
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tstf20

Statistical Theory and Related Fields

ISSN: 2475-4269 (Print) 2475-4277 (Online) Journal homepage: https://www.tandfonline.com/loi/tstf20

Cholesky-based model averaging for covariance
matrix estimation

Hao Zheng, Kam-Wah Tsui, Xiaoning Kang & Xinwei Deng

To cite this article: Hao Zheng, Kam-Wah Tsui, Xiaoning Kang & Xinwei Deng (2017) Cholesky-
based model averaging for covariance matrix estimation, Statistical Theory and Related Fields, 1:1,
48-58, DOI: 10.1080/24754269.2017.1336831

To link to this article:  https://doi.org/10.1080/24754269.2017.1336831

Published online: 28 Jul 2017.

Submit your article to this journal 

Article views: 586

View related articles 

View Crossmark data

Citing articles: 5 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tstf20
https://www.tandfonline.com/loi/tstf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24754269.2017.1336831
https://doi.org/10.1080/24754269.2017.1336831
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2017.1336831
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2017.1336831
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2017.1336831&domain=pdf&date_stamp=2017-07-28
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2017.1336831&domain=pdf&date_stamp=2017-07-28
https://www.tandfonline.com/doi/citedby/10.1080/24754269.2017.1336831#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/24754269.2017.1336831#tabModule


STATISTICAL THEORY AND RELATED FIELDS, 
VOL. , NO. , –
https://doi.org/./..

Cholesky-based model averaging for covariance matrix estimation

Hao Zhenga, Kam-Wah Tsuib, Xiaoning Kangc and Xinwei Dengd

aGilead Sciences, Inc., Foster City, CA, USA; bDepartment of Statistics, University of Wisconsin-Madison, Madison, WI, USA; cInternational
Business College, Dongbei University of Finance and Economics, Dalian, China; dDepartment of Statistics, Virginia Tech, Blacksburg, VA, USA

ARTICLE HISTORY
Received  March 
Revised  May 
Accepted  May 

KEYWORDS
High-dimension; ensemble
estimate; Cholesky factor;
positive definite; portfolio
strategy

ABSTRACT
Estimation of large covariance matrices is of great importance in multivariate analysis. The mod-
ified Cholesky decomposition is a commonly used technique in covariance matrix estimation
given a specific order of variables. However, information on the order of variables is often
unknown, or cannot be reasonably assumed in practice. In this work, we propose a Cholesky-
basedmodel averaging approach of covariancematrix estimation for high dimensional data with
proper regularisation imposed on the Cholesky factor matrix. The proposed method not only
guarantees the positive definiteness of the covariance matrix estimate, but also is applicable
in general situations without the order of variables being pre-specified. Numerical simulations
are conducted to evaluate the performance of the proposed method in comparison with several
other covariance matrix estimates. The advantage of our proposed method is further illustrated
by a real case study of equity portfolio allocation.

1. Introduction

Estimation of a covariance matrix from a sample of
multivariate data is of great importance. The sample
covariance matrix estimate becomes less attractive with
the increase of the number of variables. In many appli-
cations such as gene expression, fMRI, spectroscopic
imaging and weather forecasting, the number of vari-
ables largely exceeds the sample size. In this situation,
the sample covariance matrix has a distorted eigen-
structure (Johnstone, 2001). Therefore, it is important
to explore appropriate covariance matrix estimation in
large dimension cases.

A natural way of improving covariance matrix esti-
mation is to modify the sample covariance matrix.
Ledoit and Wolf (2004) considered a Steinian esti-
mate that shrinks the sample covariancematrix towards
the identity matrix. The eigenvalues of their estimate
are weighted averages of the ones from the sample
covariance matrix and the identity matrix. Quite often,
the small eigenvalues of their estimate are exagger-
ated. Another approach is to focus on regularising the
sample covariance matrix. Bickel and Levina (2008a)
considered thresholding small entries of the sample
covariance matrix to zeros. Dealing with covariance
matrices with banded structures, Bickel and Levina
(2008b) considered banding the sample covariance
matrix by only keeping entries in the diagonal and cer-
tain sub-diagonals non-zeros. However, such covari-
ance matrix estimates may not be positive definite.
In statistical inference, positive definiteness is a desir-
able property for a covariance matrix estimate. Many
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applications require positive definite covariance matri-
ces such as evaluating the likelihood of multivariate
normal data and measuring the variance proportion in
applying principal component analysis.

To achieve the positive definiteness of the estimated
covariance matrix, one perspective is to apply regu-
larisation on the covariance entries by treating them
as parameters. Such a strategy usually requires com-
plicated optimisation techniques in order to meet the
positive definiteness requirement. Bien and Tibshi-
rani (2011) proposed an estimate through optimising
the L1 penalised log-likelihood using a majorisation–
minimisation technique. Xue, Ma, and Zou (2012)
applied an alternating direction algorithm to imple-
ment the L1 penalty on the off-diagonal entries of the
covariance matrix. A similar algorithmwas used in Liu,
Wang, and Zhao (2013) where they added an eigen-
value constraint when applying the thresholding meth-
ods for covariance matrix estimation. However, the
use of such optimisation techniques sometimes would
require intensive computation and could cause conver-
gence problems due to the non-smoothness and non-
convexity of the objective function.

