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ABSTRACT
Thepenalised least square estimator of non-convex penalties such as the smoothly clipped abso-
lute deviation (SCAD) and the minimax concave penalty (MCP) is highly nonlinear and has many
local optima. Finding a local solution to achieve the so-called oracle property is a challenging
problem. We show that the orthogonalising EM (OEM) algorithm can indeed find such a local
solution with the oracle property under some regularity conditions for a moderate but diverging
number of variables.

1. Introduction

Consider a linear model

y = Xβ + ε, (1)

where X = (xi j) is the n × p regression matrix, y ∈ R
n

is the response vector, β = (β1, . . . , βp)
′ is the vector

of regression coefficients, and ε = (ε1, . . . , εn)
′ is the

vector of random error. Throughout, let ‖ · ‖ denote the
Euclidean norm. A regularised least squares estimator of
βwith the smoothly clipped absolute deviation (SCAD)
(Fan & Li, 2001) is given by solving

min
β

⎡
⎣1
n
‖y − Xβ‖2 + 2

p∑
j=1

P(|β j|; a, b)
⎤
⎦ , (2)

where for θ > 0,

P′(θ; a, b) = bI(θ � b)+(ab− θ )+I(θ > b)/(a − 1),
(3)

a > 2 and b > 0 are the tuning parameters, and I is
the indicator function. In order to apply the penalty P
equally on all the variables, X can be standardised so
that

n∑
i=1

x2i j = n, for j = 1, . . . , p. (4)

Fan and Li (2001) used the SCAD penalty in (3) to
achieve simultaneous estimation and variable selection.
Zhang (2010) studied a class of non-convex penalties
and introduced the minimax concave penalty (MCP)
method, which replaces P in (2) with PMCP satisfying

P′
MCP(θ; a, b) = (b− θ/a)I(θ � ab), (5)

where a> 1, b> 0, and θ > 0. Non-convex penalties are
now commonly used in statistics. Existing algorithms

CONTACT Peter Z. G. Qian peterq@stat.wisc.edu

for solving the SCAD or MCP problem include local
quadratic approximation (Fan & Li, 2001; Hunter &
Li, 2005), local linear approximation (Zou & Li, 2008),
the ConCave Convex procedure (CCCP) (Kim, Choi,
& Oh, 2008), the minimisation by iterative soft thresh-
olding algorithm (Schifano, Strawderman, & Wells,
2010), and the coordinate descent algorithm (Breheny
& Huang, 2011; Mazumder, Friedman, & Hastie, 2011;
Tseng, 2001; Tseng & Yun, 2009), among others.

The non-convex nature of the SCAD and MCP
penalties has an interesting interface between com-
putation and statistical properties. Fan and Li (2001)
proposed the SCAD penalty and also an important
property, called the oracle property. An estimator of β

having this property can not only select the correct
submodel asymptotically, but also estimate the nonzero
coefficients as efficiently as if the correct submodel were
known in advance. Fan and Li (2001) proved that there
exists a local solution of the SCADproblem in (2) enjoy-
ing this property for fixed p. The corresponding results
with a diverging p were presented in Fan and Peng
(2004) and Fan and Lv (2011). However, it is challeng-
ing to single out the one with the oracle property since
the non-convex penalised problems like SCAD orMCP
can have many local optima (Huo & Chen, 2010; Huo
& Ni, 2007). On the algorithmic aspect, different initial
points in a specific algorithm can yield different solu-
tions for n � p or n < p case. For example, let all rows
of X in (1) be identically and independently generated
from a zero-mean multi-normal distribution with cor-
relation 0.5, β = 0, and the components of ε be iden-
tically and independently generated from N(0, 32). We
use the coordinate descent algorithm to solve the SCAD
problem with a = 3.7 and b = 1/(n log (n)). For one
simulation, we use 100 initial points, which are inde-
pendently generated from a multi-normal distribution
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Table . Averages andmaxima (inparentheses) of the solutionnumbers of SCAD.

n= , p=  n= , p=  n= , p=  n= , p=  n= , p= 

. () . () . () . () . ()

N(0, 102Ip), where Ip denotes the p× p identity matrix.
The solution numbers for different pairs of (n, p) over
100 simulations are described in Table 1.

To get a good estimate from the multiple solutions,
one needs to elaborately select the algorithm and the
initial point. Fan and Li (2001) suggested using the ordi-
nary least squares (OLS) estimator as the initial point in
their local quadratic approximation algorithm for n >

p. This method performs well in simulations but lacks
theoretical justification. In recent years, related theoret-
ical study has been carried out. Zhang (2010) devised
a novel penalised linear unbiased selection algorithm
and proved that it can achieve selection consistency of
local solutions toMCP. Loh andWainwright (2013) dis-
cussed the convergence rate of local solutions given by
certain algorithms for a general class of non-convex
penalised problems. When the oracle property is con-
cerned, Zou and Li (2008) showed that the one-step
solution of the local linear approximation algorithm,
which stops the algorithm after one iteration, has the
oracle property with a good initial estimator for a fixed
p. Fan, Xue, and Zou (2014) extended such a result to
a general penalised estimation problem. Wang, Kim,
and Li (2013) proposed a two-step CCCP with differ-
ent tuning parameters in the two steps, called calibrated
CCCP, and showed that it produces the oracle estima-
tor with probability approaching one. These theoretical
results are useful for high-dimensional statistics. How-
ever, since a local solution is achieved when the itera-
tion number goes to infinity, after only one or several
iterations, the estimator is not guaranteed to be a local
minimum of the non-convex problem in finite-sample
cases. To find a local solution with the oracle property,
we need to study the oracle property of a k-step estima-
tor as k goes to infinity. As Meng (2008) pointed out, if
we believe that the SCAD objective function is a valid
criterion for sparse estimation, then the estimator from
a monotonic algorithm is expected to become better
as the iteration number increases. Therefore, a k-step
estimator with the oracle property as k goes to infin-
ity matches Fan and Li’s original purpose of introduc-
ing the SCAD penalty. To the best of our knowledge, no
such estimator has been presented in the literature, even
for the case of n > p.

