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ABSTRACT
The empirical likelihoodmethod is a powerful tool for incorporatingmoment conditions in statis-
tical inference. We propose a novel application of the empirical likelihood for handling item non-
response in survey sampling. The proposedmethod takes the form of fractional imputation but it
does not require parametric model assumptions. Instead, only the first moment condition based
on a regressionmodel is assumed and the empirical likelihoodmethod is applied to the observed
residuals to get the fractional weights. The resulting semiparametric fractional imputation pro-
vides

√
n-consistent estimates for various parameters. Variance estimation is implemented using

a jackknife method. Two limited simulation studies are presented to compare several imputation
estimators.

1. Introduction

Missing data are frequently encountered in many areas,
such as survey sampling, epidemiology and other fields.
Simply ignoring missing values can potentially lead to
biased estimation (Kim & Shao, 2013; Little & Rubin,
2002). Two statistical approaches for handling miss-
ing data have been used in practice: propensity score
weighting and imputation. Propensity score weighting
is used mainly to correct for unit non-response, while
imputation ismainly used to handle itemnon-response.
Haziza (2009) provides a comprehensive overview of
the imputation methods in survey sampling.

Multiple imputation (MI), proposed by Rubin
(1987), is a popular approach of imputation for general-
purpose estimation due to its practical simplicity. How-
ever, the Rubin’s variance estimator may be biased
under certain situation (Fay, 1992; Kim, Brick, Fuller, &
Kalton, 2006;Wang & Robins, 1998; Yang &Kim, 2016)
and its validity requires the congeniality condition of
Meng (1994), which may not hold for general-purpose
estimation.

Fractional imputation (FI), first proposed by Kalton
and Kish (1984), provides an alternative method for
handling item non-response. Fay (1996), Kim and
Fuller (2004), Fuller and Kim (2005), and Durrant
and Skinner (2006) discussed fractional hot deck
imputation. Kim (2011) and Kim and Yang (2014)
discussed a fully parametric approach to FI. The
parametric fractional imputation (PFI) provides a pow-
erful tool for handling missing data for various sit-
uations. However, it relies on a strong parametric
model assumption and making such an assumption
is not usually preferred in survey sampling. Balanced

CONTACT Sixia Chen SixiaChen@westat.com

random imputation of Chauvet, Deville, and Haziza
(2011) is also an attractive imputation technique, but it
still requires parametric model assumptions for multi-
purpose estimation.

The empirical likelihood (EL) method, considered
by Owen (2001) and Qin and Lawless (1994), is a
useful tool for semiparametric inference in statistics.
It involves a likelihood-based inference without mak-
ing a parametric distributional assumption about the
observed data. Qin (1993) addressed themissing survey
data problem by using a biased sampling argument of
Vardi (1985).Wang and Rao (2002) brought regression-
type imputation approaches to EL inference. Wang and
Chen (2009) used a nonparametric regression imputa-
tion approach to handle missing data in the EL infer-
ence. Müller (2009) considered a novel application of
EL method to handle missing data under a regression
model assumption. In Müller (2009), the moment con-
dition of the error term in the regression model is used
to construct a fully imputed estimator.

In this paper, motivated by the fully imputed estima-
tor ofMüller (2009), we propose a semiparametric frac-
tional imputation (SFI) method using EL that can be
used to handle item non-response in survey sampling.
Because the proposed SFI uses only moment condi-
tions in the semiparametric regressionmodel, it is more
robust than the PFI method or parametric MI method.
By using regression model assumptions, the proposed
SFI method is more efficient than the nonparamet-
ric regression imputation method of Wang and Chen
(2009). The proposed method takes the form of FI, so
the actual implementation is very attractive in prac-
tice. The proposed SFI method can be used to estimate
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various parameters, including non-smooth parameters
such as population quantiles.

The paper is organised as follows. The basic set-up
is introduced and the proposed method is presented in
Section 2. The asymptotic properties of the SFI esti-
mators are presented in Section 3. Extensions to non-
smooth statistics as well as random imputations are
covered in Section 4. In Section 5, variance estima-
tion is discussed. Some numerical results are given
in Section 6. Some concluding remarks are made in
Section 7.

2. Basic set-up

Consider a finite population FN = {(xi, yi); i =
1, 2, . . . ,N}, where xi is the vector of auxiliary vari-
ables that are always observed and yi is the study
variable that is subject to missingness. We assume
(xi, yi) are realisations from a regression model

Y = m(X; β0) + ε, (1)

wherem(X; β0) is assumed to be knownwith unknown
parameter β0 and ϵ satisfies E(ϵ|X) = 0. No parametric
distributional assumption on X is made.

Let δi be the response indicator such that δi = 1 if yi
is observed and δi = 0 otherwise. We assumemissing at
random (MAR) in the sense that

Pr(δ = 1|x, y) = Pr(δ = 1|x). (2)

Even though we observe δi only in the sample, we can
conceptually assume that δi’s are defined throughout
the population. Such extended definition of δi has been
adopted in Fay (1992), Shao and Steel (1999), and Kim,
Navarro, and Fuller (2006).

Given the finite population, suppose that sampleA of
size n is selected from the finite population by a proba-
bility sampling mechanism. Let π i, i = 1, 2, … , N, be
the first-order inclusion probability of unit i in the pop-
ulation. We are interested in estimating η0, defined as
a solution to the estimating equation E{U (η; x, y)} = 0
whereU (η; x, y) is a known function with parameter η.
To avoid unnecessary details, we assume that the solu-
tion to E{U (η; x, y)} = 0 is unique and the dimensions
of η andU (η; x, y) are r. Thus, the parameter η is just-
identified. Under complete response, a consistent esti-
mator of η0 is obtained by solving

∑
i∈A

1
πi
U (η; xi, yi) = 0

for η. If some of yi aremissing, under theMAR assump-
tion, a consistent estimator of η0 can be obtained by
solving the following expected estimating equation:

∑
i∈A

1
πi
[δiU (η; xi, yi) + (1 − δi)E{U (η; xi,Y ) | xi}]

= 0 (3)

for η. The conditional expectation in Equation (3) is
with respect to f (y | x), which is unknown as we only
assume Equation (1).

In FI, our goal is to approximate the conditional
expectation in Equation (3) by the weighted mean of
the fractionally imputed estimating functions. That is,
we wish to achieve

E{U (η; xi,Y ) | xi} ∼=
m∑
j=1

w∗
i jU (η; xi, y∗( j)

i ) (4)

as closely as possible for some (w∗
i j, y

∗( j)
i ) satisfy-

ing
∑m

j=1 w∗
i j = 1, where w∗

i j’s are desired fractional
weights and y∗( j)

i ’s are m imputed values for subject
i. Kim (2011) and Kim and Yang (2014) developed a
FI satisfying Equation (4) using a parametric model
assumption on f (y | x).