Instead of directly regularising the covariance
entries, another perspective of improving covariance
matrix estimates with guaranteed positive definiteness
is through an appropriate matrix factorisation of a
covariance matrix (Pinheiro & Bates, 1996). The reg-
ularisation can be placed on the entries of the factor
matrices instead of on the original covariance entries.
Therefore, the property of positive definiteness is
guaranteed. For example, relying on matrix logarithm
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factorisation, Deng and Tsui (2013) proposed to regu-
larise the logarithm of covariance matrix to control the
behaviour of eigenvalues. A more widely used matrix
factorisation is the modified Cholesky decomposi-
tion (MCD) from Pourahmadi (1999). A sequence of
regressions in accordance with the MCD provides an
unconstrained reparameterisation of the covariance
matrix. Then the regularisation can be easily applied
to the Cholesky factor matrix since it is equivalent to
regularising the coefficients of the linear regressions.
Incorporating the advantages of Bickel and Levina’s
banding idea, Rothman, Levina, and Zhu (2010) pro-
posed a positive definite covariance matrix estimate
with banded structure by banding the Cholesky factor
matrix. Their estimate is able to precisely capture the
structure of the covariancematrix if the true covariance
matrix is banded. Fan, Xue, and Zou (2016) introduced
a rank-based Cholesky decomposition regularisation
estimator with positive definite constraint. This esti-
mator strikes a good balance between robustness and
efficiency. The work of Cholesky-based covariance
matrix estimation can also be found in Wang and
Daniels (2014), Chen and Leng (2015) and references
therein.

However, the covariance matrix estimation through
regularising the Cholesky factor matrix should not be
restricted to the scenarios in which the covariance
matrices are banded. Therefore, in this work, we employ
the L1 regularisation on the Cholesky factor matrix to
estimate the covariance matrix in a more general situa-
tion where particular assumption of the matrix struc-
ture is not necessary. We propose a Cholesky-based
model averaging approach for covariance matrix esti-
mation without requiring the prior knowledge of the
order of variables used in theMCD.The order-invariant
property of our proposed estimate is achieved through
averaging a representative set of individual covariance
matrix estimates obtained from random permutations
of the order of variables. The proposedmethod guaran-
tees positive definiteness and the implementation does
not need complicated optimisation method.

The remaining of this article is organised as follows.
In Section 2, we revisit the MCD, as well as its applica-
tion of banding theCholesky factormatrix. In Section 3,
we detail the development of the proposed model aver-
aging approach for the covariance matrix estimation.
Section 4 provides a set of numerical comparisons of the
proposed estimate with some other covariance matrix
estimates. We further present a real case study of equity
portfolio allocation to evaluate the proposed method in
Section 5.We conclude this workwith some discussions
in Section 6.

2. Revisit of modified Cholesky decomposition

Let x = (X1, . . . ,Xp)
T be a vector of p random

variables with mean zero and the positive definite

covariance matrix �. Suppose that x1, . . . , xn are n
independent and identically distributed (i.i.d.) observa-
tions for x, and xi = (xi1, . . . , xip)T , 1 ≤ i ≤ n, is cen-
tred. Denote the data matrix by X = (x1, . . . , xn)T .
Pourahmadi (1999) proposed the MCD to associate the
positive definite matrix � with a unit lower triangular
matrix L for inducing a meaningful statistical interpre-
tation of the decomposition. The MCD has a form of

� = LDLT , (1)

where L is a unit lower triangular matrix (the diagonal
elements are all equal to 1) and is called the Cholesky
factor matrix of �, and D is a diagonal matrix.

The importance of obtaining a unit lower triangu-
lar matrix L is to connect � with a sequence of linear
regressions. For completeness, we briefly describe such
sequential regressions for estimating L and D. Denote
by X̂ j the regression prediction of Xj based on its pre-
decessors (X1,… ,Xj − 1). The corresponding residual is
ε j = Xj − X̂ j with variance σ 2

j for 1 � j � p. We write
the residual vector as ε = (ε1, . . . , εp)

T . Let ε1 = X1.
For 1 < j � p, there are unique coefficients φjk satisfy-
ing

Xj =
∑
k< j

φ jkXk + ε j. (2)

Let � be the lower triangular matrix with entries φjk,
1 � k < j � p, and let I p be the p × p identity matrix.
Then Equation (2) can be rewritten as (Ip − �)x = ε,
which means that x = (Ip − �)−1ε. Therefore,

� = cov(x) = (Ip − �)−1 diag(σ 2
1 , . . . , σ 2

p )

× {(I p − �)−1}T . (3)

Comparing Equations (1) and (3), we have

L = (Ip − �)−1, D = diag(σ 2
1 , . . . , σ 2

p ) and
x = L ε. (4)

Thus, the MCD provides a reparameterisation of the
covariance matrix � with parameters in L = (l jk)p×p
as regression coefficients in the following sequential
regressions:

X1 = ε1, Xj = lTj ε =
∑
k< j

l jkεk + ε j, j = 2, . . . , p,

(5)
where l j = (l jk) is the jth row of L. Here ljj = 1 and
ljk = 0 for k > j.

Because the MCD associates the covariance matrix
� with a sequence of linear regressions in Equation (5),
regularisation in sequential linear regressions can be
used to shape the covariance matrix estimate, especially
when the number of variables, p, is large. For the estima-
tion of the covariance matrix with a banded structure,
Rothman et al. (2010) proposed to band its Cholesky
factor matrix L and adopted a procedure similar to
Gram–Schmidt process (Trefethen & Bau III, 1997) to
sequentially obtain the realised residuals. Denote by εik
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the realised εk from the ith observation. The approach
of Rothman et al. (2010) estimates the jth row of the
Cholesky factor matrix L as follows:

l̂ j = argmin
l j

n∑
i=1

(
xi j −

∑
k> j−b

l jkεik
)2

, j = 2, . . . , p,

(6)
where b is the tuning parameter indicating the width of
the band inL, and l̂ jk = 0 for k� j− b. Because the opti-
misation of Equation (6) uses ordinary least squares,
this approach of covariance matrix estimation through
banding the Cholesky factor matrix would make the
resultant band overly narrow when the sample size of
observations is small.

