates, the MLE is searched after under
a regular model f(x; 0). We also have

€n(6) — £(#")
~ (0 —0%)) yi0) — (1/2)(0 — 0 )y (6")
i=1
with the MLE 6 under the null hypothesis satisfying
2 e Yi(07)
2y (6%)
These informal derivations point to an approximation

to the likelihood ratio statistics (under the restriction
min{r,1 — 7} >¢€>0)

0 —0* ~

(X z0)]* Y
27 0%)

R, = 2{£,(G,) — £,(0)} ~

~ [Z7(0M]



which clearly has a limiting distribution 0.5x§ + 0.5x7,
the same as in (7).

This result is mathematically neat because the limit-
ing distribution does not depend on the true distribu-
tion 0* nor the choice of €. It is also easy for numerical
computation of the p-value in applications. Neverthe-
less, the choice of € is problematic in applications. Its
choice affects how well the limiting distribution approx-
imates the finite sample distribution. Our experience
indicates that the approximation has poor precision
unless € is somewhat large. Hence, this result is more
for insight than of practical value.

5. Modified likelihood ratio test and EM-test
for homogeneity

Placing a hard restriction min {7, 7,} = € leads to
difficulties at specifying € in applications. An attractive
alternative is developed by placing a soft restriction of
similar nature in Chen (1998) and further in Chen et al.
(2001), Chen et al. (2004) and others. For test of homo-
geneity, a modified likelihood as follows is introduced

0,(G) = £,(G) + Clog{4m, >}

for some positive constant C when G is a mixing dis-
tribution with mixing proportions 7; and 7,. When G
degenerates, we use w; = 7, = 0.5 in this definition.
When © is compact, £,(G) — £,(G*) = O,(1) under
some model assumptions. Note that Clog {47 ,7,} —
—o0 when min {7, m;} — 0. Hence, the maximum
of Zn(G) is attained at some G with min {7y, 75} =
¢y > 0. That is, the modified likelihood is an implic-
itly restricted likelihood. Does it work like a restricted
likelihood?

Let G be the two support point mixing distribution
that maximises the modified likelihood function £,,(G).
Let us define the mLRT statistic to be

R, = 2{£,(G) — £,()).

As shown in Chen et al. (2001), under mild conditions
on flx; 0) and V~Vith a compact assumption on O, the
modified MLE G satisfies

0, — 0" =0,(1); and 6, —0* = 0,(1). (15

This mimics (14) and validates informal expansions
that followed. Not surprisingly,

R, — 0.5x¢ +0.5x2

in distribution under the null hypothesis. Unlike the
restricted LRT, the fitted values of 7, 7, in G under
modified likelihood are allowed to be arbitrarily close
to zero. Hence, the mLRT largely avoids the difficulty to
choose an €.

We seem to merely replace one challenge with
another: choosing a properly sized C instead of a prop-
erly sized €. The choice of Cis a less touchy issue because
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it does not lead to direct restrictions on mixing distri-
bution G. The influence of C is mild and smooth on
mixing proportions. Chen et al. (2001) found that in
most cases, putting C = 1 leads to acceptable preci-
sion of the approximation based on limiting distribu-
tion 0.5x5 + 0.5

In spite of its usefulness as illustrated above, the
mLRT exhibits two soft spots. One is that the compo-
nent parameter space ® is compact and the other is
that Fisher information with respect to mixing propor-
tion for any 6 € ® must be finite. The first requirement
is largely ignored in applications and simulation stud-
ies such as in Chen et al. (2001). In other words, even
though the asymptotic conclusion is possible only if ©
is compact, it matters little in applications.

The second requirement translates into the condi-
tion that for any 6 € 0,

. 2
SECTAIN

J (X5 GY) (1o

Consider the finite mixture of exponential distribution
where the component density function

1 X
fx;0) = P eXP{—g}-

At homogeneous distribution when 6* =1,

. 2 (1-6)? .
E M _ oz 0 <2
fX: GY) oo 6 >2.