In our proposed method, we use the EL approach to
achieve the approximation in Equation (4). To explain
the idea, assume for now that the true parameter β0 in
Equation (1) is known. In this case, εi = yi − m(xi; β0)

are available among δi = 1. Because E(ε | x) = 0 holds,
we can compute

E{U (η; xi,Y ) | xi}
=

∫
U (η; xi, y) f (y | xi)dy

=
∫

U (η; xi,m(xi; β0) + ε) fε (ε | xi)dε,

where fε (ε | x) is the (unknown) conditional density
of ϵ given x. To apply the EL method, we assume that
the conditional distribution of ϵ given x can be approx-
imated by

Fε (ε | x) =
∑
i∈A

δiwiI(εi ≤ ε) (5)

such that wi � 0 with �δiwi = 1, where wi is the point
mass assigned to the observed ϵi by assuming that the
support of ϵi is equal to the set of observed ϵi. Using the
approximation in Equation (5), we can obtain

E{U (η; xi,Y ) | xi} ∼=
∑
j∈A

δ jw jU (η; xi,m(xi; β0) + ε j),

which can be written in the FI form in Equation (4). To
determine wj uniquely, we can use the idea of pseudo
EL method of Wu and Rao (2006) to maximise

l(w) =
∑
i∈A

δiπ
−1
i log(wi) (6)

subject to ∑
i∈A

δiwi = 1 and
∑
i∈A

δiwiεi = 0. (7)

In practice, we do not know β0, and hence, we do
not observe εi = yi − m(xi; β0). We can use a

√
n-

consistent estimator of β0 to obtain ε̂i = yi − m(xi; β̂)
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and apply the above EL method to the observed residu-
als. In general, one can use

Ûβ (β) = 1
N

∑
i∈A

δi

πi
{yi − m(xi; β)}h(xi; β) = 0 (8)

to obtain a
√
n-consistent estimator of β, where

h(xi; β) is an arbitrary function that enables the above
equation to have a solution. If the variance function
V (y|x) = σ 2q(xi; β0) for a known function q, then
one can choose h(xi; β) = ṁ(xi; β)/q(xi; β), where
ṁ(xi; β) = ∂m(xi; β)/∂β. This choice is motivated by
the quasi likelihoodmethod for generalised linearmod-
els (McCullagh & Nelder, 1989, Ch. 9). The solution to
Equation (8) can be called complete-case (CC)method.
The CC estimator is not efficient in general, but it is effi-
cient for estimating β under MAR. Thus, the resulting
SFI estimator can be constructed as follows:

Step 1 Obtain a
√
n-consistent estimator of β0 and

compute ε̂i = yi − m(xi; β̂) among the respon-
dents.

Step 2 Find ŵi that maximises Equation (6) subject to∑
i∈A

δiwi = 1 and
∑
i∈A

δiwiε̂i = 0. (9)

The solution can be written as

ŵi = π−1
i∑

k∈A δkπ
−1
k

1
1 + λ̂ε̂i

, (10)

where λ̂ is obtained by solving the second con-
straint of Equation (9).

Step 3 Use ŵ j in Step 2 to approximate

E{U (η; xi,Y ) | xi} ∼=
∑
j∈A

δ jw
∗
i jU

(
η; xi, y∗( j)

i
)
,

where y∗( j)
i = ŷi + ε̂ j and w∗

i j = ŵ j.

Step 4 The SFI estimator η̂SFI of η is computed by solv-
ing

Ûη(η, β̂, λ̂) = 1
N

∑
i∈A

1
πi

{
δiU (η; xi, yi)

+ (1 − δi)
∑
j∈A

δ jw
∗
i jU (η; xi, y∗( j)

i )

}
= 0 (11)

for η.

Instead of Equation (11), one can also consider a fully
imputed estimating equation based on∑

i∈A

1
πi
E{U (η; xi,Yi) | xi} = 0,

which was considered byMüller (2009) under the inde-
pendently and identically distributed set-up. The fully
imputed estimating equation may lead to a more effi-
cient estimator of η (Matloff, 1981) but such over-
imputation does not appeal to survey practice since we

usually do not want to replace the true values of respon-
dents with some imputed values. In the following sec-
tion, we present the asymptotic properties of η̂SFI under
complex survey designs.

3. Asymptotic properties

To discuss the asymptotic properties of the proposed
SFI estimator of η, we first assume a sequence of finite
populations and samples with finite fourth moments as
in (Fuller, 2009, Ch.1). The following theorem presents
the asymptotic normality of the proposed SFI estima-
tor. The sketched proof of Theorem 3.1 is provided in
Appendix 1.

Theorem 3.1: Under the regularity conditions (C1)–
(C13) in Appendix 1, the SFI estimator defined in Equa-
tion (11) is a

√
n-consistent estimator of η0, that is

√
n
(
η̂SFI − η0

) L−→ N(0,B
u2B′),

where B = [E{∂U (η; x, y)/∂η}]−1,
u2 = V (N−1∑
i∈A π−1

i ζi), and

ζi = δiU (η0; xi, yi) + (1 − δi)E {U (η0; xi,Y )|xi}

+ δi

E(δ)
Ci + DW

[
E
{
δh(x; β0)

∂m(x; β0)

∂β

}]−1

× δiεih(xi; β0), (12)

and

Ci = Ūm(εi) − E
{
Ūm(εi)

} − σ−2E
{
εŪm(ε)

}
εi,

DW = D + E
{
εŪm(ε)

}
σ−2E

{
∂m(x; β0)

∂β
|δ = 1

}
,

D = E
(

(1 − δ)U (η0; x, y)
[
∂m(x; β0)

∂β

−E
{

∂m(x; β0)

∂β
|δ = 1

}]
l(ε)

)
,

with σ 2 = E(ϵ2), Ūm(ε) = E{(1 − δ)U (η0; x, y)|ε},
and l(ε) = −∂ log fε (ε | x)/∂ε.

Remark 3.1: In Equation (12), ζ i can be written as the
sum of four terms. The first two terms is the condi-
tional expectation of U (η; x, y), the third term is the
additional term due to approximating f (y | x) by the
EL method and the fourth term is the additional term
due to estimating β.