3. The proposed covariancematrix estimate

The assumption of the covariance matrix having a
banded structure limits the usage of the MCD for
covariance matrix estimation. In this work, we con-
sider covariance matrix estimation without imposing
particular structures. Since banding the Cholesky fac-
tor matrix is not suitable for general cases, we choose to
place L1 regularisation on the elements (entries) of the
Cholesky factor matrix, especially for the cases where
the number of variables, p, is large. Equivalently, the L1
penalty is imposed on the coefficients of sequential lin-
ear regressions, and the jth row of the Cholesky factor
matrix L is obtained as follows:

l̂ j = argmin
l j

{ n∑
i=1

(xi j −
∑
k< j

l jkεik)2 + λ
∑
k< j

|l jk|
}
,

j = 2, . . . , p, (7)

where λ > 0 is a tuning parameter. The use of
L1 penalty and the nested Lasso penalty (Levina,
Rothman, & Zhu, 2008) on the Cholesky factor matrix
has also been mentioned in Rothman et al. (2010). But
they did not explore the possible usage of such regular-
isation in general situations other than the special sce-
narios in which covariancematrices have banded struc-
tures.

To solve the optimisation in Equation (7) for obtain-
ing l̂ j, we use the coordinate descent algorithm from
Friedman, Hastie, and Tibshirani (2010) for estima-
tion of generalised linear models with penalties. The
algorithm is widely used in solving problems such
as penalised least squares given in Equation (7).
After obtaining l̂ j = (l̂ jk), we also have εi j = xi j −∑

k< j l̂ jkεik and σ̂ 2
j = 1

n
∑n

i=1 ε2i j, 1 � i � n, 1 < j � p.
Then the covariance matrix estimate �̂ is given by

�̂ = L̂D̂L̂
T = L̂ diag(σ̂ 2

1 , . . . , σ̂ 2
p ) L̂

T
with

L̂ = (l̂1, . . . , l̂ p)T . (8)

Unlike the approach of banding the Cholesky factor
matrix using ordinary least squares in Equation (6),

the covariance matrix estimation through employing
L1 regularisation on the whole Cholesky factor matrix
does not have the constraint because of the sample size.
Setting λ equal to zero, we can show that the estimated
covariance matrix in Equation (8) is the same as the
sample covariance matrix, regardless of the order of
the variables as long as the sample covariance matrix is
non-singular, i.e., n > p. The proof is presented in the
Appendix.

Note that the prerequisite of applying the MCD for
covariance matrix estimation is to know the specific
ordering of variables. However, in practice, such a spe-
cific ordering of variables is often unknown or can-
not be easily assumed. To eliminate this prerequisite,
we propose a model averaging approach for covariance
matrix estimate by refining estimates in Equation (8)
under a set of randompermutations of the order of vari-
ables. To implement the refinement, we define a per-
mutation mapping π : {1,… , p} → {1,… , p}, which
represents a rearrangement of the order of the vari-
ables,

(
1, . . . , p

) −→ (
π(1), . . . , π (p)

)
. The corre-

sponding permutation matrix can be written as Pπ =(
eπ(1), . . . , eπ(p)

)
, where et is a p-dimensional vector

with only the tth element one and all others zeros. Thus,
the columns of the data matrix X could be permuted
by right multiplying Pπ as follows:

Xπ = X Pπ = (xπ(1), . . . , xπ(p)),

where xπ(t ) is the π(t)th column of X .
Under the permutation π , we can simply replace xt

with xπ(t ) in Equations (7) and (8) for 1 � t � p, and
consequently obtain the corresponding L̂π and D̂π . By
applying the inverse of the mapping π , we obtain an
estimate of � as

�̂π = Pπ L̂π D̂π L̂
T
π

(
Pπ

)−1
. (9)

By incorporating several permutations of π ’s, one can
have a pool of covariance matrix estimates of �. Com-
bining these estimates leads to an order-invariant esti-
mation, such as taking the average of the estimates
under all permutations. In practice, a modest num-
ber of permutations is sufficient to serve our purpose
of obtaining an estimate with order-invariant property.
Therefore, we randomly select a set of a moderate size
of permutations, denoted as C = {π1, . . . , πK}.We then
form a series of estimates �̂π1, . . . , �̂πK . Our proposed
model averaging estimate of � is

�̂∗ = 1
K

∑
πk∈C

�̂πk . (10)

From the finite population sampling survey theory
(Cochran, 1977), the selection of permutation set C is
not essential when we use a reasonable sizeK. Although
choosing a largerKwould further reduce the variability
of the proposed estimate �̂∗, a modest number is seen
to lead to stable results.
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3.1. Choice of tuning parameter

Regarding the choice of the tuning parameter λ in
Equation (7), we adopt the repeated learning-testing
procedure (Burman, 1989) to select its optimal value.
Specifically, we repeatedly split the data-set into a learn-
ing set and a testing set with roughly equal sizes for V
times. Let �̂

(v )