That is, the finite Fisher information condition is vio-
lated at & = 2. Hence, the asymptotic conclusion of
the mLRT is not applicable to finite exponential mix-
ture in general. The finite Fisher information condition
is also violated for finite mixture of Gamma distribu-
tions, of distribution in a scale family, and many more.
Unlike the compact condition on ©, the violation of
finite Fisher information condition noticeably changes
the asymptotic properties of the mLRT. See Chen and
Li (2011) for evidences.

In summary, although the mLRT advances markedly
from the original LRT, further development is needed
which leads to EM-test. Even though the EM-test and
mLRT differ a lot on surface, they are closely connected.

A common thread of the restricted LRT and the
mLRT is to apply some constraints to the mixing pro-
portion. Taking the restriction to extreme, let us allow
only a few pre-chosen mixing proportions in the space
of alternative distributions. This sounds unreasonable,
but it is how the EM-test is obtained.

Let Xj,..., X, be an iid. sample from a two-
component finite mixture model

fG G) = f(x;m,01,6,) =mf(x,6)
+ 1 —m)f(x,6,), (17)
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the same as before. The log likelihood function under
this model assumption is given by

Ca(r; 61, 600) = ) log( f(xi, 61)
i=1

+ (A —m)f(xi, 02} (18)
Consider the following pair of opposing hypotheses:
Hy: f(x;0) against
Hi :(0.3) f(x,61) + (0.7) f(x, 62). (19)

When Hy is true and the model f(x; 0) is regular, the
statistic

R,(0.3) = 2{sup £,(r = 0.3;61,6,) —sup£,,(7; 60,6)}
01,6, 9
has now the typical null limiting distribution (0.5) ¢ +
(0.5)x?. This result does not depend on the specific
choice of m = 0.3. We have therefore found a shortcut
for homogeneity test: rejecting Hy when R,,(0.3) is large
according to this reference distribution.

Yet, R,(0.3) has an obvious shortcoming. Suppose
the true distribution has two subpopulations with mix-
ing proportions 7 = 0.16 and 1 — 7w = 0.84. The most
effective test should use R, (0.16) instead of R,,(0.3). In
applications, we do not know the true mixing propor-
tion. To guard against all possibilities, we end up using
sup,, R, () as the test statistics. However, this statistic
is now the LRT statistic, whose distribution was found
too difficult to handle.

EM-test breaks this cycle (Li, Chen, & Marriott,
2009) but the strategy and the motivation are somewhat
involved. A simplistic and not rigorous version goes as
follows. We first specify a mixing proportion for the
potential alternative mixture, say 7 = 0.3,after which,
we numerically locate the maximum point of £,,(r; 6,
6,) and denote them as 6”, 0,°. Given 6, 07, we

locate (¥ that maximises
0,(G) = £,(m: 02, 6) + Clog(1 — |1 — 27])

with some C > 0. Note a regularisation term Clog (1 —
|1 — 27|) slightly different from the one for mLRT is
added with a similar purpose. It can be ignored without
harming the main line of thinking.

Let G\) be the mixing distribution formed by
7®@,6© 0% Applying EM-iteration (Dempster,
Laird, & Rubin, 1977) with G as the initial to obtain
G after K iterations. If K — oo, G converges to
at least a local maximum of the log-likelihood func-
tion fn(G) under model (17). See Wu (1983) for the
convergence issue related to EM-algorithm.

To avoid falling back to the LRT statistics, the EM-
test constructs a statistic before the iteration converges.
For a finite K and given 7, define

MP () = 2(6,(G) — £, (; 6 6))

with 6 being the MLE of 6 under the null model. Li et al.
(2009) found that for each fixed K and J choices of 7

value, as n — 00,

M, = max{M® (), ME (1), ..., M) (7))}
— (0.5) x4 + (0.5)x7 (20)

in distribution. Hence, EM,, is a suitable test statistic for
homogeneity.