In this paper, we will show a rather surprising result.
In our early results summarised in an unpublished
paper (Xiong, Dai, & Qian, 2011), we introduced the
orthogonalising EM (OEM) algorithm for general least
squares problems. For the SCAD and MCP problems,
each OEM iteration has a simple closed form. This
feature makes it possible to study the theoretical

properties of a k-step estimator as k goes to infinity, and
thusmotivates us to consider whether the local solution
of SCAD or MCP given by OEM has the oracle prop-
erty. Since OEM is more suitable for big tall data with
n > p (Xiong, Dai, Huling, & Qian, 2016), here our
study mainly focuses on such cases. We prove that an
OEM sequence for SCAD or MCP can indeed achieve
the oracle property if the iteration number goes to infin-
ity with an initial estimator having certain consistency
property.We allow the dimensionality p to depend on n
of the order p = O(nq) with q � [0, 3/2). For p exceed-
ing this order, our result can be applied to the submodel
after a screening stage (Fan & Lv, 2008), which reduces
the initial p to the order p = o(n). We therefore present
a detailed discussion on the applications of our result to
the case of n > p. For this case, with the OLS estimator
being the initial estimator, our result holds for a broad
class of deterministic or random X in (1), which can be
allowed to be nearly degenerate.

It should be pointed out that, the technical report
(Xiong et al., 2011) summarised some earlier results we
have got on OEM. We have divided the report into two
papers for publication. One paper (Xiong et al., 2016)
focuses on the details of the algorithm. The current
paper deals with the oracle property. The two papers
have no overlapping.

Section 2 reviews the OEM algorithm. Section 3
presents the main result that the local solution
of SCAD given by OEM has the oracle property.
Section 4 discusses our result in the case of n > p.
Section 5 presents simulation results. Section 6 con-
cludes with some discussion. All proofs are given in the
Appendix.

2. The OEM algorithm

Consider the SCAD problem in (2) with the regression
matrix X standardised as in (4). For a matrix, denote
by λmax (·) and λmin (·) its largest and smallest eigenval-
ues, respectively. In the OEM algorithm, the first step
of OEM is active orthogonalisation, which computes �

such that

X ′X + �′� = ndnIp (6)

with dn � γ1 = λmax(X ′X/n). Therefore, Xc =
(X ′ �′)′ is column orthogonal. Consider the linear
model

yc = Xcβ + εc, (7)

where yc = (y′, y′
m)′ is the complete response vector

including a missing part ym. Based on the complete
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model (7), we can solve (2) by iteratively imputing ym.
Let β(0) be an initial point. For k = 0, 1,… , impute ym
as yimp = �β(k), let yc, imp = (y′, y′

imp)
′, and solve

min
β

⎡
⎣1
n
‖yc, imp − Xcβ‖2 + 2

p∑
j=1

P(|β j|; a, b)
⎤
⎦ ,

Since Xc is orthogonal, the above problem becomes

min
β j∈� j

[
dnβ2

j − 2u(k)
j β j + 2P(|β j|; a, b)

]
, (8)

where u(k)
j is the jth component of u(k) = u(β(k)) and

u(z) = (u1(z), . . . , up(z))′ = X ′y
n

+
(
dnIp−X ′X

n

)
z.

(9)

For u ∈ R, define

s(u; a, b) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sign(u)
(
|u| − b

)
+
/dn, when |u| � b(dn + 1),

sign(u)
{
(a − 1)|u| − ab

}
/{

(a − 1)dn − 1
}
, when (dn + 1)b < |u| � abdn,

u/dn, when |u| > abdn,

and

s(u; a, b) = [
s(u1; a, b), . . . , s(up; a, b)

]′
. (10)

We fix a in (3) and thus omit it in s hereinafter. Let b =
λn/n that depends onn. The problem in (8) has a closed-
form solution that leads to the OEM iteration formula

β(k+1) = s(u(k); λn/n). (11)

For the regularised least squares problem with the
MCP penalty in (5), the OEM iteration formula
is β(k+1) = sMCP(u(k); λn/n) with sMCP(u; a, b) =[
sMCP(u1; a, b), . . . , sMCP(up; a, b)

]′ and

sMCP(u; a, b) ={
sign(u)a

(|uj| − b
)
+/(adn − 1), when |u| � abdn,

u/dn, when |u| > abdn.
(12)

A simple choice of dn in (6) is dn = γ 1, which
can be computed efficiently by the Lanczos algorithm
(Lanczos, 1950).With this choice, it suffices to compute
γ 1 for obtaining β(k+1) in (11) instead of computing the
whole �.