∗ (λ) be the estimated covariance matrix
in Equation (10) based on data of the learning set with
tuning parameter λ in the vth data splitting, 1 � v �
V. Similarly, we denote S(v ) to be the sample covariance
matrix obtained from data of the testing set. By carry-
ing out the computation through allV replicates of data
splitting, we choose an optimal value of tuning param-
eter λ as

λ̂ = argmin
λ

1
V

V∑
v=1

∣∣∣∣�̂(v )

∗ (λ) − S(v )
∣∣∣∣
F , (11)

where ‖·‖F is Frobenius norm (denoted as F norm).
Through the simulation studies, we compare the value
of λ̂ by using three different norms: the induced L1
norm, the induced L2 norm and the F norm (Golub &
Van Loan, 2012). We find that the chosen values are
consistently similar among the three norms. We just
use the F norm as the criterion for choosing the tuning
parameter in our numerical studies.

Other methods of choosing the tuning parameter
include cross-validation, information criteria such as
the Bayesian information criterion and the indepen-
dent validation setmethod. Here, we adopt the repeated
learning-testing procedure with the aim on a balance
between estimating the covariance matrix and calculat-
ing the sample covariancematrix. In thiswork, the value
of V is set to be 20, which appears giving stable param-
eter estimation in our simulation and real case studies.

4. Simulation study

In this section, we examine the performance of various
p× p covariancematrix estimates under different struc-
tures listed below.

� Scenario 1 (Compact Banded Structure):�1 has an
order-1 moving average (MA(1)) structure. That
is, �1 = (σst ) has a tri-diagonal structure with
σ st = 1{s = t} + 0.4{|s − t| = 1}.

� Scenario 2 (Permuted Banded Structure): �2
is generated by randomly permuting rows and
columns of �1.

� Scenario 3 (Loose Banded Structure): �3 has an
order-1 moving average (MA(1)) structure with
a seasonal effect. That is, �3 = (σst ) with σ st =
1{s = t} + 0.4{|s − t| = p/5}.

� Scenario 4 (Block Diagonal Structure): The first
20% variables are closely correlated while the oth-
ers are uncorrelated.�4 = (σst ) has the form σ st =
1{s = t} + 0.8{s � t, s � p/5, t � p/5}.

� Scenario 5 (Permuted Block Diagonal Structure):
�5 is generated by randomly permuting rows and
columns of �4.

� Scenario 6 (Dense Structure): �6 = BBT where
B = (b jk) is a unit lower triangular matrix with bjk
generated from N (0, 0.2), 1 ≤ k < j ≤ p. Here,
‘dense structure’ simply implies that most entries
of a covariance matrix are non-zeros.

We compare our proposed estimate �̂∗ in Equa-
tion (10) with four other covariance matrix estimates:
the Ledoit and Wolf ’s (2004) estimate, the Bickel and
Levina’s (2008a) estimate, the Rothman et al.’s (2010)
estimate and Bien and Tibshirani’s (2011) estimate. The
Ledoit and Wolf ’s estimate (LW), from a method in
Steinian shrinkage family, is obtained by minimising
the difference between the estimated and true covari-
ance matrices under F norm. The estimate is of the
form

�̂LW = ρ ν I p + (1 − ρ)S,

where Ip is the p× p identity matrix and S is the sample
covariance matrix. The parameters ρ and ν have close-
form expressions. The Bickel and Levina’s estimate (BL)
is obtained by applying hard thresholding on the entries
of the sample covariance matrix, so the resultant esti-
mate may not be positive definite. The Rothman et al.’s
estimate (RLZ) is based on banding the Cholesky factor
matrix L. The estimate is obtained by keeping entries
only in a few lower subdiagonal entries of L non-zeros.
Usingmajorisation–minimisation algorithm (Hunter &
Lange, 2000), the Bien and Tibshirani’s estimate (BT) is
to minimise the negative log-likelihood function with
L1 penalty on the entries of the covariance matrix. The
resultant estimate is

�̂BT = argmin
��0

{
− log |�−1| + tr(�−1S)

+ η
∑
st

|σst |
}
,

where � = (σst ) and η is the tuning parameter.
To measure the accuracy of the estimates, five loss

functions are considered. The first three are matrix
norms, including the maximum absolute column sum
norm L1, the matrix spectral norm L2 and the matrix
Frobenius norm F of (�̂ − �). The L1, L2 and F norms
of a matrix A = (ast ) are denoted by ||A||1, ||A||2 and
||A||F , respectively. They are defined as follows:

||A||1 = max
t

∑
s

|ast |, ||A||2 =
√

λmax(ATA) and

||A||F =
√∑

st

a2st ,
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Table . Performance comparison for Scenario  (Compact Banded Structure).
Averages of measures from  replicates are listed with parentheses indicating
their standard errors.

p Measure LW BL RLZ BT Proposed

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – . (.) . (.) . (.)

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – . (.) . (.) . (.)

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – . (.) . (.) . (.)

where λmax(ATA) denotes the largest eigenvalue of
matrixATA. The fourth loss function, measuring close-
ness of two covariance matrices, is the entropy loss
(James & Stein, 1961),

�EN = tr(�−1�̂) − log |�−1�̂| − p,

where �̂ is an estimate of �. We have excluded the
Kullback–Leibler divergence (Kullback & Leibler, 1951)
because it is more suitable in measuring the inverse
covariance matrix estimates (Levina et al., 2008). The
last loss function considers the eigen-structure of a
covariance matrix estimate by measuring the accuracy
of the condition number (CN) as

�CN =
∣∣∣∣∣λmax(�̂)

λmin(�̂)
− λmax(�)

λmin(�)

∣∣∣∣∣ ,
where λmax(·) and λmin(·) denote the largest and small-
est eigenvalues of a covariance matrix, respectively.