According to Theorem3.1, a consistent variance esti-
mator of η̂SFI can be written as

V̂ (η̂SFI) =
{
Ê
(

∂U (η0; x, y)
∂η

)}−1

V̂

(
1
N

∑
i∈A

π−1
i ζi

)

×
[{

Ê
(

∂U (η0; x, y)
∂η

)}−1
]T

, (13)
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where

Ê
(

∂U (η0; x, y)
∂η

)
= 1

N̂

∑
i∈A

π−1
i

{
δi

∂U (η̂; xi, yi)
∂η

+ (1 − δi)
∑
j∈A

δ jw
∗
i j
∂U (η̂; xi, y∗( j)

i )

∂η

}
,

with N̂ = ∑
i∈A π−1

i , η̂ = η̂SFI and

V̂

(
1
N

∑
i∈A

π−1
i ζi

)
= 1

N̂2

∑
i∈A

∑
j∈A

πi j − πiπ j

πi j

ζ̂i

πi

ζ̂ j

π j

+ 1
N̂2

∑
i∈A

(ζ̂i − ˆ̄
ζN )2

πi
, (14)

where ˆ̄
ζN = N̂−1 ∑

i∈A π−1
i ζ̂i and ζ̂i is a plug-in estima-

tor of ζ i in Equation (12). One can use

ζ̂i = δiU (η̂; xi, yi) + (1 − δi)μ̂(xi; β̂, η̂)

+ δi{Ê(δ)}−1[ ˆ̄Um(ε̂i) − Ê
{
Ūm(εi)

}
− σ̂−2Ê{εŪm(ε)}ε̂i]
+ D̂W

[
Ê
{
δh(x; β0)

∂m(x; β0)

∂β

}]−1

δiε̂ih(xi; β̂),

with

μ̂(xi; β̂, η̂) =
∑

j∈A π−1
j δ jU (η̂; xi, y∗( j)

i )∑
j∈A π−1

j δ j
,

Ê(δ) = 1
N̂

∑
j∈A

π−1
j δ j,

σ̂ 2 =
∑

j∈A π−1
j δ j ε̂

2
j∑

j∈A π−1
j δ j

, Ê
{

∂m(x;β0)

∂β
|δ = 1

}

=
∑

i∈A π−1
i δi∂m(xi; β̂)/∂β∑

i∈A π−1
i δi

,

D̂W = D̂ + Ê
{
εŪm(ε)

}
σ̂−2Ê

{
∂m(x;β0)

∂β
|δ = 1

}
,

ˆ̄Um(ε̂i) = 1
N̂

∑
j∈A

π−1
j (1 − δ j)U (η̂; x j, y∗(i)

j ),

Ê
{
Ūm(εi)

} = 1
N̂

∑
i∈A

π−1
i (1 − δi)

∑
j∈A

δ jŵ jU (η̂; xi, y∗( j)
i ),

Ê
{
εŪm(ε)

} =
∑

j∈A π−1
j δ j ε̂ j

ˆ̄Um(ε̂ j)∑
j∈A δ jπ

−1
j

,

D̂ = 1
N̂

∑
i∈A

π−1
i (1 − δi)

∑
j∈A δ jπ

−1
j ∂U (η̂; xi, y∗( j)

i )/∂y
{
∂m(xi; β̂)/∂β − ∂m(x j; β̂)/∂β

}
∑

j∈Ar
π−1

j
.

When nN−1 = o(1), the second term of Equation (14)
is of smaller order and can be safely ignored.

4. Extensions

In this section, we discuss two extensions of the pro-
posed method. In Section 4.1, our proposed method is

extended to handle non-smooth statistics including dis-
tribution functions and percentiles. In Section 4.2, an
extension to stochastic imputation is discussed.

4.1. Inference for non-smooth statistics

Suppose that we are interested in estimating parameter
η0, the solution ofE

{
U (η; x, y)} = 0with non-smooth

function U (η; x, y), where the non-smoothness can
be with respect to either η or y. For generality, we
assume that the non-smoothness is with respect
to both η and y. Wang and Opsomer (2011) dis-
cussed asymptotic results for non-differentiable sur-
vey estimators. Define θ = (η, β), θ0 = (η0, β0).

Let Ũn(θ ) = N−1 ∑
i∈A π−1

i Ũ (θ; δi, xi, yi) and
Ũ (θ ) = E{Ũ (θ; δi, xi, yi)}, where

Ũ
(
θ; δi, xi, yi

) = δiU
(
η; xi, yi

) + (1 − δi)

×
∫

U {η; xi,m(xi; β) + εi} fε (εi|xi)dεi.

Denote θ̂ = (η̂, β̂) as the solution of estimating
equation Ũn(θ ) = 0. To discuss asymptotic proper-
ties, we replace regularity conditions (C7)–(C10) in
Appendix 1 with the regularity conditions (C14)–(C17)
in Appendix 2. The following theorem presents the
asymptotic expansion of η̂SFI under this scenario and
the sketched proof is presented in Appendix 2.

Theorem 4.1: Under regularity conditions (C1)–(C3)
and (C11)–(C17) inAppendix 1 andAppendix 2, η̂SFI has
the following asymptotic expansion:

η̂SFI − η0 = −
[

∂E
{
U (η0; x, y)

}
∂η

]−1

×
(
1
N

∑
i∈A

1
πi

ζ2i

)
+ op(n−1/2),

where

ζ2i = δiU (η0; xi, yi) + (1 − δi)μ(xi; β0, η0)

+ δi

E(δ)

[
Ūm(εi) − E

{
Ūm(εi)

} − E
{
εŪm(ε)

}
σ 2 εi

]

+ D∗
W

[
E
{
δh(x; β0)

∂m(x; β0)

∂β

}]−1

δiεih(xi; β0),

where

D∗
W = D∗ + E

{
εŪm(ε)

}
σ−2E

{
∂m(x; β0)

∂β
|δ = 1

}
,

and

D∗ = {E(δ)}−1
∂E

[
(1 − δi)δ jU

{
η0; xi, y∗( j)

i (β)
}]

∂β
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evaluated at β0 and other terms are the same as those in
Theorem 3.1.

By Theorem 4.1, we can obtain
√
n
(
η̂SFI − η0

) L−→ N(0,B
u2B′),

where B = [E{∂U (η; x, y)/∂η}]−1 and 
u2 =
V {N−1 ∑

i∈A π−1
i ζ2i}. If we are interested in estimating

the cumulative density function of y, which is Pr(y <

t), then we can chooseU (η; x, y) = I(y < t ) − η and

E
[
(1 − δi)δ jU

{
η0; xi, y∗( j)

i (β)
}]

=
∫ +∞

−∞

∫ +∞

−∞

{
1 − p(xi)

}
p(x j)

×
∫ t+m(x j;β)−m(xi;β)

−∞
fy j|x j (y j)dy jdxidx j,

where p(x) = Pr(δ = 1|x). Therefore, we have

D∗ = {E(δ)}−1 E
[
(1 − δi)δ j

{
∂m(x j;β0)

∂β

− ∂m(xi;β0)

∂β

}
fy j |x j

{
t + m(x j;β0) − m(xi;β0)

} ]
.

