
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tstf20

Statistical Theory and Related Fields

ISSN: 2475-4269 (Print) 2475-4277 (Online) Journal homepage: https://www.tandfonline.com/loi/tstf20

Personalised treatment assignment maximising
expected benefit with smooth hinge loss

Shixue Liu, Jun Shao & Menggang Yu

To cite this article: Shixue Liu, Jun Shao & Menggang Yu (2017) Personalised treatment
assignment maximising expected benefit with smooth hinge loss, Statistical Theory and Related
Fields, 1:1, 37-47, DOI: 10.1080/24754269.2017.1326080

To link to this article:  https://doi.org/10.1080/24754269.2017.1326080

Published online: 23 May 2017.

Submit your article to this journal 

Article views: 181

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tstf20
https://www.tandfonline.com/loi/tstf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24754269.2017.1326080
https://doi.org/10.1080/24754269.2017.1326080
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2017.1326080
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2017.1326080
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2017.1326080&domain=pdf&date_stamp=2017-05-23
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2017.1326080&domain=pdf&date_stamp=2017-05-23


STATISTICAL THEORY AND RELATED FIELDS, 
VOL. , NO. , –
https://doi.org/./..

Personalised treatment assignment maximising expected benefit with
smooth hinge loss

Shixue Liua, Jun Shaoa,b and Menggang Yuc

aDepartment of Statistics, University of Wisconsin, Madison, WI, USA; bSchool of Statistics, East China Normal University, Shanghai, China;
cDepartment of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA

ARTICLE HISTORY
Received  March 
Revised  May 
Accepted  April 

KEYWORDS
Convex loss; linear rules;
oracle property; subgroup
identification; weighted
outcome learning

ABSTRACT
In personalisedmedicine, the goal is to make a treatment recommendation for each patient with
a given set of covariates tomaximise the treatment benefitmeasured by patient’s response to the
treatment. In application, such a treatment assignment rule is constructedusing a sample training
data consisting of patients’ responses and covariates. Instead of modelling responses using treat-
ments and covariates, an alternative approach ismaximising a response-weighted target function
whose value directly reflects the effectiveness of treatment assignments. Since the target func-
tion involves a loss function, efforts have beenmade recently on the choice of the loss function to
ensure a computationally feasible and theoretically sound solution. We propose to use a smooth
hinge loss function so that the target function is convex and differentiable, which possesses good
asymptotic properties and numerical advantages. To further simplify the computation and inter-
pretability, we focus on the rules that are linear functions of covariates and discuss their asymp-
totic properties. We also examine the performances of our method with simulation studies and
real data analysis.

1. Introduction

Differential treatment effects are common in many dis-
eases, because patients with different covariates, such
as demographics, genomic information, treatment and
outcome history, may not respond to treatments homo-
geneously. For example, molecularly targeted cancer
drugs are mostly effective for patients with tumours
expressing the targets (Lee et al., 2016; Ulloa-Montoya
et al., 2013; Zhao et al., 2016). Significant heterogeneity
exists in responses among patients with different base-
line levels of psychiatric symptoms (Crits-Christoph
et al., 1999; Kessler et al., 2016). Personalised medicine
accounts for individual heterogeneity by constructing
a treatment assignment rule as a function of patient
covariates to maximise the treatment benefit measured
by patient’s response to the treatment. Thus, it has
gained considerable popularity in clinical practice and
medical research in recent years.

Typically, a treatment assignment rule is built based
on a training data set consisting of patients’ responses
and covariates from a medical or clinical study. One
statistical approach that has long been discussed and
explored is to fit a model based on patient’s response,
covariates and treatment received, since the expected
patient’s benefit is usually related to some characteris-
tics under this model, e.g., the conditional expectation
of patient’s response given the covariates and treatment.
Because this approach largely depends on the model,
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misspecification of the model leads to unreliable treat-
ment assignment. This issue becomes evenmore promi-
nent when the number of covariates is large, which is
often the case in clinical trials and medical research. In
addition, different types of data, e.g., binary, continu-
ous, time-to-event, and possibly mixed outcomes, have
to be dealt with differently in this approach.

An alternative approach circumvents the need for
outcome model specification by directly searching an
assignment rule that maximises the expected patient’s
benefit (Zhao, Zeng, Rush, & Kosorok, 2012). This
approach uses patients’ responses (of any type) as
weights in a target function that is related to patient’s
benefit aswell as treatment-covariate interaction effects.
Instead of using the zero–one loss in the target function,
which is natural but hard or impossible for numerical
implementation, efforts have been made by researchers
in search of a surrogate loss function for the zero–one
loss that can be easily implemented and leads to solu-
tions with good properties; for example, the hinge loss
considered by Zhao et al. (2012) and the logistic loss
used by Xu et al. (2015). Unlike the zero–one loss, the
hinge loss is convex and continuous, but not differen-
tiable so that numerical optimisation under the hinge
loss requires some additional techniques. Although the
logistic loss is convex, differentiable, and simple for
optimisation, unlike the hinge loss, it does not produce
a solution that is exactly the same as the solution under
the zero–one loss.
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The purpose of our study is to propose a sequence of
convex and differentiable functions as the surrogate loss
functions in applying the previously described direct
searching approach. Since the limit of this sequence of
loss functions is the hinge loss function and each func-
tion in this sequence has a hinge shape, we call these
functions the smooth hinge loss functions. A detailed
description of the target function and related loss func-
tions are given in Section 2, where we also establish the
equivalence of the optimal treatment assignment rule
under the zero–one loss and hinge loss, and show that
we may focus on rules linear in covariates under some
conditions. An advantage of considering rules linear in
covariates is that they are simple to compute and easy to
interpret. In Section 3, we introduce the smooth hinge
loss and our methodology. To address high covariate
dimension issue, we propose to add a LASSO penalty
in the optimisation under the smooth hinge loss. Some
asymptotic properties of our solution are established.
Numerical performance of our approach is examined by
simulation in Section 4. Section 5 contains an example.
All technical proofs are given in the Appendix.