For each scenario of the covariance matrix struc-
tures, we generated normally distributed data with
three settings of sample sizes (n) and the number of

variables (p): (1) n = 50, p = 30; (2) n = 50, p = 50; (3)
n = 50, p = 100. For each of the three settings in six
covariance matrix scenarios, the simulation was
repeated 200 times. Regarding the size K of selected
permutation set C in Equation (10), we chose K =
30. We purposely compared the performance of �̂∗
between K = 30 and K = 100 for all scenarios, and
found that the results were close with high accuracy.
Tables 1–6 show the averages of all five loss functions
from 200 replicates, and their corresponding standard
errors are given in the parentheses. Dashed lines in the
tables represent the corresponding values either not
achievable or infinite.

For Scenario 1, the results in Table 1 show that our
proposed estimate performs the best in terms of �CN,
and generally outperforms other methods except the
RLZ estimate regarding the L1, L2, F norms and the
entropy loss. This is not surprising since the RLZ esti-
mate is purposely designated for estimating the banded
covariance matrix. Hence, it is able to catch the banded
structure precisely and perform well in Scenario 1.
However, in Scenario 2 where the original banded

Table . Performance comparison in Scenario  (Permuted Banded Structure).
Averages of measures from  replicates are listed with parentheses indicating
their standard errors.

p Measure LW BL RLZ BT Proposed

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – . (.) . (.) . (.)

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – . (.) . (.) . (.)

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – . (.) . (.) . (.)
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Table . Performance comparison in Scenario  (Loose Banded Structure). Aver-
ages ofmeasures from replicates are listedwith parentheses indicating their
standard errors.

p Measure LW BL RLZ BT Proposed

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – . (.) . (.) . (.)

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – . (.) . (.) . (.)

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – . (.) . (.) . (.)

structure has been disturbed by permuting rows and
columns, the use of the RLZ estimate appears to be
undesirable. Especially, the entropy loss�EN of the RLZ
estimate is much larger compared with our proposed
estimate. As seen from Table 2, our proposed method
has the best performance among five estimates in com-
parison. Also from Tables 1 and 2, we note that as the
number of variables, p, increases, the performance of
our proposed estimate is much more stable than other
approaches.

For Scenario 3, all the loss criteria in Table 3 show
that our proposed estimate is superior to other esti-
mates. The RLZ estimate does not perform well due
to the non-banded structure of the underlying covari-
ance matrix. To better understand the behaviours of
the methods in comparison, we use heat maps to
illustrate the estimates under p = 50 in one simulated
replicate in Figure 1. One can see that our estimate cap-
tures the prime structure of the true covariance matrix.
Although there are many small non-zero entries in our

Figure . Heat maps of the true covariance matrix and various estimates from one replicate of simulations in Scenario . Absolute
values of entries are used to replace original entries. An entry of magnitude  or over is represented by a black square and an entry of
magnitude  is represented by a white square.
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Table . Performance comparison in Scenario  (BlockDiagonal Structure). Averages
ofmeasures from  replicates are listedwith parentheses indicating their standard
errors.

p Measure LW BL RLZ BT Proposed

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – . (.) . (.) . (.)

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – . (.) . (.) . (.)

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – . (.) . (.) . (.)

estimate being false positives, the two sub-diagonals are
rather clear. In contrast, these two sub-diagonals are
totally overlooked by the RLZ estimate. The structure
of the BL estimate is undermined sincemany truly non-
zero entries are ignored. The LW and BT estimates are
not able to produce the clear structure of the two sub-
diagonals.

Tables 4 and 5 report the comparison results for Sce-
narios 4 and 5. Compared with Scenario 4 that con-
siders the block diagonal structure, Scenario 5 allows
non-zero entries to scatter over the whole covariance
matrix. Overall, our proposed method performs better
than the LW and BT estimates, and is comparable to
the BL and RLZ estimates. Because of the high corre-
lations among the first 20% variables, the BL estimate
outperforms the other estimates in terms of the L1, L2
and F norm measures. However, the BL method does
not guarantee the positive definiteness of the estimate.
The performance of the RLZ estimate is reasonably well
in Scenario 4, but in terms of the entropy loss and

�CN, it is not as good as our proposed estimate. When
there is no banded structure such as in Scenario 5, our
proposed estimate performs much better than the RLZ
estimate.

We also present heat maps for one simulated repli-
cate in Figure 2 to elaborate the results in Table 5. The
BL estimate has the clearest appearance, where only a
few truly zero entries are not identified. However, the
estimate is not positive definite, which can be partially
caused by these disparities. The LW and RLZ estimates
do not capture the structure of the covariance matrix,
resulting in less accurate estimation as shown in Table 5.
Both the BT estimate and our proposed estimate appear
to be capable in restoring the covariance structure in
Scenario 5. And our proposed estimate appears to be
more stable than BT estimate in terms of CN values
reported in Table 5.

Simulation for Scenario 6 considers the situation
where � is dense, that is, most entries of � are non-
zeros. The comparison results of five estimates are

Table . Performance comparison in Scenario  (Permuted Block Diagonal Struc-
ture). Averages of measures from  replicates are listed with parentheses indi-
cating their standard errors.

p Measure LW BL RLZ BT Proposed

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – . (.) . (.) . (.)