A consistent estimator of D∗ can be written as

D̂∗ =
∑
i∈A

1 − δi

πi

∑
j∈A δ jπ

−1
j {∂m(x j; β̂)/∂β − ∂m(xi; β̂)/∂β} f̂y j|x j

{
t + m(x j; β̂) − m(xi; β̂)

}
N̂

∑
j∈Ar

π−1
j

with

f̂y|x(y|x) = (hxhy)−1 ∑
i∈A π−1

i δiKx{h−1
x (x − xi)}Ky{h−1

y (y − yi)}
(hx)−1

∑
i∈A π−1

i δiKx
{
h−1
x (x − xi)

} ,

where Kx and Ky are kernel functions for x and y with
bandwidth hx and hy. Thus, a consistent variance esti-
mator of η̂SFI here can be obtained similarly to Equation
(13).

If the parameter of interest is the τ th percentile of Y,
given by η = F−1

Y (τ ), the SFI estimator η̂τ,SFI of η can be
obtained by solving the estimating Equation (11) with
U (η; x, y) = I(y < η) − τ. Since E{I(Y < η)} = FY(η),
it can be shown that η̂τ,SFI has the asymptotic expansion
in Theorem 4.1 with

∂E
{
U (η0; x, y)

}
∂η

= fy(η0) = E
{
fy|x (η0|x)

}
,

where fy is the density function for y. A consistent esti-
mator of ∂E

{
U (η0; x, y)

}
/∂η can be written as

∂Ê
{
U (η0; x, y)

}
∂η

= 1
N̂

∑
i∈A

π−1
i f̂y|x(η̂|xi),

and a consistent estimator of D∗ can be written as

D̂∗ =
∑
i∈A

1 − δi

πi

∑
j∈A δ jπ

−1
j

{
∂m(x j; β̂)/∂β − ∂m(xi; β̂)/∂β

}
f̂y j|x j

{
η̂ + m(x j; β̂) − m(xi; β̂)

}
N̂

∑
j∈Ar

π−1
j

,

with η̂ = η̂τ,SFI.

4.2. Stochastic imputation

In the multi-purpose surveys, stochastic imputation is
often preferred to deterministic imputation since it can
preserve distributional relationship better. In stochas-
tic imputation, imputed values are generated from a
stochastic imputation mechanism and with additional
variability due to the imputation. For simplicity, we only
consider the case whereU (η; x, y∗( j)

i ) is a smooth func-
tion of η and β.The results can be naturally extended to
non-smooth statistics. The stochastic imputation esti-
mator η̂SFI2 can be obtained by solving the following
estimating equation:

Û ∗
η (η | β̂, λ̂) = 1

N

∑
i∈A

1
πi

{
δiU (η; xi, yi)

+ (1 − δi)
1
m

m∑
s=1

U (η; xi, y∗(s)
i )

}
= 0,

where y∗(s)
i are randomly selected from {ŷi j = ŷi +

ε̂ j; j ∈ Ar} with the selection probability P(y∗(s)
i =

ŷi j) = w∗
i j, where w∗

i j are the fractional weights in
Equation (11). Since

p lim
m→∞

1
m

m∑
s=1

U (η; xi, y∗(s)
i )

= E(Û ∗
η (η | β̂, λ̂)|I, x, y, δ)

=
∑
j∈A

δ jw
∗
i jU (η; xi, y∗( j)

i ),

where the conditional expectation is with respect to the
stochastic imputation mechanism, we have

V {Û ∗
η (η | β̂, λ̂)}

= V {Ûη(η0, β̂, λ̂)} +V {Û ∗
η (η0 | β̂, λ̂) − Ûη(η0, β̂, λ̂)}

= V {Ûη(η0, β̂, λ̂)} + E[V {Û ∗
η (η0 | β̂, λ̂)

− Ûη(η0, β̂, λ̂)|I, x, y, δ}].

Thus, using an argument similar toTheorem3.1, we can
obtain



74 S. CHEN AND J. K. KIM

V (η̂SFI2) ≈
{
E
(

∂U (η0; x, y)
∂η

)}−1

VM

×
{
E
(

∂U (η0; x, y)
∂η

′

)}−1

, (15)

where VM = V {Û ∗
η (η | β̂, λ̂)}. Therefore, a consistent

variance estimator can be written as

V̂ (η̂RI) =
{
Ê
(

∂U (η0; x, y)
∂η

)}−1

V̂M

×
{
Ê
(

∂U (η0; x, y)
∂η

′

)}−1

,

where

V̂M = V̂ {Ûη(η0, β̂, λ̂)} + V̂ {Û ∗
η (η0 | β̂, λ̂)

− Ûη(η0, β̂, λ̂)|I, x, y, δ}, (16)

and Ê(∂U (η0; x, y)/∂η), V̂ {Ûη(η0, β̂, λ̂)} can be
obtained similarly to Equation (13) and

V̂ {Û ∗
η (η0 | β̂, λ̂) − Ûη(η0, β̂, λ̂)|I, x, y, δ}

= 1
mN̂2

∑
i∈A

π−2
i (1 − δi)

∑
j∈A

δ jw
∗
i j

{
U (η̂; xi, y∗( j)

i )

−
∑
j∈A

δ jw
∗
i jU (η̂; xi, y∗( j)

i )

}2

.

The second term of Equation (16) estimates the addi-
tional variance due to stochastic imputation. If m is
large, the second term is negligible.

5. Replication variance estimation

Estimating the variance of the estimator η̂SFI can be
done through the linearisation formulas presented in
Section 3 for smooth statistics and the formulas in
Section 4 for non-smooth statistics.However, it requires
tedious algebra to compute all the terms. In this
section, we consider an alternative approach using
replication methods. Shao and Tu (1995) considered
the theoretical aspects of replication methods such as
Jackknife and Bootstrap. Wolter (2007) gives a com-
prehensive overview of replication variance estimation
methods in survey sampling.