Li et al. (2009) generally recommended to have K =
3 and J = 3 with 7 taken from {0.1, 0.3, 0.5} in applica-
tions. Although EM-iteration for the purpose of com-
puting maximum likelihood estimate is slow, the incre-
ment of £,(G®) from k = 0, 1, 2, 3 is mostly in the
first two iterations. The change from k =2to k=3 is
usually small and the effect on p-value is beyond third
decimal place. Further iteration makes little difference.
In addition, by iterating from three initial 7 in {0.1, 0.3,
0.5}, the value of the mixing proportion in G effec-
tively covers the range [0, 0.5]. By symmetry, the range
extends to [0, 1]. Hence, increasing the number of initial
mixing proportions is not needed.

One may quickly realise that the value of the EM-test
statistic is close to a usual LRT statistic, given the same
data set. However, EM-test statistic gauges how fast the
likelihood increases initially, and the LRT statistic mea-
sures how much the likelihood ultimately increases. The
advantages of the EM-test include: (a) ® need not be
compact, (b) the second moment as in (16) need not be
finite, (c) much simpler asymptotics, (d) elegant exten-
sion to finite normal mixture models (Chen & Li, 2016;
Chen, Li, & Fu, 2012).

6. Testform=m, > 2

So far, the discussions are limited to homogeneity test
(m = 1) with one-dimensional 8. We now move to Hy:
m =myg = 2 for one-dimensional  and for finite normal
mixture in both mean and variance.

Consider the one-dimensional 6 but general my first.
The generic modified likelihood is defined as

m
€2(G) = £,(G) +C ) _log;

j=1
for G with m support points and mixing proportions ;.
That is, when a model of order m > 2 is fitted to an
i.i.d. sample, the likelihood is penalised by Clog ; for
a subpopulation with proportion ;. Under mild con-
ditions on f(x; 6) and a compact condition on ®, £,(G)
— £,(G*) is stochastically bounded as n — o0, where
G* stands for the true distribution. This shows that if
G, maximises £,(G) among G with m support points,
we must have

> log#; = 0,(1).

j=1

At the same time, the modified MLE Gn is known to
be consistent for G* under some conditions, i.e., |G, —
G*|| — 0.



In the context of homogeneity test, the null G* = {97}
is fitted with a mixing distribution én under H; and
6 under H,. Moving from G = {é} to G = G, 2£,(G)
is increased by {Z(6*)}? for some standard normal Z.
When the null is Hy: m = 2 with

G" = {07} + ;{0 }
we compare the size of £,(G) maximised over
G = m {61} + m2{6:}
or over
G=mG +mG,

directly. From the experience of homogeneity test, we
have reason to believe that 2¢,,(G) will increase by

{ZTOHY +{ZT )Y

IfZ*(0F) and Z" (05) are independent, the limiting dis-
tribution would be

(0.25) x5 + (0.5) x{ + (0.25) ;.

The truth is more complex but related.

Let Z = (Z,, Z,)" and denote its covariance matrix
B. Chen et al. (2004) proved that the mLRT statistic for
Hy: m = 2 against H;: m > 2 after some manipulation
asymptotically equals

sup{2Z*t — t°Bt},

t>o0
wheret = (#;, ;)" and t > 0is interpreted component-
wise. The distribution of this random variable is a mix-
ture of chi-squares

1 arccos 1 arccos
(5 - T(M)Xg + 5)(12 + T(mxf,
where p is the correlation coefficient and here 7 =
3.14159- - -.

EM-test for Hy: m =2 against Hy: m > 2 has the same
limiting distribution and this is not coincident. Unlikely
mLRT, EM-test directly specifies a rigid form of mixing
distributions permitted in H; when maximising fn(G)
in the initial step. Suppose Go = 7'?1{51} + 7,{6,} max-
imises 57,, (G) under Hy. Liand Chen (2010) first defined
a class of mixing distributions

G=7?1G1+77[2G2 (21)

such that for k = 1, 2, each Gy is a mixing distribution
of exactly two support points in vicinity of 6y with spe-
cific mixing proportions. Among mixing distributions
of this form, obtain G that maximises ENn (G).