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – – . (.) . (.)

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – .(.) . (.) . (.)
�CN . (.) – – . (.) . (.)
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Figure . Heat maps of the true covariance matrix and various estimates from one replicate of simulations in Scenario . Absolute
values of entries are used to replace original entries. An entry of magnitude  or over is represented by a black square and an entry of
magnitude  is represented by a white square.

shown in Table 6. Overall, our proposed estimate gives
better performance than the BL and RLZ estimates. The
LW estimate has comparable L1, L2 and F norm mea-
sures with our proposed estimate, while its entropy loss
is larger than that from our proposed estimate. The per-
formance of the BT estimate and our proposed estimate
is similar since both of them rely on L1 regularisation.
In terms of �CN, our proposed estimate has smaller
�CN losses for situations of p = 30 and p = 50. There is
no clear ranking among different estimates for p = 100.

To sum up, our proposed estimate outperforms
the LW estimate, the BL estimate and the BT esti-
mate in various covariance matrix structures used
in the simulation studies. The RLZ estimate gives
good performance only when the underlying covari-
ance matrix is banded since it is specially desig-
nated for this case. Our proposed estimate is appli-
cable in more general situations where the true
covariance matrix is not limited to the banded
structure.

Table . Performance comparison in Scenario  (Dense Structure). Averages ofmeasures
from  replicates are listed with parentheses indicating their standard errors.

p Measure LW BL RLZ BT Proposed

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – . (.) . (.) . (.)

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . (.)
�CN . (.) – . (.) . (.) . (.)

 L norm . (.) . (.) . (.) . (.) . (.)
L norm . (.) . (.) . (.) . (.) . (.)
F norm . (.) . (.) . (.) . (.) . (.)
�EN . (.) – . (.) . (.) . ()
�CN . (.) – . (.) . (.) . (.)
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5. Real data analysis

To further explore the performance of our proposed
covariance matrix estimate, we applied our proposed
covariance matrix to a real data analysis. The study is
on a stock market data-set. The estimated covariance
matrix was used in the equity portfolio allocation.

The common portfolio strategy (Markowitz, 1952)
attempts to minimise the risk for a given level of
expected return through diversifying the investments
in various assets. The risk is generally measured by the
variance of the portfolio returns. Denote by w the pro-
portions of various assets in the portfolio, and let � be
the volatilitymatrix of returns in the asset pool. An opti-
mal portfolio with no-short-sale constraint would be
constructed by solving the following quadratic optimi-
sation:

minimise
w

wT� w

subject to wTe = 1,
w ≥ 0,

(12)

where e is a vector with entries equal to 1. We expect
that an accurate estimate of � would lead to a bet-
ter portfolio strategy. Traditionally, the sample covari-
ance matrix is used to estimate � above. However, in
many cases, the length of the asset return series used is
not big enough compared to the number of assets con-
sidered. As pointed out by Michaud (1989), since the
objective function involves the covariance matrix, an
ill-conditioned matrix estimation may result in unsta-
ble solutions of w in Equation (12) and greatly ampli-
fies the error of portfolio allocation. Therefore, the
estimate for � has to be positive definite such that the
quadratic programming of Equation (12) would not be
ill-defined. Moreover, the assets do not have a natural
order among them. Based on these conditions, we only
include methods producing positive definite and order-
invariant estimates in comparison, which are the LW
estimate, the BT estimate and our proposed estimate.

We considered the stock return data from companies
in the Standard & Poor’s 100 index. Because of finan-
cial crisis in 2008, we decided to focus on a time zone
before 2008. Specifically, we used the weekly return data
in 2006 as the training set to build portfolio strategy,
and the weekly return data in 2007 to test the perfor-
mance. Since Mastercard, Visa and Philip Morris Inter-
national are not listed throughout this time zone, these
companies are excluded from the equity pool, and only
the remaining 97 stocks are used.

With weekly return data of these 97 stocks in 2006,
we built portfolios 1, 2 and 3, using the LW estimate,
the BT estimate and our proposed estimate, respec-
tively. Table 7 summarises the averages and the standard
deviations of the realised weekly returns for these three
portfolios using testing set in 2007. The annual returns
from combining 52 weeks’ returns are also included.

Table . Summary of realised returns of portfolios built with dif-
ferent covariance matrix estimates.

Weekly return

Standard Annual
Year  (test set) Average deviation return

Portfolio  (w/. LW estimate) . % . % . %
Portfolio  (w/. BT estimate) . % . % . %
Portfolio  (w/. proposed estimate) . % . % . %

The results show that portfolio 3 derived from our pro-
posed estimate is better than the other two portfolios
with a larger realised weekly return and smaller corre-
sponding standard deviation. Consequently, portfolio 3
provides the highest annual return. It appears that our
proposed estimate results in an improvement of portfo-
lio strategy in terms of more realised returns.

We also investigate whether our proposed estimate
is sensitive to the choice of the permutation set C in
Equation (10), Specifically, we took 200 different sets
of randomly selected permutations to obtain our pro-
posed covariance matrix estimates, and further gener-
ated 200 portfolios correspondingly. The behaviours of
these 200 portfolios are consistent. The standard devi-
ation of annual returns of these portfolios is 0.50% for
2007 (the test set). This value is very small compared
with the realised annual returns. With a moderate size
of permutation set, K = 30, the impact of permutation
set selection appears to be at a quite acceptable level.