The above OEM procedure can be easily used in
other regularised least squares problems including ridge
regression (Hoerl & Kennard, 1970), the nonnegative
garrote (Breiman, 1995), and the lasso (Tibshirani,
1996). Xiong et al. (2011) showed that this is an EM
algorithm, and derived its monotonicity and conver-
gence properties for general regularised least squares
problems.

3. Main results

Suppose that the number of nonzero coefficients of β in
(1) is p1 and partition β as

β = (β′
1, β

′
2)

′, (13)

where β2 = 0 and no component of β1 is zero. Divide
columns of the regression matrix X in (1) to (X1 X2)

with X1 corresponding to β1. We assume rank(X1) =
p1. Let β̂∗ = (β̂

′∗
1 , β̂∗′

2 )′ denote the oracle estimator
with β̂∗

1 = (X ′
1X1)

−1X ′
1y and β̂∗

2 = 0. A regularised least
squares estimator of β in (1) has the oracle property if
it can not only select the correct submodel asymptot-
ically, but also estimate the nonzero coefficients β1 in
(13) as efficiently as if the correct submodel were known
in advance. Specifically, an estimator β̂ = (β̂′

1, β̂
′
2)

′ has
this property if P(β̂2 = 0) → 1 and β̂1 has the same
asymptotic distribution as β̂∗

1 .
In virtue of the simplicity of the OEM iteration in

(11), we can study the oracle property of the local solu-
tion of SCAD given byOEM. First, we prove that, under
certain conditions, a fixed point of the OEM iterations
for SCAD is the oracle estimator with probability tend-
ing to one. Some notation, definitions, and assumptions
are needed. Hereinafter, p, p1, and β1 can depend on n.
Letβmin denote the component ofβ1 that has the small-
est absolute value. The matrix X is standardised as in
(4). Recall that dn � γ 1 in (8).

Definition 3.1: For a series of numbers cn → � and
a positive constant κ , an estimator β̂ of β is said to be
cn-concentratively consistent of order κ if there exists
a constant C > 0 such that for sufficiently large t,
P(cn‖β̂ − β‖ � t ) � C/tκ .

Remark 3.1: By the Markov inequality, β̂ is
cn-concentratively consistent of order κ if E

[
cn‖β̂ −

β‖]κ = O(1).

Assumption 3.1: The random errors ε1,… , εn are i.i.d.
randomvariables with E ε1 = 0 andE|ε1|r <� for some
r� 2.

Assumption 3.2: As n → �, p1/(n1/2dn|βmin |)r → 0,
p1/(cn|βmin |)κ → 0, λn/(n|βmin |) → 0, λn/(n1/2p1/r) →
�, and cnλn/(ndnp1/κ ) → �.

Remark 3.2: Consider the case of p� n.We can assume
cn = √

n/ log(p) (Bühlmann & van de Geer 2011).
Since X ′X has at most n non-zero eigenvalues, γ1 �
trace(X ′X/n)/n = p/n. The equality holds for someX ,
and thus dn can be assumed to have the same order
of p/n. For cn = √

n/ log(p), dn ∼ p/n, and sufficiently
large r and κ , if we fix p1 and β1 and set p∼ nq for some
q� 1, then λn can be chosen as λn ∼ nα , where 1> α >

max {1/2 + q/r, q − 1/2 + q/κ}. It is clear that q should
be smaller than 3/2. In other words, our results in this
paper can handle dimensionality of order p=O(nq) for
q � [1, 3/2).
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Theorem 3.1: Let β̂f be a fixed point of the OEM iter-
ations for SCAD. Suppose that β̂f is a cn-concentratively
consistent estimator of order κ . Under Assumptions 3.1
and 3.2, as n → �,

P(β̂f = β̂∗) → 1.

Theorem3.1 indicates that a fixed point ofOEMcon-
sistent to the true parameter has the oracle property
even when p grows faster than n.

Sometimes it is difficult to know whether a fixed
point is consistent. We next show that, with an initial
point concentratively consistent toβ, anOEM sequence
can converge to that fixed point and possess the oracle
property. In addition, its limit point is indeed the oracle
estimator with probability tending to one.

Let {β(k), k = 0, 1, . . . , } be the OEM sequence
from (11). Denote ζ1 = λmax(X ′

1X1/n), ζp1 =
λmin(X ′

1X1/n), c∗n = min{cn, (nζp1/p1)1/2}, and
ηn = λmax(Ip1 − X ′

1X1/(ndn)) = 1 − ζp1/dn ∈ [0, 1).

Assumption 3.3: As n → �, p1+r/2
1 /((nζp1 )r/2

|βmin|r) → 0, and c∗nλn/(ndn) → ∞.

Theorem 3.2: If β(0) is cn-concentratively consistent of
order κ , then, under Assumptions 3.1–3.3, we have (i) as
n → �,

P
(
lim
k→∞

β(k) = β̂∗
)

→ 1; (14)

(ii) for all k = 1, 2,… , P(β
(k)
2 = 0) → 1 and ‖β(k)

1 −
β̂∗
1‖ = Op(η

k
n/c∗n).

By (ii) of Theorem 3.2, the OEM sequence can pos-
sess the oracle property only if k is sufficiently large. In
particular, β̂1 has the same asymptotic normality as β̂∗

1 .
We state this result as a corollary.