2. Target function, hinge loss, and linear rules

Let T � {−1, 1} be a binary treatment with P(T = 1) =
π , 0 < π < 1, Y be a univariate patient’s response, and
X be a p-dimensional covariate vector including inter-
actions and dummy variables for categorical covariates.
We focus on the case where X and T are independent,
e.g., a randomised trial. LetD(X) be a treatment assign-
ment rule as a function of X, P be the joint distribution
of (Y, T, X), and PD be the conditional distribution of
(Y, T, X) given T = D(X). Then, the expected outcome
under rule D is given by (Qian & Murphy, 2011)

ED(Y ) =
∫

y dPD

=
∫

y
dPD

dP
dP = E

[
YI{T = D(X )}
Tπ + (1 − T )/2

]
,

where I{A} is the indicator function of a set A. Assume
that a large Y is preferable and Y is bounded. Then,
ED(Y) is the expected patient’s benefit under zero–one
loss and assignment rule D. Our goal is to assign each
patient a treatment based on X to maximise ED(Y).
Hence, we aim to find the optimal rule D∗ that

D∗ = argmax
D∈D

E
[
YI{T = D(X )}
Tπ + (1 − T )/2

]

= argmin
D∈D

E
[
YI{T �= D(X )}
Tπ + (1 − T )/2

]
, (1)

whereD is the set of all Borel functions of X with range
{−1, 1}. Note thatD∗(X) does not change ifY is replaced
by Y + c for any constant c. We assume Y � 0.

Due to the discontinuity and nonconvexity of the
zero–one loss (the indicator function), it is difficult to

empirically perform the minimisation in (1). A com-
mon practice to mitigate this problem is to use a con-
tinuous and convex surrogate loss. Adopting the hinge
loss as a surrogate loss, Zhao et al. (2012) proved
that if

f ∗ = argmin
f∈F

E
[
Y {1 − T f (X )}+
Tπ + (1 − T )/2

]
, (2)

where (1 − a)+ = (1 − a)I{a � 1} and F is the set of
all Borel functions, then D∗(X) = sign{f∗(X)} a.s. We
establish a stronger result as the following proposition.
Its proof is given in the Appendix.

Proposition 2.1: Let D∗ and f∗ be given by (1) and (2),
respectively. Then, f∗(X) = D∗(X) a.s.

In general, the optimal rule D∗(X) could be a com-
plicated function ofX. The following proposition shows
that under amild condition,D∗(X) only depends on the
sign of a linear function of X. This is a slightly modified
version of Proposition 1 in Xu et al. (2015). Throughout
the paper, a′ denotes the transpose of a vector a.

Proposition 2.2: Suppose that

E(Y |T,X ) = g(l(X ),TX ′β†), (3)

whereβ† is a p-dimensional vector, l(X) is a function of X,
and g(a, b) is a bivariate function satisfying g(a, b)� g(a,
−b) if b� 0 any real valued a. Then, D∗(X)= sign(X′β†)
a.s.

Since β† and functions l and g can all be unknown,
many useful models in application satisfy (3).

With the hinge loss, can we perform the minimisa-
tion in (2) by focusing on linear functions of X? That is,
if

β∗ = argmin
β

E
[
Y (1 − TX ′β)+

Tπ + (1 − T )/2

]
, (4)

canwe conclude that f∗(X)= sign(X′β∗)? In general, the
answer is no, because Propositions 1 and 2 imply that
D∗(X) = f∗(X) = sign(X′β†), which does not necessar-
ily imply f∗(X) = sign(X′β∗). But the following result
indicates that D∗(X) = f∗(X) = sign(X′β∗) holds under
some conditions. The proof is in the Appendix.

Proposition 2.3: Suppose that (3) holds and that

E(X ′β|X ′β†) = cβX ′β† for any β, (5)

where cβ is a constant that depends on β. Let φ be a con-
tinuous and convex function satisfying

[g(w, z) − g(w, −z)][φ(cz) − φ(−cz)] ≤ 0 (6)

for any real valued w and z and any c > 0. Then, there
exist

βφ = argmin
β

E
[

Yφ(TX ′β)

Tπ + (1 − T )/2

]

and c̃ ≥ 0 such that βφ = c̃β†.
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Figure . Hinge loss h and smooth hinge loss hk.

For the hinge loss φ(z) = (1 − z)+, condition (6)
is satisfied. Hence, f∗(X) = sign(X′β∗) if condition (5)
holds. Li (1991) proved that condition (5) is satisfied
when the distribution ofX is elliptically symmetric, e.g.,
X is multivariate normal.

The conclusion is that the hinge loss is a good surro-
gate for the zero–one loss and, under condition (5), we
can focus on linear functions of X in the minimisation
in (2).