After G© is obtained, EM-iteration is applied K
times to get G as the usual EM-algorithm without
restrictions. The meticulously specified G makes the
outcome of the EM-iteration G retain the form of
Gn when Hj is true. The resultant EM-test statistic
EM,, therefore has the same limiting distribution as the
mLRT.
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The advantage is that the EM-test is multiple. It
works well with generic my. To test Hy: m = m, against
Hj: m > my, the form (21) is replaced by

G= 7T1G1 + 7T2G2 e R ijono-

The EM-test statistic EM,, was found to have the same
asymptotic expansion:

sup{2Z't — t*Bt}.

t>o
The only difference is the dimensions of t, Z and B. The
limiting distribution is a mixture of chi-squares with
degrees of freedom ranging from 0 to .

The expansion of the mLRT statistic is established
after examining all potential maximisers of the mod-
ified likelihood. In comparison, that of the EM-test
is established after examining a much reduced class.
This key difference leads to simpler technical deliber-
ation and broader applicability of the conclusion. The
EM-test does not require compact ® nor finite Fisher
information. The research on the mLRT stopped at
H()I m=2.

7. EM-test for finite normal mixture model

Two key innovations in developing the EM-test are (a)
tactical selection of a special structured class of mixing
distributions from H; based on the fitted mixing distri-
bution under Hy; (b) use of EM-iteration to measure the
improvement in likelihood from H; over Hy. These two
strategies are broadly applicable. The outcomes are par-
ticularly interesting for finite normal mixture models.
Let ¢p(x) be the density function of the standard normal.
The density function of a finite normal mixture distri-

bution is given by
Fx G) = E(b(x— M1) n Eqb(x_ Mz)
01 o1 02 02

+--~+@¢(x_u’”). (22)

Om Om

Normal mixture distributions are the most impor-
tant mixture models but their inference is also tech-
nically most challenging. The likelihood function
of the normal mixture model is unbounded based
on a set of random samples, unless an artificial
bound is placed on its component variance parameter
(Hathaway, 1985). Moreover, the model is not strongly
identifiable (Chen, 1995) so it is hard to differentiate
between overdispersion caused by mixture or by a large
variance. It has infinite Fisher information with respect
to mixing proportions. One must regularise the like-
lihood with some well-designed penalty function to
achieve consistent point estimation (Chen, 2016), or
settle for restricted MLE (Hathaway, 1985).

Let £,(G) = Zlogf(x; G) still be the log likeli-
hood function given a set of i.i.d. observations from a
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finite normal mixture distribution and s? be the sam-
ple variance of x;, and sz be component variances.
One approach to achieve consistent estimation of G is
through penalised likelihood defined as

Pa(G) = £u(G) + > puloy: s2)
j=1
for some &?-dependent smooth penalty function
pn(0?; %) (see Chen, Tan, and Zhang (2008) or Chen
(2016)). The key requirement on p,(c?; 52) is that its
value goes to negative infinity when o goes to 0 or infin-
ity at an appropriate rate. One such a choice is

~2 ~2
pn(0?6%) = —%{(%) + log (%) - 1}.

The factor a, determines the level of penalty, and the
other factor places a Gamma distribution prior on o 2.
A recommended choice for a,, is a, = n~/2. As long as
a, > 0, p£,(G) becomes a bounded function of G for
each finite m.

The likelihood principle that underlies the hypothe-
sis test is to look for éo and él that maximise the like-
lihood over spaces of Hy: m = mg and Hy: m > my,
respectively, to form a test statistic. The size Zn(él) -
£, (éo) reflects the improvement of the fit on H; over
Hy, and its effectiveness is supported by the classical
Neyman-Pearson lemma. At the same time, the test
is useful only if asymptotic property of 2(,(Gy) —
£, (éo)} is manageable. In Section 6, we have illustrated
that by strategic choice of a subspace of Hy, an EM-test is
effective for order of the finite mixture of one-parameter
component distribution.