Assumption 3.4: As n → �, ζp1/dn → δ ∈ [0, 1),
and k = kn satisfies (nζ1)1/2 exp
(−k log(1 − δ)−1)/c∗n → 0 for δ > 0 and
(nζ1)1/2 exp(−ζp1k/dn)/c∗n → 0 for δ = 0.

Corollary 3.1: Suppose that β(0) is cn-concentratively
consistent of order κ . If

max
1�i�n

x′
1i(X

′
1X1)

−1x1i → 0, (15)

where x1i = (xi1, . . . , xip1 )′, then under Assumptions
3.1–3.4, as n → �,

(i) P(β
(k)
2 = 0) → 1;

(ii) for any non-zero p1 × 1 vector αn, α′
n(β

(k)
1 −

β1)/[α′
n(X ′

1X1)
−1αn]1/2 → N(0, σ 2) in distribu-

tion, where σ 2 = E ε21 .

Remark 3.3: A sufficient condition for (15) is p1 =
o(nζp1 ) and max1�i�n p−1

1
∑p1

j=1 x
2
i j = O(1).

Remark 3.4: The proofs of Theorems 3.1 and
3.2 only use the convergence rates of P(β

(k+1)
j =

0) = P(|u(k)
j | < λn/n) and P(β

(k+1)
j = u(k)

j /dn) =
P(|u(k)

j | > adnλn/n). Since an OEM sequence for MCP
has the same structure from (12), all results in this
section hold for MCP with almost the same proofs.

From Corollary 3.1, the OEM sequence β(k) can
have the oracle property for sufficiently large k. For
example, let p1 and β1 be fixed and X ′

1X1/n → �1,
where �1 is a positive-definite matrix. For this case, if
dn → � and

√
n exp(−λmin(�1)kn/dn) → 0 as n →

�, then Assumption 3.4 holds and
√
n(β

(k)
1 − β1) →

N(0, σ 2�−1
1 ) in distribution.

Huo and Chen (2010) showed that, for the SCAD
penalty, solving the globalminimumof the SCADprob-
lem leads to an NP-hard problem. Theorem 3.2 indi-
cates that as far as the oracle property is concerned, the
local solution given by OEM will suffice.

Theorems 3.1 and 3.2 can handle dimensionality of
order p = O(nq) for q < 3/2. For p exceeding this order,
penalised regression methods can perform poorly. A
practical approach is a two-stage procedure in Fan and
Lv (2008). The first stage uses an efficient screening
method like the sure independence screening (SIS) (Fan
& Lv, 2008) to reduce the dimensionality. OEM can
be used in the second stage to obtain a SCAD esti-
mator with the oracle property. In fact, OEM can also
be used to screen variables even with a p increasing at
an exponential rate, since the one-step OEM estimator
with a proper λn using β(0) = 0 is equivalent to the SIS
method.

4. Discussion on the n> p case

The OEM algorithm is originally motivated by applica-
tions with Big Data, i.e., large n (Xiong et al., 2016). In
this section, we discuss the case of p = o(n), and show
that Theorems 3.1 and 3.2 hold under fairly weak condi-
tions onX with theOLS estimator being the initial point
of OEM. Like the previous sections, the matrix X in (1)
is standardised as in (4). As in Section 3, the results in
this section allow ζp1 → 0 and/or ζ 1 → � as n → �,
that is, the regression matrix X and X1 can be nearly
degenerate. Let γp = λmin(X ′X/n). By Lemma A.5 in
theAppendix, we immediately obtain the following the-
orem.

Theorem 4.1: Suppose that γ p > 0 and p = o(nγ p).
Then, the OLS estimator β̂ = (X ′X )−1X ′y is

√
nγp/p-

concentratively consistent of order r under Assumption
3.1.

For p = o(nγ p), we use the OLS estimator as the
initial estimator in Theorem 3.2 and take dn = γ 1.
Since p1γ 2

1 � ζp1 and pγ 2
1 � γp, under Assumption 3.1,

Assumptions 3.2 and 3.3 become
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Assumption 4.1: As n → �, p1+r/2
1 /(

(nζp1 )r/2|βmin|r
) → 0, λn/(n|βmin |) → 0, and

γ
1/2
p λn/(n1/2p1/2+1/rγ1) → ∞.

Assumption 3.4 becomes

Assumption 4.2: As n → �, ζp1/γ1 → δ ∈ [0, 1), and
k = kn satisfies (pζ 1/γ p)1/2exp ( − klog (1 − δ)−1) → 0
for δ > 0 and (pζ1/γp)

1/2 exp(−ζp1k/γ1) → 0 for δ =
0.

By Theorem 3.2 and Corollary 3.1, under Assump-
tion 3.1, Assumptions 4.1 and 4.2 imply the oracle prop-
erty of the OEM sequence for SCAD with the OLS esti-
mator being the initial estimator.

Under above conditions and suppose further that
there exist two positive constantsC andC such thatC �
γp � γ1 � C. Then, Assumption 4.1 reduces further to
that, as n→ �, p1+r/2

1 /
(
nr/2|βmin|r

) → 0, λn/(n|βmin |)
→ 0, and λn/(n1/2p1/2 + 1/r) → �. Assumption 4.2
reduces further to that, as n→ �, p1/2 exp(−k log(1 −
C/C)−1) → 0.