3. Smooth hinge loss and optimal linear rule

Unfortunately, if we focus on linear rules, solving the
minimisation problem (4) empirically is still difficult,
because hinge loss is not always differentiable.We there-
fore propose to use a differentiable loss function to
establish desirable asymptotic properties, as well as
enhancing computational performance. We consider
the following smooth hinge loss introduced by Rennie
(2005):

hk(z) =

⎧⎪⎪⎨
⎪⎪⎩

k
k+1 − z z ≤ 0
k

k+1 − z + 1
k+1z

k+1 0 < z < 1

0 z ≥ 1

(7)

where k � 1 is an integer. The smooth hinge loss is
twice differentiable for every k. For a fixed z, the smooth
hinge loss function increases with k, and converges to
the hinge loss function as k goes to infinity. Figure 1
shows the hinge loss and the smooth hinge loss with
k = 1, 5, and 10.

With the smooth hinge loss being a surrogate loss,
we focus on the optimisation problem

β∗
k = argmin

β

E
[

Yhk(TX ′β)

Tπ + (1 − T )/2

]
. (8)

The following proposition shows that, as k → �, the
minimum of the risk function with smooth hinge loss
(achieved at β∗

k ) converges to the minimum of the risk
function with hinge loss (achieved at β∗). Furthermore,
with the hinge loss, the risk function at β∗

k converges to

the minimum of the risk function. The proof is in the
Appendix.

Proposition 3.1: Define R(β) = E[ Y (1−TX ′β)+
Tπ+(1−T )/2 ] and

Rk(β) = E[ Yhk(TX ′β)

Tπ+(1−T )/2 ] to be the risk functions for the
hinge loss and smooth hinge loss hk, respectively. Then,

limk→∞ Rk(β
∗
k ) = R(β∗) and limk→∞ R(β∗

k ) = R(β∗).

In application, we can solve (8) with the expectation
replaced by the sample average based on an indepen-
dent sample (Yi, Ti, Xi), i = 1,… , n, identically dis-
tributed as (Y, T, X). To perform variable selection, we
add the LASSO penalty and solve

β̂k = argmin
β

{
1
n

∑
i

Yihk(TiX ′
iβ)

Tiπ̂ + (1 − Ti)/2
+ λn‖β‖1

}
,

(9)

where ‖β‖1 is the L1 norm of β , λn is a LASSO tun-
ing parameter, and π̂ is the proportion of treatment
group subjects in the data set.We define the final empir-
ical treatment assignment rule as D̂(X ) = sign(X ′β̂k).
Because a smooth hinge loss is used as the surrogate
loss, we name this method as the sHinge method.

In the rest of this section, we show that β̂k possesses a
weak oracle property. We need some notations. For any
β , letMβ = { j : β( j) �= 0} be the index set of non-zero
components of β , where β(j) is the jth component of β .
Let β∗I

k be the subvector of β∗
k with indices in Mβ∗

k
, XI

be the subvector of X with indices in Mβ∗
k
, and X0 be

the subvector of X with components not in XI. Let sp
be the cardinality ofMβ∗

k
and dp = min j∈Mβ∗

k
|β∗

k,( j)| be
the minimal signal. For any a= (a(1),… , a(q)), let ‖a‖�

= max j � q|a(j)|. For any two sequence an and bn, an �
bn denotes an = O(bn) and bn = O(an). Without loss of
generality, we assume E(X) = 0.

The proof of the following result is in the Appendix.

Theorem 3.1 (Weak oracle property): Assume that the
following conditions hold.

(C1) max1≤ j≤p EetX( j) ≤ ect2/2 for any t, where c is a
constant and X(j) is the jth component of X.

(C2) 0 � Y � Mwith a constant M.
(C3) log p � n1−2αp , sp � nαs , and dp � n−αd , where

αs, αp, and αd are constants satisfying 0 < αs < γ < αp
< 1/2 and 0 < αd < γ for a constant γ > 0.

(C4) max δ1,δ2∈N0 ‖[E{Wḧk(TX ′
Iδ1)X0X ′

I }][E{Wḧk
(TX ′

Iδ2)XIX ′
I }]−1‖∞ < 1 and max δ∈N0 ‖[E{Wḧk

(TX ′
Iδ)XIX ′

I }]−1‖∞ = O(bn), where bn =
o(n1/2 − γ /(log n)1/2), N0 = {

δ : ‖δ − β∗I
k ‖∞ ≤ n−γ

}
,

ḧk(x) is the second-order derivative of hk(x), and W =
Y/{Tπ + (1 − T)/2}.

(C5) k � nξ with a constant ξ < γ − αs.
If we choose λn such that

λn = o(n−αp(log n)1/2) and λnbn = o(n−γ ),

(10)
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then, when n is sufficiently large, with probability greater
than 1 − 4{sp/n + (p− sp)e−n1−2αp log n}, there exists a
β̂k satisfying (9) and

(a) (sparsity)M
β̂k

= Mβ∗
k
;

(b) (L� consistency) ‖β̂I
k − β∗I

k ‖∞ ≤ n−γ .

From Theorem 3.1, we know that under certain con-
ditions, as n, p and k diverge to infinity in a certain way,
with probability converging to one, β̂k correctly iden-
tifies all the zero components of β∗

k and estimates the
non-zero components ofβ∗

k consistently in the rate n
−γ .

In other words, the penalised empirical solution β̂k is
a good estimate of the theoretical optimiser β∗

k , in the
sense of weak oracle property. Furthermore, with the
risk R(β) = E[ Y (1−TX ′β)+

Tπ+(1−T )/2 ] for the hinge loss, it follows
from Theorem 3.1 and Proposition 3.1 that β̂k is risk-
consistent.