With normal component distribution, Chen et al.
(2012) identified a subspace of H;, made of mixing dis-
tributions of order 2 for each carefully selected vector
B as follows:

Qo (B) = { Zﬂj[ﬁj{glj, o1} + (1 = Bj){6:j, 02;}] :

j=1

thj, 02 € 1, } (23)

where I;’s are non-overlapping intervals containing 6o j
induced by Gy. For each 8, one computes

G/(SO) — argmax{pzn(G) . G € QZmo (IB)}

EM-iteration is then applied to p¢,(G) with G(ﬁo) being
the initial value to get G/(SK), for a pre-specified K. Define

MO (B) = 2{plu(G) — pt.(Go)}.

The EM-test statistic is defined as the maximum
M,SK) (B) over a number of carefully selected values of
B.

For the ease of presentation, I purposely erred at
some details with the general idea preserved. Rigorous

readers should consult Chen et al. (2012) for more accu-
rate accounts. Almost like a gift, for testing Hy: m = my,

(K) 2
EM, = Xy

in distribution as n — c0. When the EM-test is applied
to Pearson’s crab data discussed in the beginning for H,
of m = 1, 2, the p-values are found to be 8 x 107! and
0.53, respectively. Hence, an order-2 finite normal mix-
ture model is well supported by the data.

Chen and Li (2016) further studied the order test
problem for finite normal mixture model with common

component variance:
T X — T X —
f(x;G)=—1¢< “1>+—2¢< “2)
o o o o

+ ._.+7T_m¢(9€—l/~m)'
o

o

Using the same strategy, an EM-test was constructed
and found to have limiting distribution x. _, for Ho: m
= my when mq > 2. Their simulation, however, showed
the limiting distribution is not sufficiently accurate for
the finite sample distribution. Some additional research
is needed.

8. EM-test for hidden Markov model

Under finite mixture models, data X;, X,, ... , X,, may be
regarded as generated in two steps. A hidden variable S;
selects one of m subpopulations with probability 7; in
the first step. Given S;, X; is a sample from this subpop-
ulation in the second step. The hidden states Sy, ..., S,
are themselves i.i.d.

When Si.7 = {Si1, S5, ..., St} form a Markov chain
instead, the time series X;. 7 are no longer i.i.d. How-
ever, at equilibrium, the marginal distributions of X; are
identical and have a finite mixture distribution. When
S1. 7 are not observed, the model for X;. 7 under this for-
mulation is called hidden Markov model (HMM).

In finance applications, market indexes often exhibit
distinct stochastic properties over different periods.
Such behaviour prompts the suggestion that the
stochastic property of related process X; is determined
by some hidden state S;. A two-state Markov chain for
S1. 7 works well in many specific instances. For exam-
ple, two states may represent periods of expanding and
shrinking economy. Such models are investigated in sta-
tistical finance such as Hamilton (2010), Engel (1994)
and Chen, Huang, and Wang (2016). At the same time,
statistical evidence for the use of multi-state HMM is
indispensable.

Consider a simple two-state HMM with state space
S = {1, 2}. At equilibrium, the marginal distribution of
X has density function

fu(x; G) = f(x; 6)) + 2 f (x; 602),

where w1 = P(S; = 1) and 7w, = P(S; = 2). The stochas-
tic property of the hidden states S;. r is determined by

(24)



transition probabilities
pij = P(§ = j|Si—1 = 1).

Because S;. 1 are generally dependent, so are Xj. 1. To
permit proper equilibrium distribution, the transition
probabilities must satisfy certain conditions. When S =
{1, 2}, the HMM has four free parameters: {61, 65, p12,
p21}. The HMM reduces to a homogenous model when
61 =06,,o0r Whel’lp12 =0 Oor pr; = 0.