We next show an example where Assumption 4.1
holds with ζp1 → 0 and ζ 1 → �. Let p ∼ nq with
q� [0, 1), ζp1 ∼ 1/ log(n), ζ 1 ∼ log (n), γ p ∼ 1/log (n)2,
γ 1 ∼ log (n)2, λn ∼ nα , and |βmin | be a constant. Then,
Assumption 4.1 holds if p1 = o((n/log (n))r/(r + 2)) and
1 > α > 1/2 + q/2 + q/r. Such α exists for any q � [0,
1) if r is sufficiently large.

Remark 4.1: In many papers on high-dimensional
asymptotics, the random errors are assumed to follow
sub-Gaussian distributions. Under the sub-Gaussian
assumption, we can show that the OLS estimator has an
exponential tail probability bound using the results in
Hsu, Kakade, and Zhang (2012). Therefore, when using
it as the initial point, Assumption 4.1 can be relaxed
with more choices of λn.

Assumption 4.1 requires that the convergence rates
of γ 1, 1/γ p, ζ 1, and 1/ζp1 to infinity should be
relatively slow, which holds for commonly encoun-
tered regression matrix X . The following theorem
derives the bounds of the eigenvalues under random
designs from a broad class of correlated multivariate
distributions.

Theorem 4.2: Let zij, i = 1,… , n, j = 1,… , p, be i.i.d.
random variables with Ez11 = 0, Ez211 = 1, and E|z11|4

< �. Suppose thatU is a p × p positive-definite matrix
andU1 is the p1 × p1 sub-matrix constructed by its first
p1 rows and columns. Denote zi = (zi1, . . . , zip)′, z1i =
(zi1, . . . , zip1 )′, xi = U 1/2zi, and x1i = U 1/2

1 z1i for i =
1,. . ., n. Let X = (x1, . . . , xn)′. Then, for p = o(n),

γ1 = O(λmax(U )), 1/γp = O(1/λmin(U )), ζ1 = O(λmax(U1)),

and 1/ζp1 = O(1/λmin(U1)) (16)

with probability one.

Theorem 4.2 indicates that the convergence rates of
γ 1, 1/γ p, ζ 1, and 1/ζp1 to infinity will be relatively slow
if the eigenvalues ofU andU1 are restrictive. It is clear
that a nearly degenerateU1 can also yield γ 1, γ p, ζ 1, and
ζp1 satisfying Assumption 4.1 asymptotically.

5. Simulations

This section presents some simulation results of the
SCAD solution given by OEM to support our theo-
retical discoveries. Our main purpose is to show that
ourmethod is at least comparable with other estimators
having the oracle property.

We focus on the p < n case, and compare the
SCAD solution given by OEM (SCADOEM) with other
four methods, including the lasso (Tibshirani, 1996),
the adaptive lasso (AdaLasso) (Zou, 2006), Zou and
Li (2008)’s one-step LLA estimator, and the SCAD
solution given by the coordinate descent algorithm
(SCADCD). The regression matrix X in (1) is con-
structed as X = (x1, . . . , xn)′, where x1, . . . , xn are
independently generated from N(0, �), and the (i, j)
entry of � is ρ |i − j|. The random errors ε1,… , εn ∼
N(0, 1), p = 8, and

β = (β1, . . . , β8)
′ = (3, 1.5, 0, 0, 2, 0, 0, 0)′.

The sample sizen is chosen as 40, 60, and 80.Wefirst use
theOEMalgorithm to compute the SCAD solutionwith
the initial point being the OLS estimator. The tuning
parameter a in (3) is set as 3.7 as recommended in Fan
and Li (2001). The other parameter b= λn/n is selected
by BIC (Wang, Li, & Tsai, 2007). With the same b, we
compute the one-step estimator, and compare the vari-
able selection errors (VSEs) and themodel errors (MEs)
of the two estimators. Here, the VSE and ME of an esti-
mator β̂ are, respectively, defined as

VSE(β̂) = |{ j : j ∈ A(β) but j /∈ A(β̂)}|
+|{ j : j ∈ A(β̂) but j /∈ A(β)}|

and

ME(β̂) = (β̂ − β)′(X ′X )(β̂ − β)/n,

where | · | denotes cardinality and A(β) = { j : β j 
=
0, j = 1, . . . , p}.

The average VSE and ME values of the two esti-
mators over 1000 times are shown in Table 2. We can
see that SCADOEM outperforms the one-step estimator,
especially when ρ is large. Besides, SCADOEM is com-
parable to AdaLasso that also possesses the oracle prop-
erty (Zou, 2006) in terms of ME. SCADCD gives almost
the same results as SCADOEM, but its oracle property
has not been proved in the literature.
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Table . Comparisons of VSEs and MEs.