Corollary 3.1: Under the conditions of Theorem 3.1,
R(β̂k) converges to R(β∗) in probability as n → �.

4. Simulation results

In this section, we compare by simulation the proposed
sHinge method with the ROWSi method in Xu et al.
(2015), which solves (9) with hk replaced by the logis-
tic loss φ(t) = log (1 + e−t). The reason why we com-
pare our sHingemethodwith theROWSi is that Xu et al.
(2015) showed by simulation that the ROWSi was supe-
rior over the method solving (9) with hk replaced by the
hinge loss, which was proposed in Zhao et al. (2012)
except that LASSO penalty instead of L2 penalty was
used for variable selection. Xu et al. (2015) also showed
by simulation that ROWSi was superior over other four
recently proposed methods, the interaction tree by Su,
Tsai, Wang, Nickerson, and Li (2009), the virtual twins
by Foster, Taylor, and Ruberg (2011), the logistic regres-
sion with LASSO penalty by Qian and Murphy (2011),
and the FindIt by Imai and Ratkovic (2013).

For our method, β̂k was computed by optimising
the target function in (9) with coordinate descent algo-
rithm (Friedman, Hastie, Höfling, & Tibshirani, 2007).
The parameter k in hk was set to be 2 in all the set-
tings. To implement ROWSi, we used the R codes
provided by the authors, in which a group LASSO
procedure was used to pre-screen the interaction terms.
For both methods, we chose the tuning parameter λ

by a 10-fold cross-validation. The criterion used in val-
idation was the prediction accuracy, which is defined
as the proportion of empirical treatment assignments
D̂(X ) = sign(X ′β̂k) that are consistent with the oracle
assignments sign(x′β†) (Xu et al., 2015).

We considered three types of covariates: binary
covariates (XA, XB, XC, …), discrete covariates (Xa, Xb,
Xc, …) with four categories, and continuous covariates
(XCa, XCb, XCc, …). Deviation coding was used for all
discrete covariates: a binary XA was coded as ±1 and a

Xa with four categories was coded as

Coded variables

Xa Xa Xa Xa

   
   
   
 −  −  − 

All discrete covariates were simulated from the uni-
form distribution over their categories and all con-
tinuous covariates were simulated from the standard
normal distribution. All covariates were generated
independently. The treatment T takes values ±1 with
equal probability and is independent of the covariates.
We considered the following eight models between a
binary response Y and (covariates, treatment) with up
to three-way interactions among treatment and covari-
ates. In the following, ϵ denotes a standard normal ran-
dom variable independent of treatment and all covari-
ates, and I{A} denotes the indicator function of set A.

I. X = (Xa, Xb, XA, XB, XCa, XCb) and

Y = I{(−0.5XA + 0.5XB)
2 + T (XCa + XCb

+ 0.9Xa2XCa + 0.9Xb3XCb) + √
2ε ≥ 0}

II. X = (Xa, Xb, XA, XB, XCa, XCb) and

log
P(Y = 1|X )

P(Y = 0|X )
= −0.5XA + 0.5XB

+ T (XCa + XCb + 0.9Xa2XCa + 0.9Xb3XCb)

III. X= (Xa,Xb,Xc,XA,XB,XC,XCa,XCb,XCc) but Y is
the same as that in (I), i.e., covariates Xc, XC, and
XCc are actually not related with Y.

IV. X= (Xa,Xb,Xc,XA,XB,XC,XCa,XCb,XCc) but Y is
the same as that in (II), i.e., covariates Xc, XC, and
XCc are actually not related with Y.

V. X = (Xa, Xb, Xc, Xd, Xe, XA, XB, XC, XD, XE, XCa)
and

Y = I{(−0.5XA + 0.5XB)
2 + T (Xa2 + Xa3

+ Xb2XCa + Xb3XCa) + √
2ε ≥ 0}

VI. X = (Xa, Xb, Xc, Xd, Xe, XA, XB, XC, XD, XE, XCa)
and

log
P(Y = 1|X )

P(Y = 0|X )
= −0.5XA + 0.5XB

+ T (Xa2 + Xa3 + Xb2XCa + Xb3XCa)

VII. X = (XCa, XCb, XCc, XCd, XCe, XCf, XCg, XCh) and

Y = I{(−0.5XCa + 0.5XCb)
2

+ T (XCd + 0.9XCdXCe) + √
2ε ≥ 0}

VIII. X = (XCa, XCb, XCc, XCd, XCe, XCf, XCg, XCh) and

log
P(Y = 1|X )

P(Y = 0|X )
= −0.5XCa + 0.5XCb

+ T (XCd + 0.9XCdXCe)
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Figure . Comparison of sensitivity (sHinge vs. ROWSi).

In settings II, IV, VI and VIII, Y follows a logis-
tic model. In settings I, III, V and VII, Y is an indi-
cator of a regression; in these models, the conditions
in Proposition 2.2 are violated. The purpose of includ-
ing them was to test the robustness of the methods. In
settings I and II, all covariates show up in the model,
whereas in settings III and IV, one of three types of
covariates is not relatedwithY.Models inV andVI con-
tain only one continuous covariate and discrete covari-
ates are dominant in the interaction terms. The last two
models contain only continuous variables.

For each setting, three sample sizes, n = 500, 1000
and 1500, were used and the number of simulation runs
was 200.