6. Discussion

We propose a model averaging covariance matrix esti-
mate with guaranteed positive definiteness based on the
MCD. Unlike the Rothman et al.’s estimate, our pro-
posed method is applicable in a general case, not lim-
ited to the estimation of banded covariance matrix.
Additionally, our proposed estimate is not sensitive to
the order of variables used in the MCD. To achieve
this property, we develop our estimate described in
Equation (10) through refining a representative group
of individual estimates under random permutations.
The averaged covariance matrix estimator produces a
more accurate estimator with smaller variance than
the estimator obtained using a single order of vari-
ables in the MCD of covariance matrix. The choice of
permutation set is not essential since the mechanism
of random selection achieves representativeness. For
instance, in our simulation study, our proposed esti-
mate under refinement groups of size 30 and 100 pre-
sented similar performance. In the real data analysis,
different selection of permutation sets gave the mini-
mal extent of variabilities for the results. Therefore, the
guideline for the size of permutation set is to seek the
balance between computation convenience and estima-
tion accuracy. A moderate number, like 30, appears to
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provide adequate performance in practice. Neverthe-
less, we also notice that the choice of the number of per-
mutations, K, may depend on the number of variables
p. A larger number of permutations may be needed to
achieve a stable performance of the proposed estimator
as p increases. An interesting topic on how to choose an
optimal value ofK given the number of variables p is left
for further study.

Another interesting topic is the study of the conver-
gence rate of the proposed estimator. A potentially use-
ful idea is first to derive the convergence rate of the
estimators of the Cholesky factor matrices L̂πk and D̂πk

under a given order of variables πk. Then based on the
formula in Equation (9), one could obtain the conver-
gence rate of �̂πk , and hence the convergence rate of the
proposed estimator in Equation (10). A rigorous proof
is under investigation and will be reported elsewhere.

In this work, our proposed model averaging esti-
mate is obtained from the refinement strategy of tak-
ing average of several individual estimates of �. The
refined estimate is positive definite because each indi-
vidual estimate is positive definite. Alternatively, other
strategies may have similar effects. For example, one
may choose to refine Cholesky factor matrices Ls and
Ds in Equation (4) from individual estimates. Then, the
averages of Ls and the average ofDs can be used to form
a refined covariance matrix estimate with positive def-
initeness and parsimonious properties. Research along
this line will be reported elsewhere.

Acknowledgments

The authors would like to thank the Editor, the Associate Edi-
tor and referees for their insightful comments and sugges-
tions. Deng’s research is supported by the National Science
of Foundation of China (NSFC-71531004).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

National Science of Foundation of China [grant number
NSFC-71531004]; NNSF.

Notes on contributors

Hao Zheng holds a Ph.D. in statistics from University of
Wisconsin-Madison. He is now a senior biostatistician at
Gilead Sciences, Inc.

Kam-Wah Tsui holds a Ph.D. in statistics from University
of British Columbia. He is a full professor in department of
statistics at University of Wisconsin-Madison. His research
interests include decision theory, survey sampling, statistical
inference, and Bayesian methods.

Xiaoning Kang holds a Ph.D. in statistics from Virginia Tech.
He is now an assistant professor at International Business Col-
lege in Dongbei University of Finance and Economics, China.

His research interests include high-dimensional data analysis,
large covariance matrix estimation, and statistical methodol-
ogy with financial applications.

Xinwei Deng holds a Ph.D. in statistics from Georgia Insti-
tute of Technology. He is now an associate professor in the
department of statistics at Virginia Tech. His research inter-
ests include interface between machine learning and exper-
imental design, modeling and analysis of high-dimensional
data, covariance matrix estimation, and design and analysis
of computer experiments.

References

Bickel, P., & Levina, E. (2008a). Covariance regularization by
thresholding. The Annals of Statistics, 36, 2577–2604.

Bickel, P., & Levina, E. (2008b). Regularized estimation of
large covariance matrices. The Annals of Statistics, 36,
199–227.

Bien, J., & Tibshirani, R. (2011). Sparse estimation of a covari-
ance matrix. Biometrika, 98, 807–820.

Burman, P. (1989). A comparative study of ordinary cross-
validation, v-fold cross-validation and the repeated
learning-testing methods. Biometrika, 76, 503–514.

Chen, Z., & Leng, C. (2015). Local linear estimation of
covariance matrices via Cholesky decomposition. Statis-
tica Sinica, 25, 1249–1263.

Cochran, W. G. (1977). Sampling techniques. New York, NY:
John Wiley & Sons.

Deng, X., & Tsui, K.-W. (2013). Penalized covariance matrix
estimation using a Matrix-Logarithm transformation.
Journal of Computational and Graphical Statistics, 22,
494–512.

Fan, J., Xue, L., & Zou, H. (2016). Multitask quantile regres-
sion under the transnormal model. Journal of the Ameri-
can Statistical Association, 111, 1726–1735.

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regulariza-
tion paths for generalized linear models via coordinate
descent. Journal of Statistical Software, 33, 1–22.

Golub, G. H., & Van Loan, C. F. (2012).Matrix computations.
Baltimore, MD: The Johns Hopkins University Press.

Hunter, D. R., & Lange, K. (2000). Quantile regression via an
MM algorithm. Journal of Computational and Graphical
Statistics, 9, 60–77.

James, W., & Stein, C. (1961). Estimation with quadratic loss.
Proceedings of the Fourth Berkeley Symposium on Mathe-
matical Statistics and Probability, 1, 361–379.

Johnstone, I. M. (2001). On the distribution of the largest
eigenvalue in principal components analysis. The Annals
of Statistics, 29, 295–327.