VSE ME

ρ =  ρ = . ρ = . ρ =  ρ = . ρ = .

n= 
Lasso . (.) . (.) . (.) . (.) . (.) . (.)
AdaLasso . (.) . (.) . (.) . (.) . (.) . (.)
SCAD (one-step) . (.) . (.) . (.) . (.) . (.) . (.)
SCADCD . (.) . (.) . (.) . (.) . (.) . (.)
SCADOEM . (.) . (.) . (.) . (.) . (.) . (.)

n= 
Lasso . (.) . (.) . (.) . (.) . (.) . (.)
AdaLasso . (.) . (.) . (.) . (.) . (.) . (.)
SCAD (one-step) . (.) . (.) . (.) . (.) . (.) . (.)
SCADCD . (.) . (.) . (.) . (.) . (.) . (.)
SCADOEM . (.) . (.) . (.) . (.) . (.) . (.)

n= 
Lasso . (.) . (.) . (.) . (.) . (.) . (.)
AdaLasso . (.) . (.) . (.) . (.) . (.) . (.)
SCAD (one-step) . (.) . (.) . (.) . (.) . (.) . (.)
SCADCD . (.) . (.) . (.) . (.) . (.) . (.)
SCADOEM . (.) . (.) . (.) . (.) . (.) . (.)

6. Concluding remarks

Since Fan and Li (2001) pointed out that there exists a
local solution of SCADhaving the oracle property, it has
become an interesting open problem to find such a local
solution. We have proved that the OEM algorithm can
indeed provide this local solution with the oracle prop-
erty even with a diverging p. Compared with other esti-
mators after one or several iterations with this property,
our results provide a new way to compute the required
local solution in Fan and Li (2001) and Zhang (2010)
and indicates a new interface between optimisation and
statistics for non-convex penalties.

Although our main results require p = O(nq) with
q � [0, 3/2), the condition on the random error ε is
accordingly weak. Especially, for p = o(n) and under
such a condition on ε, our results easily hold for com-
monly encountered regression matrix X , even nearly
degenerate, with the OLS estimator being the initial
point. This point also matches the spirit why Fan and
Lv (2008) proposed the two-stage method for an ultra-
high p. That is, regularised least squares methods like
SCAD are more suitable for a moderate p.

This paper does not discuss the selection of the tun-
ing parameter λn in the SCAD penalty. This issue has
been intensively studied in the literature, and we refer
the reader to Wang et al. (2007), Wang, Li, and Leng
(2009), Wang et al. (2013), and Fan and Tang (2013),
among others.
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Appendix: Proofs

Lemma A.1: Under Assumption 3.1, for a ∈ R
n with

‖a‖ = 1 and t ∈ R, P(|a′ε| � t ) � C/tr, where C > 0
is a constant that does not rely on n or a.

Proof: By the Markov inequality, P(|a′ε| � t ) �
E|a′ε|r/tr. By the Lai-Wei inequality in Example 3
of Lai and Wei (1984) and Assumption 3.1, E|a′ε|r is
not greater than a positive constant that does not rely
on n or a. This completes the proof. �

Proof of Theorem 3.1: Under Assumption 3.1, σ 2 =
E ε21 < ∞. Without loss of generality, assume σ 2 = 1 in
all the proofs. Let x1, . . . , xp denote the columns of X .

Since β̂f is a fixed point, β̂f = s(û; λn/n) with û =
u(β̂f ), where u and s are defined in (9) and (10), respec-
tively. Therefore,

û
dn

= β + X ′ε
ndn

+
(
Ip − X ′X

ndn

)
(β̂f − β). (A1)

We have

P
(
β̂f
1 = û1/dn, β̂f

2 = 0
)

= P(|û j| > adnλn/n for j = 1, . . . , p1, |û j|
< λn/n for j = p1 + 1, . . . , p)

� 1 −
p1∑
j=1

P(|û j| � adnλn/n)

−
p∑

j=p1+1

P(|û j| � λn/n). (A2)

Note that dn � γ1 � p/rank(X ) � 1 and that β̂f is con-
centratively consistent. For sufficiently large n, by (A1)
and Assumption 3.2,p1∑

j=1

P(|û j| � adnλn/n)

�
p1∑
j=1

P(|βmin| − |x′
jε/(ndn)|

− ∥∥ (
Ip − (X ′X )/(ndn)

)
(β̂f − β)

∥∥ � aλn/n)

�
p1∑
j=1

{
P(|x′

jε/(ndn)| + ‖β̂f − β‖ � |βmin|/2)
}

�
p1∑
j=1

P
[|x′

jε/
√
n| � √

ndn|βmin|/4
]

http://arxiv.org/abs/1108.0185
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+p1 P
(
cn‖β̂f − β‖ � cn|βmin|/4

)
= O

(
p1/(n1/2dn|βmin|)r

) + O
(
p1/(cn|βmin|)κ

)
.

(A3)

For the other part in (A2),

p∑
j=p1+1

P(|û j| � λn/n)

�
p∑

j=p1+1

P
(|x′

jε/
√
n| � λn/

√
n − √

ndn
∥∥

× (
Ip − (X ′X )/(ndn)

)
(β̂f − β)

∥∥)

�
p∑

j=p1+1

P
[|x′

jε/
√
n| � λn/(2

√
n)

]

+pP
(
cn‖β̂f − β‖ � λncn/(2ndn)

)
= O

(
p(λn/

√
n)−r) + O

[
p
(
(cnλn)/(ndn)

)−κ
])

.

(A4)

Plugging the above inequalities in (A2), we have

P(β̂f
1 = û1/dn, β̂f

2 = 0) → 1.

Note that when β̂f
1 = û1/dn and β̂f

2 = 0,

β̂f
1 = û1

dn
= β1 + X ′

1ε

ndn
+

(
Ip1 − X ′

1X1

ndn

) (
β̂f
1 − β1

)
,

which implies that

β̂f
1 = β1 + (X ′

1X1)
−1X ′

1ε = (X ′
1X1)

−1X ′
1y.