We evaluated the performances of both methods
by three criteria: sensitivity, specificity and prediction

accuracy. Sensitivity is defined as the proportion of
true non-zero interactions being estimated as non-zero.
Specificity is defined as the proportion of true zero
interactions being estimated as zero. Prediction accu-
racy follows the definition in the discussion of the cross-
validation procedure.

To compare the ability of variable selection, Figures 2
and 3 show sensitivity and specificity, respectively,
based on 200 simulations. Both methods demonstrated
exceptional ability to identify non-zero interaction
terms, as shown in Figure 2. When the sample size is
large, the sensitivity can even reach 1, meaning that
all non-zero components are successfully identified.
Figure 3 indicates that our method greatly surpasses
ROWSi in the ability to identify unimportant interac-
tion terms. The performance of our method is shown
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Figure . Comparison of specificity (sHinge vs. ROWSi).

to be stable across different sample sizes, while ROWSi
has exhibited a decreasing trend in specificity as the
sample size increases, which indicates that ROWSi may
not have the consistency property described in our
Theorem 3.1.

As for prediction accuracy, as shown in Figure 4,
our method again excels ROWSi in almost all set-
tings. The only exceptions are settings V and VI
with n = 500, where the prediction accuracy of our
method is lower by a small amount no larger than
0.0083.

5. Example

In this section, we apply our proposed method to
a real data set from a large randomised trial that
evaluates the efficacy of the telephone intervention at

promoting mammography screening for women who
were 51–75 years of age but non-adherent to breast can-
cer screening guidelines at baseline (Champion et al.,
2016). The original study has three arms. We consider
two arms that consist of 574 subjects in the phone inter-
vention group and 544 in the usual care (control) group.
The primary outcome of interest Y is a binary variable
for mammography screening (1 = yes, 0 = no) at 21
months post-baseline. The covariate vector X consists
of 21 covariates, of which 16 are binary, one is categor-
ical, and four are numerical. The covariates names and
descriptions are listed in Table 1.

We intended to apply our method to obtain D̂(X ) =
sign(X ′β̂k) with β̂k given by (9), which determines the
subgroup of subjects that would benefit from the phone
intervention. However, the Y values were missing for
122 subjects. Assuming that missingness depends on
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Table . Variables in the mammography screening data set.

resp Mammography screening  months post-baseline (yes/no)
treatment = phone,−= control
age Age
educyrs Years of education
collegeormore Four-year college or more (yes/no)
raceaa African American (yes/no)
married Married or in long-term relationship (yes/no)
income Household income (�  K, = – K, �  K)
workpay Currently working for pay (yes/no)
stgpca Baseline stage of behaviour change, = precontemplation (not planning), = contemplation (planning)
mediapaper Exposure to paper media (yes/no)
mediatv Exposure to TV media (yes/no)
mediainternet Exposure to Internet media (yes/no)
hadmamm Ever had a mammogram (yes/no)
yearmamsum Number of years had a mammogram in the past – years
doceversug Doctor ever suggest you have a mammogram (yes/no)
docspoke Doctor/nurse spoke to you in the last  years about mammogram (yes/no)
famhist Family history of breast cancer (yes/no)
hcreminder Received reminders of mammogram from a health care facility (yes/no)

Figure . Comparison of prediction accuracy (sHinge vs. ROWSi).
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covariates, we imposed a weight to each observed Y
value and solved a modified version of (9):

β̂ ∈ argmin
β

{
1
n

∑
i∈R

Yih1(TiX ′
iβ)

[Tiπ̂ + (1 − Ti)/2] p̂(Xi)
+ λn‖β‖1

}
,

(11)

where R = {i : Yi is observed}, h1 is the smooth hinge
loss with parameter k = 1, π̂ is the proportion of treat-
ment group subjects in the data set, p̂(Xi) is an esti-
mate of the propensity P(Yi is observed|Xi) given by
p̂(Xi) = exp(X ′

i γ̂ )/[1 + exp(X ′
i γ̂ )] with

γ̂ = argmin
γ

{
1
n

n∑
i∈R

[
log(1 + exp(X ′

i γ )) − X ′
i γ

] + υn ‖γ ‖1
}

.

The tuning parameters λn and υn were selected by five-
fold cross-validation with BIC being the criterion.

The resulting assignment rule is

D̂sHinge = sign(0.0065 × age − 0.0241 × educyrs).

This indicates that, for mammography screening,
women who are non-adherent to breast cancer screen-
ing guidelines will benefit more from the phone inter-
vention if they are

� in an older age group,
� had fewer years of education.

We also applied the ROWSi method in Xu et al. (2015),
which simply replaces the loss function h1(·) in (11) by
the logistic loss log (1 + exp (·)). However, it failed to
select any covariates, i.e., it assigned all the subjects to
the control group.
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Appendix

Proof of Proposition 2.1

For a.s. any fixed x,

E
(

Y (1 − T f (x))+

Tπ + (1 − T )/2

∣∣∣∣X = x
)

= E(Y |X = x,T = 1)(1 − f (x))+

http://people.csail.mit.edu/jrennie/writing
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+ E(Y |X = x,T = −1)(1 + f (x))+.