Suppose we are interested in estimating T =∑N
i=1 yi. Define the design weight as di = π−1

i . The
design unbiased estimator of T is T̂ = ∑

i∈A diyi and
the consistent replication variance estimator of T̂ is
given by

V̂R(T̂ ) =
L∑

k=1

ck(T̂ (k) − T̂ )2,

where L is the number of replicates, ck is the replication
factor associated with the kth replication and T̂ (k) =∑

i∈A d
(k)
i yi with d(k)

i being the kth replicate of di. For
example, ck = (L− 1)/L for deleting one group jackknife

method. For details of corresponding ck with different
variance estimation approaches, see Wolter (2007).

To obtain replication variance estimator of our pro-
posed SFI estimator, we apply the same SFI method to
each of the replicates. In the first step, we obtain the kth
replicate of β̂ (k) by solving∑

i∈A
d(k)
i δi

{
yi − m(xi; β)

}
h(xi; β) = 0.

In the second step, the replicated EL weights are com-
puted by maximising

l(k)(w) =
∑
j∈A

δ jd(k)
j log(w j)

subject to constraints∑
j∈A

δ j(d(k)
j /d j)w j = 1 and

∑
j∈A

δ j(d(k)
j /d j)w jε̂

(k)
j = 0,

with ε̂
(k)
j = y j − m(x j; β̂

(k)
). In the final step, the repli-

cated SFI estimator is computed using the replicated EL
weights. For smooth statistics, the kth replicate of η̂SFI,
denoted by η̂

(k)
SFI, is obtained by the solution to the fol-

lowing estimating equation

∑
i∈A

d(k)
i

{
δiU (η; x, y) + (1 − δi)

×
∑
j∈A

δ jw
∗(k)
i j U (η; xi, y∗( j)

i (β̂
(k)

))

}
= 0,

where w∗(k)
i j = ŵ(k)

j and y∗( j)
i (β̂

(k)
) = m(xi; β̂

(k)
) +

y j − m(x j; β̂
(k)

). The final replication variance estima-
tor of η̂SFI is given by

V̂R(η̂SFI) =
L∑

k=1

ck
(
η̂

(k)
SFI − η̂SFI

)2
.

For non-smooth statistics, our estimator is similar to
that of Wang and Opsomer (2011). Define

û(k) = Û (k)
η (η̂, β̂, λ̂) + [−Ê{εŪm(ε)}](λ̂(k) − λ̂)

+ D̂∗(β̂
(k) − β̂),

where Ê{εŪm(ε)} and D̂∗ are defined in Section 4.1,
Û (k)

η (η̂, β̂, λ̂) is defined in Equation (11) with design
weight replaced by replicationweight d(k)

i and fractional
weights replaced by replication fractional weightsw∗(k)

i j .

Then the replication variance estimator can be written
as

V̂R(η̂SFI) =
{

∂Ê
{
U (η̂; x, y)}

∂η

}−1 L∑
k=1

ck
{
û(k)

− Ûη(η̂, β̂, λ̂)
}2 ⎡⎣{

∂Ê
{
U (η̂; x, y)}

∂η

}−1
⎤
⎦

T

,

with ∂Ê{U (η; x, y)}/∂η defined in Section 4.1.
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6. Simulation studies

In this section, we conduct two limited simulation stud-
ies. The first one is generated from an artificial data-set
and the second one is based on the real data treated as
a finite population.

6.1. Simulation one

We repeatedly generate B = 2000 finite populations of
(xi, yi, δi) of size N = 10, 000 from a super-population
model

yi = 0.5xi + εi,

with xi ∼ exp (1) and E(ϵi�xi) = 0. Two error distribu-
tions are considered: (E1) ϵi ∼ N(0, 1) and (E2) ϵ ∼
{χ2(2) − 2}/2. Given (x, y), the response indica-
tor δ has a Bernoulli distribution with Pr(δ = 1|x) ={
1 + exp(1 − x)

}−1
. The overall response rate is about

50%. Given each finite population (x, y, δ), we draw
a sample by using a Poisson sampling design with
the first-order inclusion probability πi = nzi/

∑N
i=1 zi,

where n = 200 and zi = max {0.5yi + 2, 1} + ui, with
ui ∼ χ2(1) and χ2(1) corresponding to the chi-squared
distribution with degrees of freedom equal to one. In
this simulation, we are interested in estimating three
parameters:

(1) θ1 = N−1 ∑N
i=1 yi, the population mean of y.

(2) θ2 = N−1 ∑N
i=1 I(yi < 1), the proportion of y

less than 1.
(3) θ3 = F−1(0.5), the population median of y.

From each sample, we compute the following four
estimators:

(1) The CC estimator based on the complete cases
only. The CC estimator is the solution to∑

i∈A δiπ
−1
i U (η; xi, yi) = 0,whereU (η; x, y) is

the corresponding estimating equation for each
parameter.

(2) Full sample estimator based on the original
sampling without missing data andpseudo EL
method (FULL). Specifically, we maximise l =∑

i∈A π−1
i log(ωi), subject to the following con-

straints: ∑
i∈A

ωi = 1,
∑
i∈A

ωiε̂i = 0,

where ε̂i = yi − β̂0 − β̂1xi and (β̂0, β̂1) is
obtained by solving the following estimating
equation:∑

i∈A
π−1
i (yi − β0 − β1xi)(1, xi)T = 0.

The full sample estimator serves as a benchmark
for comparison.

(3) The PFI estimator of Kim (2011) assuming
yi�xi ∼ N(β0 + β1xi, σ 2) with imputation size
M = 100.

(4) The nonparametric fractional imputation (NFI)
estimator that uses the following nonparametric
fractional weights:

ω∗
i j = Kx

{
h−1
x (xi − x j)

}
∑

j∈A δ jKx
{
h−1
x (xi − x j)

}
for each unit i � A with δi = 0 and j �
A with δj = 1. We use the reference
bandwidth hx = 1.06N̂−1/5σ̂x with σ̂x =
{(N̂ − 1)−1 ∑

i∈A π−1
i (xi − μ̂x)

2}1/2, μ̂x =
N̂−1 ∑

i∈A π−1
i xi and N̂ = ∑

i∈A π−1
i . A

Gaussian kernel density function Kx(t) =
(2π)−1/2exp ( − t2/2) has also been used.

(5) The stochastic regression imputation (SRI) esti-
mator assuming the following model: yi = β0 +
β1xi + ϵi with E(ϵi) = 0 and V(ϵi) = σ 2.

(6) The proposed SFI estimator θ̂SFI.

From the Monte Carlo sample of size B = 2000,
Monte Carlo bias, standard error and root mean
squared error (RMSE) are computed for each point
estimator. The results are presented in Table 1. Under
(E1) and (E2), the CC estimators perform worst since
the response mechanism is not missing completely at
random (MCAR). Unless the response mechanism is
MCAR, the CC estimator is biased. The FULL estima-
tors always perform best since they assume no miss-
ing values and use moment condition (1). Under dis-
tribution (E1), the SFI and PFI estimators have similar
performances. Among the three imputation estimators,
the NFI and SFI estimators perform worst in terms of
RMSE for all scenarios since they used less information.