This completes the proof. �

To prove Theorem 3.2, we need several lemmas.
For φ > 0, define E(φ) = {z = (z′

1, z′
2)

′ ∈ R
p :

‖z1 − β̂∗
1‖ < φ, z2 = 0} and F = {z ∈ R

p : |uj(z)| >

adnλn/n for j = 1, . . . , p1, |uj(z)| < λn/n for j =
p1 + 1, . . . , p}, where the vector-valued function
u = (u1, . . . , up)

′ is defined in (9).

LemmaA.2: If φ < λn/(ndn) and φ < |β̂∗
j | − aλn/n for

j = 1,… , p1, then E(φ)�F.

Proof: For z ∈ R
p, we have

u(z) = X ′y
n

+
(
dnIp − X ′X

n

)
(β̂∗ + z − β̂∗)

= dnβ̂∗ +
(
dnIp − X ′X

n

)
(z − β̂∗).

Then, for z = (z′
1, 0′)′ ∈ E(φ) and j = 1,… , p1,

|uj(z)| � dn|β̂∗
j | − ‖(dnIp − X ′X/n)(z − β̂∗)‖ >

dn(φ + aλn/n) − dnφ = adnλn/n; for j = p1 + 1,… ,
p, since (up1+1(z), . . . , up(z))′ = −X ′

2X1(z1 − β̂∗
1 )/n,

we have |uj(z)| �
{
(z1 − β̂∗

1 )
′X ′

1X2X ′
2X1(z1 −

β̂∗
1 )/n2

}1/2 � dnφ < λn/n. �

Lemma A.3: Let {β(k), k = 0, 1, . . . , } be the OEM
sequence from (11). Ifβ(0) ∈ E(φ), then under the condi-
tions of Lemma A.2, β(k)

1 → β̂∗
1 as k→ �, and β

(k)
2 = 0

for all k = 0, 1,… .

Proof: Since β(0) ∈ E(φ), by Lemma A.2, β(0) ⊂ F ,
which implies β

(1)
1 = u1(β(0))/dn = β̂∗

1 + (Ip1 −
X ′
1X1/(ndn))(β(0)

1 − β̂∗
1 ) and β

(1)
2 = 0. Recall that

ηn = λmax(Ip1 − X ′
1X1/(ndn)) ∈ (0, 1). We have

‖β(1)
1 − β̂∗

1‖ � ηn‖β(0)
1 − β̂∗

1‖ < ‖β(0)
1 − β̂∗

1‖ � φ.
Consequently, β(1) ∈ E(φ). By recursive, we
know that, for all k = 1, 2,… , β(k) ∈ E(φ), and
‖β(k)

1 − β̂∗
1‖ � ηk

n‖β(0)
1 − β̂∗

1‖. Letting k → �, we
complete the proof. �

Lemma A.4: Under Assumption 3.1, ‖X ′
1ε‖/(np1)1/2 =

Op(ζ
1/2
1 ).

Proof: Let ζ1 � · · · � ζp1 be all eigenvalues of X ′
1X1/n.

Therefore, X1X ′
1/n can be written as X1X ′

1/n =∑p1
j=1 ζ ja ja′

j with ‖a j‖ = 1 and a′
ia j = 0 for i � j.

We have E
(‖X ′

1ε‖2/(np1)
) = p−1

1
∑p1

j=1 ζ j
(
E‖a′

jε‖2) �
ζ1p−1

1
∑p1

j=1
(
E‖a′

jε‖2). The lemma follows from the
Markov inequality and the Lai-Wei inequality. �

Lemma A.5: If p1 = o(nζp1 ), then under
Assumption 3.1, β̂∗ is

√
nζp1/p1-concentratively consis-

tent of order r.

Proof: Let ζ1, . . . , ζp1 be the same as in the
proof of Lemma A.4. Since all non-zero eigen-
values of matrix A = (np1)−1X1(X ′

1X1/n)−2X ′
1

are 1/(ζ1p1), . . . , 1/(γp1 p1), we have A =∑p1
j=1 b

′
jb j/(ζ j p1), where b j ∈ R

n with
‖b j‖ = 1 and b′

ib j = 0 for i � j. By the Cr

inequality, we have E(
√
nζp1/p1‖β̂∗ − β‖)r =

E (ζp1ε
′Aε)r/2 = E(ζp1 p1−1 ∑p1

j=1 ‖b′
jε‖2/ζ j)

r/2 �
E(p−1

1
∑p1

j=1 ‖b′
jε‖2)r/2 � p1−1 ∑p1

j=1 E|b′
jε|r. By the

Lai-Wei inequality, the above expression is not greater
than a constant. By Remark 3.1, this completes the
proof. �

Lemma A.6: Let {β(k), k = 0, 1, . . . , } be the OEM
sequence from (11). If β(0) is cn-concentratively consis-
tent of order κ , then under Assumptions 3.1 and 3.2,
P(β

(1)
1 = u(0)

1 /dn, β
(1)
2 = 0) → 1 as n → �.