The likelihood function of {81, 05, p12, p21} may be
written as

L, (61, 02, p12, P21, P1, P2)

T
= Z { l_[f(x; Qst)}P(Slzt = Si.T),
t=1

ST

where the summation is over all possible state sequence
S1: T»

T
P8y = s1r) = Ds, Hpst,l,st
t=2
and two extra parameters for the distribution of the ini-
tial state Sl:pl =1 —p2= P(Sl = 1)

Interestingly, an easy-to-use forward-backward
algorithm is available to compute the MLE of the
parameters (Baum, Petrie, Soules, & Weiss, 1970)
but evaluating L, or logL, is not as straightforward.
Full likelihood-based data analysis under HMM is
hence challenging in general. One strategy is to replace
the likelihood function with a function with similar
properties but easier to handle. One such candidate is
composite likelihood (CL).

A simplistic introduction of CL is as follows. Addi-
tional references can be found in Lindsay (1988), Varin
(2008) and Varin, Reid, and Firth (2011). A user may
first identify a class of subsets of the observations. A
likelihood function can be formed based on each sub-
set of the data under the full model assumption, after
which, alog CL is formed as a weighted sum of these log
likelihood functions. By a selective choice of these sub-
sets, the CL can be made robust against some degree of
model mis-specification, simpler for asymptotic analy-
sis, and easier for numerical computation.

A simple composite log likelihood as the sum of log
likelihood based on single x; is then

T
£(G) =) log fi(x: G). (25)
t=1
Note this likelihood has identical algebraic expression
when x;. r are T'i.i.d. observations. Hence, all tests dis-
cussed under i.i.d. assumptions can be mathematically
carried out. Interestingly, the large sample properties
of the mLRT and EM-test given in previous sections
remain valid. See Dannemann and Holzmann (2008a,
2008b), , Holzmann and Schwaiger (2016) for details.
We are saved from adding more details.
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9. Future directions

EM-test is currently the most successful approach for
testing the order of the finite mixture models. EM-test
is a class of tests created based on a conceptually sim-
ple principle. They have pushed the boundary of the
order test. At the same time, many problems remain
unsolved.

There is still lack of effective tests for the order of
the finite mixture models with multi-parametric f{x; 6).
Within this category, finite mixture of one-dimensional
normal distribution is special. Two parameters here
specify two distinct aspects of the distribution. EM-test
has properly addressed the order test problem in its
plain form. At the same time, the EM-test-like solutions
often depend on individual features as in Li et al. (2015)
and Shen and He (2015). The former deals with the fea-
ture where multiple samples are available and the lat-
ter works on feature where the mixing proportions are
structured.

Finite normal mixture is a special mixture of dis-
tributions in a location-scale family. These models are
obtained when ¢( - ) in (22) is logistic, Cauchy, Stu-
dent and so on. Unfortunately, the neat conclusions on
the EM-test for normal mixtures are not true. One must
start all over again to determine the asymptotic proper-
ties of similarly formulated EM-tests. Both interestingly
and unfortunately, the large sample properties depend
on the specific location-scale family. Some preliminary
results obtained by my collaborators indicate that one
version of the EM-test for homogeneity of location-
scale mixture has limiting distribution assembling

sup{2Z't — t*Bt} (26)
t

with the range on the surface of some three-
dimensional cone.

The idea of the EM-test is equally applicable to finite
mixture of other generic multi-parameter component
distribution (Niu, Li, & Zhang, 2011). The challenge is
that the range in the generic (26) is dependent on the
specific model as well as the specific choice of the sub-
space of H;. Searching for specific choice that leads to
simple limiting distribution is the major task for the
future research.

Finally, I wish to turn the attention to non-i.i.d. data
such as data from HMM. The EM-test has been found to
work well based on CL constructed from marginal dis-
tributions as demonstrated by references given earlier.
However, this line of approach ignores the time series
nature of the HMM. There should be a way to have
the transition information accommodated in the EM-
test. Finite mixture of regressions forms another rich
source of non-i.i.d. data. At this moment, there have
been little discussion on tests for the order of regression
mixtures.
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