Table . The Monte Carlo bias (× −), standard error (SE) (×
−) and root mean squared error (RMSE) (× −) for four dif-
ferent methods with two error distributions in Simulation one.

(E) (E)

Par Method Bias SE RMSE Bias SE RMSE

E(y) CC . . . . . .
FULL . . . . . .
PFI − . . . . . .
NFI . . . . . .
SRI − . . . . . .
SFI − . . . . . .

Pr(y< ) CC − . . . − . . .
FULL . . . . . .
PFI . . . − . . .
NFI − . . . − . . .
SRI . . . − . . .
SFI . . . . . .

Quantile CC . . . . . .
FULL . . . . . .
PFI − . . . . . .
NFI − . . . . . .
SRI − . . . . . .
SFI − . . . . . .
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Under model (E2), the SFI estimator shows neg-
ligible bias for all parameters, but the PFI estimator
has non-negligible bias for estimating proportion and
quantile which is due to themisspecification of the error
distribution. The NFI and SRI estimators are not as effi-
cient as the SFI estimator in terms of bias and variance.
The SFI estimator outperforms PFI, NFI and SRI esti-
mators in terms of RMSE. The overall results indicate
the robustness of SFI. For variance estimation, we com-
puted the relative bias based on the Taylor linearisation
and replication methods, respectively. All the relative
bias are below 7%. In addition, we calculate the Monte
Carlo coverage rate for the 95% confidence intervals.
Under model (E1), the coverage rates are 94.8%, 93.4%
and 95.0% for estimating mean, proportion and quan-
tile, respectively, by using Taylor method, and 94.9%,
93.6% and 95.1% by using replication method. The
results under model (E2) are similar and the coverage
rates are close to the nominal rate.

6.2. Simulation two

In the second simulation study, we use 2013–2014
U.S. National Health Examination and Nutrition Sur-
vey (NHANES) data as a pseudo finite population.
Suppose the study variable is systolic blood pressure
(BPXSY1) and the covariate variable is body mass
index (BMXBMI). Keeping only the cases where both
BPXSY1 and BMXBMI are greater than zero, the
pseudofinite population eventually contains 7104 cases.
The scatter plot of BPXSY1 versus BMXBMI is pre-
sented in Figure 1. We assume that BPXSY1 is roughly
linear with respect to BMXBMI. After performing

linear regression of BPXSY1 versus BMXBMI, the QQ
plot of residuals and residuals vs. fitted values plot are
presented in Figure 2. The residual plots suggest devi-
ation from normality. The p value from Anderson–
Darling test for normality is less than 2.2 × 10−16. We
first generate response indicators δi, i = 1, 2, .… , 7104
from the following logistic regression model:

Pr(δi = 1|BMXBMIi)

= exp
{
1 − 0.1 log(BMXBMIi)

}
1 + exp

{
1 − 0.1 log(BMXBMIi)

} .

The response rate is around 60%. Then given the pop-
ulation of (BPXSY1i, BMXBMIi, δi), B = 2000 Monte
Carlo samples are generated by simple random sam-
pling with sample size n= 200. Assume that the param-
eters of interest are

(Mean). Finite population mean of BPXSY1, which is θm
= 118.056.

(Prop1). Finite population proportion one of BPXSY1:

θp1 = 1
N

N∑
i=1

I(BPXSY1i < 80) = 0.0008.

(Prop2). Finite population proportion two of BPXSY1:

θp2 = 1
N

N∑
i=1

I(BPXSY1i < 120) = 0.6017.

(Prop3). Finite population proportion three of BPXSY1:

θp3 = 1
N

N∑
i=1

I(BPXSY1i < 160) = 0.9711.
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Figure . Scatter plot of BPXSY vs. BMXBMI.
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Figure . QQ stands for quantile quantile plot (left panel) and residual vs. fitted value plot (right panel).

Table . The Monte Carlo bias (× −), standard error (SE)
(× −) and root mean squared error (RMSE) (× −) for four
different methods and four parameters.

Par Method Bias SE RMSE

Mean COM − . . .
PFI − . . .
NFI − . . .
SRI . . .
SFI − . . .

Prop COM . . .
PFI . . .
NFI . . .
SRI . . .
SFI . . .

Prop COM . . .
PFI − . . .
NFI − . . .
SRI . . .
SFI . . .

Prop COM . . .
PFI . . .
NFI . . .
SRI − . . .
SFI . . .

We consider the same PFI, NFI, SRI and SFI estima-
tors as discussed in Simulation one. The Monte Carlo
bias, standard error and RMSE are presented in Table 2.
For the populationmean, PFI and SFI perform similarly
and the NFI estimator has slightly larger bias and stan-
dard error. SRI has comparable bias as PFI and SFI, but it
has larger SE, as expected. For population proportions,
the PFI estimator has substantially larger bias than NFI,
SRI and SFI which may be due to the misspecifica-
tion of error distributions. The NFI and SRI estimators
have larger standard errors than PFI and SFI estimators
since the nonparametric methods are not as efficient as
parametric or semiparametric methods and stochastic

imputation will produce larger variance. Overall, SFI
estimator performs the best in terms of both bias and
variance.

7. Conclusions

Regression imputation is often used to handle item
non-response in survey sampling. Unlike the usual
regression imputation, the proposed SFI offers valid
inference for a wide set of parameters such as pop-
ulation proportions and quantiles. Besides, only the
first moment assumption is needed to obtain a con-
sistent SFI estimator of the parameter, which leads to
robust parameter estimation. The proposed SFImethod
shows good performances in the limited simulation
studies.

The proposed method has several possible future
research topics. First, instead of assuming ignorable
response mechanism, we can consider an extension to
non-ignorable non-response (Kim&Yu, 2011) using an
exponential tilting response model. Also, extension of
the SFI for handling multivariate missing data will be
an important future research topic.
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Appendices

Appendix 1. Proof of Theorem 3.1

We first assume the following regularity conditions:

(C1) The finite population is a random sample
from the semiparametric regression model
in Equation (1). The regression function
m(x; β) in Equation (1) has a continuous
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first derivative ∂m(x; β)/∂β in the neighbour-
hood of the true value β0 and E

{
m2(x; β)

}
and E {∂m(x; β)/∂β} are bounded in this
neighbourhood.