Proof: By (9),

u(0)/dn = β + X ′ε/(ndn)
+ (

Ip − X ′X/(ndn)
)
(β(0) − β). (A5)

Similar to (A3) and (A4),

P
(
β

(1)
1 = u(0)

1 /dn
)

= P
(|u(0)

j | > adnλn/n for j = 1, . . . , p1
)

� 1 −
p1∑
j=1

P
(|u(0)

j | � adnλn/n
)
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= 1 − O
(
p1/(n1/2dn|βmin|)r

)
+O

(
p1/(cn|βmin|)κ

)
(A6)

and

P
(
β

(1)
2 = 0

) = P
(|u(0)

j | � λn/n for j = p1 + 1, . . . , p
)

� 1 −
p∑

j=p1+1

P
(|u(0)

j | > λn/n
)

= 1 − O
(
p(λn/

√
n)−r)

+O
[
p
(
(cnλn)/(ndn))−κ

])
. (A7)

By Assumption 3.2, we complete the proof. �

Lemma A.7: Under Assumptions 3.1–3.3, P(β(1) ∈
E(φn)) → 1 as n → �, where φn = (λn/(ndnc∗n))1/2.

Proof: By Lemma A.6, P(β
(1)
2 = 0) → 1. It suf-

fices to consider β
(1)
1 . If β

(1)
1 = u(0)

1 /dn, then by
(A5) and Lemma A.4, ‖β(1)

1 − β1‖ � ‖β(0)
1 −

β1‖ + ‖X1ε/(ndn)‖ = Op(1/c∗∗
n ), where c∗∗

n =
min{cn, n1/2dn/(p1ζ1)1/2}. Since ‖β̂∗

1 − β1‖ =
Op((nζp1/p1)−1/2) by Lemma A.5, ‖β(1)

1 −
β̂∗
1‖ � ‖β(1)

1 − β1‖ + ‖β̂∗
1 − β1‖ = Op(1/c∗∗

n ) +
Op((nζp1/p1)−1/2) = Op(1/c∗n). By Assumption 3.3,
φnc∗n → 1 as n → �. This implies P(‖β(1)

1 − β̂∗
1‖ <

φn) → 1 and completes the proof. �

Proof of Theorem 3.2: (i) By Assumption 3.3, φn <

λn/(ndn) for sufficiently large n, where φn is defined
in Lemma A.7. By Lemma A.3, P(limk→∞ β(k) =
β̂∗) � P(φn0 < min j=1,...,p1{|β̂∗

j | − aλn/n0}, β(1) ∈
E(φn0 ) for some n0 ∈ N). By Lemma A.7, it suffices to
show

P
(
λn/(ndn) < min

j=1,...,p1
{|β̂∗

j | − aλn/n}
)

→ 1. (A8)

Since λn/(n|βmin |) → 0 in Assumption 3.2, for suffi-
ciently large n, we have

P
(
λn/(ndn) < min

j=1,...,p1
{|β̂∗

j | − aλn/n}
)

� P
(

min
j=1,...,p1

|β̂∗
j | > aλn/n + λn/n

)

� P
(

min
j=1,...,p1

|β̂∗
j | > |βmin|/2

)

� 1 −
p1∑
j=1

P
(|β j| − |β̂∗

j − β j| � |βmin|/2
)

� 1 − p1P
(‖β̂∗ − β‖ � |βmin|/2

)
� 1 −Cp1

(√
nζp1/p1|βmin|

)−r
,

where C > 0 is a constant. The last inequality is from
Lemma A.5. By Assumption 3.3, (A8) holds and this
completes the proof of (i).

(ii) By Lemma A.3 and its proof, when φn0 <

λn0/(n0dn0 ), φn0 < min j=1,...,p1{|β̂∗
j | − aλn/n0},

and β(1) ∈ E(φn0 ) for some n0 ∈ N, β
(k)
2 = 0

and ‖β(k)
1 − β̂∗

1‖ � ηk
n‖β(0)

1 − β̂∗
1‖ for all k = 0,

1,… . The proof of (ii) is completed by noting
‖β(0)

1 − β̂∗
1‖ � ‖β(0)

1 − β1‖ + ‖β̂∗
1 − β1‖ = Op(1/c∗n).

�
Proof of Corollary 3.1: We only need to prove
(ii). With minor modifications from Eicker
(1963), under Assumption 3.1 and (15), we have
α′
n(β̂

∗
1 − β1)/[α′

n(X ′
1X1)

−1αn]1/2 → N(0, σ 2) in
distribution. Then, it suffices to show |α′

n(β
(k)
1 −

β̂∗
1 )|/[α′

n(X ′
1X1)

−1αn]1/2 = op(1). By (ii) of
Theorem 3.2 and Assumption 3.4, the left side
� ‖β(k)

1 − β̂∗
1‖/(nζ1)−1/2 = Op(

√
nζ1ηk

n/c∗n) = op(1).
�

Proof of Theorem 4.2: Note that X ′X/n = Z′UZ/n,
where Z = (zi j). By the results in Bai and
Yin (1993), lim infn→∞ λmin(Z′Z/n) � 1 and
lim supn→∞ λmax(Z′Z/n) � 1 with probability one.
Then, the right part of (16) can be proved by noting that
λmin(X ′X/n) = λmin(Z′UZ/n) = λmin(Z′ZU/n) �
λmin(Z′Z/n)λmin(U ), where the last inequality is from
Corollary 4.6.3 in Wang and Jia (1994). The proof of
the left part is similar. �
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