Then, for f such that f(x) � 1,

E
(

Y (1 − T f (x))+

Tπ + (1 − T )/2

∣∣∣∣X = x
)

= E(Y |X = x,T = −1)(1 + f (x)). (A1)

For f such that f(x) � −1,

E
(

Y (1 − T f (x))+

Tπ + (1 − T )/2

∣∣∣∣X = x
)

= E(Y |X = x,T = 1)(1 − f (x)). (A2)

For f such that −1 < f(x) < 1,

E
(

Y (1 − T f (x))+

Tπ + (1 − T )/2

∣∣∣∣X = x
)

= (E(Y |X = x,T = −1)−E(Y |X = x,T = 1)) f (x)
+E(Y |X = x,T = 1) + E(Y |X = x,T = −1)

= −D∗(x) f (x)
+ E(Y |X = x,T = 1) + E(Y |X = x,T = −1).

(A3)

The minimum of (A1) is = 2E(Y|X = x, T = −1),
obtained at f such that f(x) = 1. The minimum of
(A2) is = 2E(Y|X = x, T = 1), obtained at f such that
f(x) = −1. When D∗(x) = 1, the minimum of (A3) is
2E(Y|X = x, T = −1) obtained at f such that f(x) = 1.
WhenD∗(x) = −1, the minimum of (A3) is 2E(Y|X =
x, T = 1) obtained at f such that f(x) = −1. Also, notice
that when D∗(x) = 1, the minimum of (A1) is smaller
than the minimum of (A2), and whenD∗(x) = −1, the
minimumof (A2) is smaller than theminimumof (A1).
Therefore,

min
f

E
(

Y (1 − T f (x))+

Tπ + (1 − T )/2

∣∣∣∣X = x
)

=

⎧⎪⎪⎨
⎪⎪⎩
2E(Y |X = x,T = −1) at f ∗ such that f ∗(x) = 1

when D∗(x) = 1
2E(Y |X = x,T = 1) at f ∗ such that f ∗(x) = −1

when D∗(x) = −1

.

Hence, f ∗(x) = D∗(x) for a.s. any fixed x.

Proof of Proposition 2.3

For any β ,

E
[

Yφ(TX ′β)

Tπ + (1 − T )/2

]

= E
{
E

[
Yφ(TX ′β)

Tπ + (1 − T )/2

∣∣∣∣T,X
]}

= E
{

φ(TX ′β)

Tπ + (1 − T )/2
g(l(X ),TX ′β†)

}

= E
{
E

[
φ(TX ′β)

Tπ + (1 − T )/2
g(l(X ),TX ′β†)

∣∣∣∣X ′β†
]}

= E
{
g(l(X ),X ′β†)E

[
φ(X ′β|X ′β†,T = 1)

]
+ g(l(X ), −X ′β†)E

[
φ(−X ′β|X ′β†,T = −1)

]}
= E

{
g(l(X ),X ′β†)E

[
φ(X ′β|X ′β†)

]
+ g(l(X ), −X ′β†)E

[
φ(−X ′β|X ′β†)

]}

≥ E
{
g(l(X ),X ′β†)φ

(
E(X ′β|X ′β†)

)
+ g(l(X ), −X ′β†)φ

(
E(−X ′β|X ′β†)

)}
= E

{
g(l(X ),X ′β†)φ(cβX ′β†)

+ g(l(X ), −X ′β†)φ(−cβX ′β†)
}
,

where the fifth equality follows from the independence
of T and X, the inequality is the result of an application
of Jensen’s inequality with conditional expectation, and
the last equality follows from condition (5). Similarly,
we can show that

E
[

Yφ(cβTX ′β†)

Tπ + (1 − T )/2

]
= E

{
g(l(X ),X ′β†)φ(cβX ′β†)

+ g(l(X ), −X ′β†)φ(−cβX ′β†)
}
.

Thus, for any β ,

E
[

Yφ(TX ′β)

Tπ + (1 − T )/2

]
≥ E

[
Yφ(cβTX ′β†)

Tπ + (1 − T )/2

]

≥ min
c

E
[

Yφ(cTX ′β†)

Tπ + (1 − T )/2

]
.

Suppose that the minimum on the far right side of the
previous expression is achieved at c̃. By definition, βφ =
c̃β†. It remains to prove that c̃ ≥ 0. This follows because
for any c > 0,

E
[

Yφ(cTX ′β†)

Tπ + (1 − T )/2

]
− E

[
Yφ(−cTX ′β†)

Tπ + (1 − T )/2

]
= [

g(l(X ),X ′β†) − g(l(X ), −X ′β†)
]

× [
φ(cX ′β†) − φ(−cX ′β†)

] ≤ 0

by condition (6).

Proof of Proposition 3.1

By the definition, β∗
k = argminβRk(β) and β∗ =

argminβR(β). From

hk(z) − (1 − z)+ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1
k + 1

z ≤ 0

1
k + 1

zk+1 − 1
k + 1

0 < z < 1

0 z ≥ 1

,

we obtain that supz |hk(z) − h(z)| = (k + 1)−1 and for
any β ,

|Rk(β) − R(β)| ≤ E
[ |Y ||hk(TX ′β) − (1 − TX ′β)+|

min{π, 1 − π}
]

≤ E|Y |
(k + 1)min{π, 1 − π} .

Hence, supβ |Rk(β) − R(β)| → 0 as k → �, i.e., Rk
converges to R uniformly in β . Then,

lim inf
k→∞

Rk(β
∗
k ) = lim inf

k→∞
R(β∗

k ) ≥ R(β∗)
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by the definition of β∗. On the other hand, by the defi-
nition of β∗

k ,

lim sup
k→∞

Rk(β
∗
k ) ≤ lim sup

k→∞
Rk(β

∗) = R(β∗).