(C2) Function h(x; β) in the estimating function
Ûβ (β) in Equation (8) has continuous first
derivative ∂h(x; β)/∂β in the neighbourhood
of the true value β0, and ||h(x; β)||2 and
||∂h(x; β)/∂β|| are bounded by some integrable
function G1(x) in the neighbourhood.

(C3) The model error term in Equation (1) satisfies
E(ϵ2) < � and max {||ϵi||: i � A} = op(n1/2).

(C4) Let Uβ (β) = E
[
δ
{
y − m (x; β)

}
h (x; β)

]
,

assume Ûβ (β) converges to Uβ (β) in
probability uniformly in the neighbour-
hood of the true value β0. For every
a > 0, infβ:||β−β0||≥a ||Uβ (β) || > 0 =
||Uβ

(
β0

) ||.
(C5) ∂Ûβ (β) /∂β converges to continuous nonsin-

gular derivative ∂Uβ (β) /∂β in probability uni-
formly in the neighbourhood of the true value
β0.

(C6)
√
nÛβ

(
β0

) L−→ N(0, 
β ), as n,N→ �, where

β = V {√nÛβ

(
β0

)} denotes the design model
variance, the variance under the joint distribu-
tion of the super-populationmodel and the sam-
pling mechanism.

(C7) Function U (η; x, y) has continuous partial
derivatives ∂U (η; x, y)/∂η and ∂U (η; x, y)/∂y
in the neighbourhood of the true value η0
and ||U (η; x, y)||2, ||∂U (η; x, y)/∂η|| and
||∂U (η; x, y)/∂y|| are bounded by some inte-
grable function G2(x, y) in the neighbourhood.

(C8) Let Ûn (η) = N−1 ∑
i∈A π−1

i U (η; xi, yi)
and U (η) = E{U (η; xi, yi)}, then Ûn (η)

converges toU(η) in probability uniformly in the
neighbourhood of the true value η0. For every a
> 0, infη:||η−η0||≥a ||U (η) || > 0 = ||U (η0) ||.

(C9) ∂Ûn (η) /∂η converges to continuous nonsin-
gular derivative �U(η)/�η in probability uni-
formly in the neighbourhood of the true value
η0.

(C10)
√
nÛn (η0)

L−→ N(0, 
η), as n, N → �, where

η = V {√nÛn (η0)} denotes the design model
variance.

(C11) The first-order inclusion probabilities satisfy
KL � Nn−1π i � KU for all i, where KL and KU
are positive constants.

(C12) maxi, j |πi jπ
−1
i π−1

j − 1| = o(1) for any i, j= 1, 2,
… , N and i 	 j, where π ij are the second-order
inclusion probability of unit i and unit j in the
population.

(C13) The response probability satisfies Equation (2)
and a < Pr(δi = 1|xi) ≤ 1 for i= 1, 2, … ,N for
some fixed a > 0.

Conditions (C1)–(C2) are the model assumptions
about the finite population. Condition (C3) is used
to control the asymptotic order of λ̂ in Equation
(10). Chen and Sitter (1999, Appendix 2) argued that
(C3) holds for common unequal probability sampling
designs. Conditions (C4) and (C8) ensure the con-
sistency of β̂ and η̂, respectively. Conditions (C5),
(C6), (C9) and (C10) are the regularity conditions
that ensure asymptotic normality of β̂ and η̂. Van
der Vaart (1998, Ch. 5) used similar regularity con-
ditions. Specifically, Conditions (C6) and (C10) have
been used in many existing literature such as Wu and
Rao (2006), Wang and Opsomer (2011), among oth-
ers. Hajek (1960, 1964) established the asymptotic nor-
mality condition under simple random sampling and
rejective sampling with unequal selection probabilities.
Vísĕk (1979) established the asymptotic normality for
theHorvitz–Thompson estimator underRao-Sampford
sampling designs. Condition (C7) controls the smooth-
ness and asymptotic behaviour of estimating function
U(η; x, y). Conditions (C11) and (C12) are the stan-
dard assumptions for the sampling designs. Similar con-
ditions have been used in Isaki and Fuller (1982) and
Wang and Opsomer (2011). Condition (C13) controls
the behaviour of the individual response probability.
According to assumption (C3) and by using similar
techniques as Wu and Rao (2006), we can show that
λ̂ = Op(n−1/2). Assumption (C4) and Taylor linearisa-
tion can establish

0 = Ûβ(β̂)

= Ûβ(β0) +
∂Ûβ(β0)

∂β

(
β̂ − β0

)
+ op(n−1/2).

Therefore,

β̂ − β0 = −
⎡
⎣E

⎧⎨
⎩

∂Ûβ(β0)

∂β

⎫⎬
⎭

⎤
⎦

−1

Ûβ(β0) + op(n−1/2)

=
[
E
{
δh(x; β0)

∂m(x; β0)

∂β

}]−1

× 1
N

∑
i∈A

π−1
i δiεih(xi; β0)

+ op(n−1/2). (A1)

We know that λ̂ is the solution of the following estimat-
ing equation:

Ûλ(λ, β̂) = 1
N

∑
i∈A

δiπ
−1
i

ε̂i

1 + λε̂i
= 0.

In addition, we have

∂Ûλ(0, β0)

∂λ
= − 1

N

∑
i∈A

δiπ
−1
i ε2i = −E(δ)σ 2 + op(1),

(A2)
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and

∂Ûλ(0, β0)

∂β
= − 1

N

∑
i∈A

δi

πi

∂m(xi; β0)

∂β

= −E
{

∂m(x; β0)

∂β
|δ = 1

}
E(δ)

+ op(1). (A3)

Based on Equations (A2) and (A3), by using Taylor lin-
earisation, we have

0 = Ûλ(λ̂, β̂)

= Ûλ(0, β0) + ∂Ûλ(0, β0)

∂λ
λ̂ + ∂Ûλ(0, β0)

∂β
(β̂ − β0)

+ op(n−1/2). (A4)

According to Equations (A1)–(A4) and after some alge-
bra, it can be shown that

λ̂ = 1
σ 2

1
N

∑
i∈A

π−1
i

δi

E(δ)
εi − 1

σ 2E
{

∂m(x; β0)

∂β
|δ = 1

}

×
[
E
{
h(x; β0)

∂m(x; β0)

∂β
|δ = 1

}]−1

× 1
N

∑
i∈A

π−1
i

δi

E(δ)
εih(xi; β0)

+ op(n−1/2), (A5)

where σ 2 is the variance for the residuals. With condi-
tion (C6), it can be shown that η̂ = η0 + op(1). In addi-
tion, we have

∂Ûη(η0, β0, 0)
∂λ

= − 1
N

∑
i∈A

π−1
i (1 − δi)