Kullback, S., & Leibler, R. A. (1951). On information and suf-
ficiency. The Annals of Mathematical Statistics, 22, 79–86.

Ledoit, O., & Wolf, M. (2004). A well-conditioned estima-
tor for large-dimensional covariance matrices. Journal of
Multivariate Analysis, 88, 365–411.

Levina, E., Rothman, A., & Zhu, J. (2008). Sparse estimation
of large covariance matrices via a nested Lasso penalty.
The Annals of Applied Statistics, 2, 245–263.

Liu,H.,Wang, L., &Zhao, T. (2013). Sparse covariancematrix
estimation with eigenvalue constraints. Journal of Com-
putational and Graphical Statistics, 23, 439–459.

Markowitz, H. (1952). Portfolio selection. The Journal of
Finance, 7, 77–91.

Michaud, R. O. (1989). The Markowitz optimization enigma:
Is ‘optimized’ optimal? Financial Analysts Journal, 45, 31–
42.



58 H. ZHENG ET AL.

Pinheiro, J. C., & Bates, D. M. (1996). Unconstrained
parametrizations for variance-covariance matrices.
Statistics and Computing, 6, 289–296.

Pourahmadi, M. (1999). Joint mean-covariance models with
applications to longitudinal data: Unconstrained param-
eterisation. Biometrika, 86, 677–690.

Rothman, A., Levina, E., & Zhu, J. (2010). A new approach to
Cholesky-based covariance regularization in high dimen-
sions. Biometrika, 97, 539–550.

Trefethen, L. N., & Bau III, D. (1997). Numerical linear alge-
bra. Philadelphia, PA: Society for Industrial and Applied
Mathematics.

Wang, Y., & Daniels, M. (2014). Computationally efficient
banding of large covariancematrices for ordered data and
connections to banding the inverse Cholesky factor. Jour-
nal of multivariate analysis, 130, 21–26.

Xue, L., Ma, S., & Zou, H. (2012). Positive definite l1 penal-
ized estimation of large covariancematrices. Journal of the
American Statistical Association, 107, 1480–1491.

Appendix. Special case with λ = 0 in Equation
(7) when n> p

Assume that independent and identically distributed
x1, . . . , xn are observed and centred. Denote S =
1
n
∑n

i=1 xix
T
i and assume that S is non-singular, i.e., n>

p. Denote �̂0 as the estimated covariance matrix from
Equation (8) with λ = 0 in Equation (7). Then �̂0 = S
in spite of any permutation of x1, . . . , xn. Below is the
proof.

Proof: Based on the sequential regression for Equation
(7), it is known that

X1 = ε1 ⇒ ei1 = xi1, 1 ≤ i ≤ n,

σ̂ 2
1 = 1

n

n∑
i=1

e2i1

X2 = l21ε1 + ε2

⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
l̂21 =

∑n
i=1 xi2ei1∑n
i=1 e2i1

, ei2 = xi2 − l̂21ei1, 1 ≤ i ≤ n

σ̂ 2
2 = 1

n

n∑
i=1

e2i2,
n∑

i=1

ei2ei1 = 0

X3 = l31ε1 + l32ε2 + ε3

⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

l̂31 =
∑n

i=1 xi3ei1∑n
i=1 e2i1

, l̂32 =
∑n

i=1 xi3ei2∑n
i=1 e2i2

ei3 = xi3 − l̂31ei1 − l̂32ei2, 1 ≤ i ≤ n

σ̂ 2
3 = 1

n

n∑
i=1

e2i3,
n∑

i=1

ei3ei1 = 0,
n∑

i=1

ei3ei2 = 0

�

Xj =
∑
k< j

l jkεk + ε j

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l̂ j1 =
∑n

i=1 xi jei1∑n
i=1 e2i1

, . . . , l̂ jk =
∑n

i=1 xi jeik∑n
i=1 e2ik

, . . . , l̂ j, j−1

=
∑n

i=1 xi jei, j−1∑n
i=1 e2i, j−1

ei j = xi j −
∑
k< j

l̂ jkeik, 1 ≤ i ≤ n

σ̂ 2
j = 1

n

n∑
i=1

e2i j,
n∑

i=1

ei jei1 = 0, . . . ,

n∑
i=1

ei jei, j−1 = 0

Therefore, the (s, t) entry of the covariance matrix
estimate from the sequential regression process is

(�̂)st = (L̂D̂L̂
T
)st =

min(s,t )∑
u=1

l̂sul̂tuσ̂ 2
u (l̂uu = 1).

Meanwhile,

xis =
s∑

u=1

l̂sueiu (l̂uu = 1), 1 ≤ i ≤ n,

xit =
t∑

v=1

l̂tveiv (l̂vv = 1), 1 ≤ i ≤ n,

and the (s, t) entry of the sample covariance matrix is

(S)st = 1
n

n∑
i=1

xisxit = 1
n

n∑
i=1

( s∑
u=1

l̂sueiu
)( t∑

v=1

l̂tveiv
)

= 1
n

s∑
u=1

t∑
v=1

l̂sul̂tv
( n∑

i=1

eiueiv
)

=
min(s,t )∑
u=1

l̂sul̂tuσ̂ 2
u (l̂uu = 1).

The last equality holds because of
n∑

i=1

eiueiv =
{
nσ 2

u u = v;
0 u 
= v.

Thus, we can establish the result

S = L̂ diag(σ̂ 2
1 , . . . , σ̂ 2

p ) L̂
T
.
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