This proves limk→∞ Rk(β
∗
k ) = R(β∗), which is the

first conclusion. From the uniform convergence,
limk→∞[Rk(β

∗
k ) − R(β∗

k )] = 0. This together with
the first conclusion proves the second conclusion
limk→∞ R(β∗

k ) = R(β∗).

Proof of Theorem 3.1

Let p1(β) = ∑p
j=1 |β( j)|. Then, the subgradient of

p1(β) is �p1(β(j)), a set-valued function such that

∂ p1(β( j)) =
⎧⎨
⎩

{1}, if β( j) > 0;
{−1}, if β( j) < 0;
[−1, 1] , if β( j) = 0.

(A4)

By the classical optimisation theory, the KKT condition
is

n−1X̃
′
[μ(X̃β) ◦W −W ] + λns = 0, (A5)

where sj � �p1(β(j)), W = ( Y1
T1π+(1−T1)/2

, . . . ,
Yn

Tnπ+(1−Tn)/2
)′, X̃ = (T1X1, . . . ,TnXn)

′, μ(x) is a
function from Rn to Rn such that its ith element
is μ(x) = ḣk(x) + 1, ḣk is the first-order derivative of
hk, and ◦ denotes componentwise product. Then, any
vector β ∈ Rp satisfying the following KKT conditions
is a solution to (9):

n−1X̃
′
I[μ(X̃ Iβ

I ) ◦W −W ] + λnsign(βI ) = 0,
(A6)

∥∥∥n−1X̃
′
0[μ(X̃ Iβ

I ) ◦W −W ]
∥∥∥

∞
< λn, (A7)

where X̃ I is the submatrix of X̃ with columns in Mβ

and X̃0 is the submatrix of X̃ with columns not inMβ ,
and βI is the subvector of β with indices inMβ .

In the following, we show that within a neighbour-
hood of β∗

k , a vector satisfying the KKT conditions
exists and it also satisfies conclusions (a) and (b) in
Theorem 3.1. Define

ε1 = n−1X̃
′
IW − E(n−1X̃

′
IW ),

ε0 = n−1X̃
′
0W − E(n−1X̃

′
0W ),

ξ1 = n−1X̃
′
I[μ(X̃β) ◦W ] − E

(
n−1X̃

′
I[μ(X̃β) ◦W ]

)
,

ξ0 = n−1X̃
′
0[μ(X̃β) ◦W ] − E

(
n−1X̃

′
0[μ(X̃β) ◦W ]

)
,

and events

E1 = {‖ε1‖∞ ≤ C1
√
log n/n},

E2 = {‖ε0‖∞ ≤ C1n−αp
√
log n},

E3 = {‖ξ1‖∞ ≤ C2
√
log n/n},

E4 = {‖ξ0‖∞ ≤ C2n−αp
√
log n},

where C1 and C2 are constants depending on c and M.
Let ϵj be the jth component of ε1. Under conditions (C1)
and (C2), ϵj is sub-Gaussian, i.e., there exists a constant
c1 depending on c andM that

max
1≤ j≤sp

Eetε j ≤ ec1t
2/2.

By the Hoeffding’s bound for sub-Gaussian random
variables, it holds that

max
1≤ j≤sp

P
(
|ε j| >

√
2c1 log n/n

)
≤ 2 exp(− log n) = 2/n.

Let C1 = √
2c1, it follows from Bonferroni inequality

that

P(Ec
1) = P

(
‖ε1‖∞ > C1

√
log n/n

)
≤ sp max

1≤ j≤sp
P

(
|ε j| >

√
2c1 log n/n

)
≤ 2sp/n.

Similarly, we can show that

P(Ec
2) = P

(
‖ε0‖∞ > C1n−αp

√
log n

)
≤ 2(p− sp)e−n1−2αp log n.

Since |μ(x)| � 1, following the same technique, we can
show that

P(Ec
3) = P

(
‖ξ1‖∞ > C2

√
log n/n

)
≤ 2sp/n,

P(Ec
4) = P

(
‖ξ0‖∞ > C2n−αp

√
log n

)
≤ 2(p− sp)e−n1−2αp log n.

Therefore,

P(E1 ∩ E2 ∩ E3 ∩ E4)
≥ 1 − 4{sp/n + (p− sp)e−n1−2αp log n}.

Next, we show that within event E1�E2�E3�E4, there
exists a solution to (A6) and (A7), and it satisfies (a)
and (b). First, we prove that, when n is sufficiently large,
there exists a solution to (A6) in the hypercube

N = {δ ∈ Rsp : ‖δ − β∗I
k ‖∞ = n−γ }.

Since

β∗
k = argminE(Whk(X̃ ′β)),

W = Y
Tπ + (1 − T )/2

, X̃ = TX,

and∣∣∣∣ ∂

∂β
Whk(X̃ ′β)

∣∣∣∣ = |{μ(X̃ ′β) − 1}WX̃ | ≤ C|X |,

which is integrable, it follows that

E
(
{μ(X̃ ′β∗

k ) − 1}WX̃
)

= ∂

∂β
E

(
Whk(X̃ ′β)

)∣∣∣∣
β=β∗

k

= 0.

(A8)
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Then, the condition in (A6) is equivalent to

n−1X̃
′
1[μ(X̃ Iδ) ◦W ] − n−1X̃

′
IW

−E
(
{μ(X̃ ′

Iβ
∗I
k ) − 1}WX̃I

)
= −λnsign(δ),

or

E
(
μ(X̃ ′

Iδ)WX̃I

)
− E

(
μ(X̃ ′

Iβ
∗I
k )WX̃I

)
= ε1 − ξ1 − λnsign(δ),

where X̃I = TXI . By Taylor expansion,

E
(
μ(X̃ ′

Iδ)WX̃I

)
− E

(
μ(X̃ ′

Iβ
∗I
k )WX̃I

)
= E

(
WXIμ

′(X̃ ′
I δ̄)X ′

I

)
(δ − β∗I

k ),

where δ̄ lies on the line segment connecting δ and
β∗I
k and the fact that T2 = 1 is used. Thus, (A6) is

equivalent to

E
(
Wμ′(X̃ ′

I δ̄)XIX ′
I

)
(δ − β∗I

k ) − ε1 + ξ1 + λnsign(δ) = 0

or �(δ) = 0, where

�(δ) = δ − β∗I
k −

{
E

(
Wμ′(X̃ ′

I δ̄)XIX ′
I

)}−1

(ε1 − ξ1 − λnsign(δ)).

Since δ̄ ∈ N0, (C4) implies that∥∥∥∥{
E

(
WX1μ

′(X̃ ′
I δ̄)X ′

I

)}−1
∥∥∥∥

∞
= O(bn).

With the choice of λn, it follows that∥∥∥∥{
E

(
WXIμ

′(X̃ ′
I δ̄)X ′

I

)}−1
(ε1 − ξ1 − λnsign(δ))

∥∥∥∥
∞

≤
∥∥∥∥{

E
(
WXIμ

′(X̃ ′
I δ̄)X ′

I

)}−1
∥∥∥∥

∞
× (‖ε1‖∞ + ∥∥ξ1

∥∥
∞ + λn) = o(n−γ ).

Then, for sufficiently large n, if δ j − β∗
k,( j) = n−γ ,

�(δ j) > 0; if δ j − β∗
k,( j) = −n−γ ,�(δ j) < 0. By conti-

nuity of
(δ), an application ofMiranda’s existence the-
orem shows that �(δ) = 0 has a solution in N , which
is also a solution to (A6). Denote this solution by β̂I

k. Let
β̂k = (β̂I

k, 0)
′. Then, β̂k satisfies (a) by definition.

Next, we prove that β̂k satisfies (A7) and (b). By
(A8),

E
(
{μ(X̃ ′

Iβ
∗I
k ) − 1}WX̃0

)
= 0.

Then,

n−1X̃
′
0[μ(X̃ Iβ̂

I
k) ◦W −W ]

= n−1X̃
′
0[μ(X̃ Iβ̂

I
k) ◦W −W ]

− E
(
{μ(X̃ ′

Iβ
∗I
k ) − 1}WX̃0

)
= E

(
μ(X̃ ′

I β̂
I
k)WX̃0

)
− E

(
μ(X̃ ′

Iβ
∗I
k )WX̃0

)
+ξ0 − ε0. (A9)

By Taylor expansion,

E
(
μ(X̃ ′

I β̂
I
k)WX̃0

)
− E

(
μ(X̃ ′

Iβ
∗I
k )WX̃0

)
= E

(
Wμ′(X̃ ′

I δ̃)X0X ′
I

)
(β̂I

k − β∗I
k ), (A10)

where δ̃ lies on the line segment connecting β̂I
k and β∗I

k .
Since β̂I

k is the solution to �(δ) = 0, it holds that

β̂I
k − β∗I

k =
{
E

(
Wμ′(X̃ ′

Iβ
∗I
k )XIX ′

I

)}−1

× (ε1 − ξ1 − λnsign(β̂I
k)). (A11)

So β̂I
k satisfies (b); that is,

∥∥∥β̂I
k − β∗I

k

∥∥∥
∞

≤ n−γ . By (A9),
(A10) and (A11),

(nλn)
−1X̃

′
0[μ(X̃ Iβ̂

I
k) ◦W −W ]

= λ−1
n E

(
Wμ′(X̃ ′

I δ̃)X0X ′
I

) {
E

(
Wμ′(X̃ ′

I δ̄)XIX ′
I

)}−1

× (ε1 − ξ1 − λnsign(β̂I
k)) − λ−1

n ε0 + λ−1
n ξ0.

In the event E1�E2�E3�E4, by the choice of λn,∥∥λ−1
n ε0

∥∥
∞ = o(1),

∥∥λ−1
n ξ0

∥∥
∞ = o(1).

Note that δ̃, δ̄ ∈ N0. (C4) indicates that

λ−1
n

∥∥∥∥∥E
(
Wμ′(X̃ ′

I δ̃)X0X ′
I

)

×
{
E

(
Wμ′(X̃ ′

I δ̄)XIX ′
I

)}−1
(ε1 − ξ1)

∥∥∥∥∥
∞

< λ−1
n

∥∥ε1 − ξ1
∥∥

∞ = o(1).

Finally, again by (C4),

λ−1
n

∥∥∥∥∥E
(
Wμ′(X̃ ′

I δ̃)X0X ′
I

)

×
{
E

(
Wμ′(X̃ ′

I δ̄)XIX ′
I

)}−1
λnsign(β̂I

k)

∥∥∥∥∥
∞

< 1.

Therefore, β̂k satisfies (A7). This completes the proof.

Proof of Corollary 3.1

The result follows from Theorem 3.1, the domi-
nated convergence theorem under (C1) and (C2), and
Proposition 3.1.
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