∑
j∈A

δ jπ
−1
j∑

k∈A δkπ
−1
k

ε j

×U (η; xi, y∗( j)
i (β0))

= − {E (δ)}−1 E
{
(1 − δi) δ jε jU (η0; xi, y∗( j)

i (β0))
}

+ op(1)
= −E

{
εŪm(ε)

} + op(1), (A6)

∂Ûη(η0, β0, 0)
∂β

= 1
N

∑
i∈A

(1 − δi)

πi

∑
j∈A

δ jπ
−1
j∑

k∈A δkπ
−1
k

∂U (η0; xi, yi)
∂y

×
{

∂m(xi; β0)

∂β
− ∂m(x j; β0)

∂β

}

= {E(δ)}−1 E
[

(1 − δi) δ j
∂U (η0; xi, yi)

∂y

{
∂m(xi; β0)

∂β

− ∂m(x j; β0)

∂β

}]
+ op(1)

= D + op(1), (A7)

and

∂Ûη(η0, β0, 0)
∂η

= 1
N

∑
i∈A

δi

πi

∂U (η0; xi, yi)
∂η

+ 1
N

∑
i∈A

(1 − δi)

πi

∑
j∈A

δ jπ
−1
j∑

k∈A δkπ
−1
k

∂U (η0; xi, y∗( j)
i (β0))

∂η

= E
{
δ
∂U (η0; x, y)

∂η

}
+ E

{
(1 − δ)

∂U (η0; x, y)
∂η

}
+ op(1)

= E
{

∂U (η0; x, y)
∂η

}
+ op(1), (A8)

where Ūm(ε) = E{(1 − δ)U (η0; x, y)|ε} and

D = E
(

(1 − δ)U (η0; x, y)
[
∂m(x; β0)

∂β

−E
{

∂m(x; β0)

∂β
|δ = 1

}]
l(ε)

)
,

with l(ε) = − f ′
(ε) f−1(ε). Define

S = 1
N(N − 1)E(δ)

∑
i∈A

ωi(1 − δi)

×
∑

j∈A, j �=i

ω jδ jU
(
η0; xi, y∗( j)

i (β0)
)

,

then by using Taylor linearisation,

Ûη(η0, β0, 0) = 1
N

∑
i∈A

π−1
i δiU (η0; xi, yi) + E(S) + S

−E(S) − E(S)
E(δ)

{
δ̄N − E(δ)

} + op(n−1/2)

= 1
N

∑
i∈A

π−1
i δiU (η0; xi, yi) + S

− E(S)
E(δ)

{
δ̄N − E(δ)

} + op(n−1/2),

with E(S) = E{(1 − δ)U (η0; x, y)} and δ̄N =
N−1 ∑

i∈A δiπ
−1
i . According to the Hoeffding decom-

position,

S = 1
N(N − 1)E(δ)

∑
i∈A

π−1
i (1 − δi)

×
∑

j∈A, j �=i

π−1
j δ jU

{
η0; xi, y∗( j)

i (β0)
}

= 1
N

∑
i∈A

[
π−1
i (1 − δi)E

{
U (η0; xi, yi)|xi

}

+ π−1
i

δi

E(δ)
E
{
(1 − δi)U (η0; xi, yi)|εi

} ]
−E(S) + op(n−1/2).

Therefore,

Ûη(η0,β0, 0) = 1
N

∑
i∈A

π−1
i δiU (η0; xi, yi)

+ 1
N

∑
i∈A

[π−1
i (1 − δi)E{U (η0; xi, yi)|xi}



STATISTICAL THEORY AND RELATED FIELDS 81

+ π−1
i

δi

E(δ)
E
{
(1 − δi)U (η0; xi, yi)|εi

}
]

− E(S)
E(δ)

δ̄N + op(n−1/2). (A9)

According to Taylor linearisation, we have

0 = Ûη(η̂, β̂, λ̂)

= Ûη(η0, β0, 0) + ∂Ûη(η0, β0, 0)
∂η

(η̂ − η0)

+ ∂Ûη(η0, β0, 0)
∂β

(β̂ − β0)

+ ∂Ûη(η0, β0, 0)
∂λ

λ̂ + op(n−1/2). (A10)

By Equations (A1), (A5)–(A10), after some algebra, we
can show that

η̂ − η0 = −
{
E
(

∂U (η0; x, y)
∂η

)}−1

×
(
1
N

∑
i∈A

π−1
i ζi

)
+ op(n−1/2),

where ζ i is defined in Equation (12) of Theorem 3.1.

Appendix 2. Proof of Theorem 4.1

We replace regularity conditions (C7)–(C10) in
Appendix 1 with the following regularity conditions:

(C14) Ũn (θ ) converges to Ũ (θ ) in probability uni-
formly in the neighbourhood of the true value
θ0. For every a > 0, infθ :||θ−θ0 ||≥a ||Ũ (θ )||>0=||Ũ (θ0)||.

(C15) There exists a measurable function L(δ, x, y)
with E

{
L2(δ, x, y)

}
< ∞ and for every θ1

and θ2 in the neighbourhood of the true
value θ0, ||Ũ (

θ1; δ, x, y
) − Ũ

(
θ2; δ, x, y

) || ≤
L(δ, x, y)||θ1 − θ2||.

(C16) Assume that E{Ũ 2 (θ0; δ, x, y
)} < ∞ and

E{Ũ (
θ; δ, x, y

)} has continuous and invert-
ible first derivatives with respect to θ and the
corresponding first derivatives are bounded by
some integrable function in the neighbourhood
of the true value θ0.

(C17)
√
nŨn (θ0)

L−→ N(0, 
θ ), as n, N → �, where

θ = V {√nŨn (θ0)} denotes the design model
variance.

Similar to Conditions (C4) and (C8), Condition
(C14) ensures the consistency of proposed estimator.
Conditions (C15) and (C16) are required to derive
asymptotic expansion of proposed estimator. See Van
der Vaart (1998, Ch. 5) for more details of those
conditions. Similar to Conditions (C6) and (C10),
Condition (C17) is used to derive the central limit
theory.

The proof of the consistency of β̂ and η̂ is similar
to the relevant proof in Theorem 3.1. According to the
regularity conditions (C10)–(C12) and by using similar
techniques as that of Theorem 19.26 of Van der Vaart
(1998), we can show that

0 = Ûη(η̂, β̂, λ̂)

= Ûη(η0, β0, 0) + ∂Ûη(η0, β0, 0)
∂λ

λ̂

+ ∂E{Ûη(η0, β0, 0)}
∂β

(
β̂ − β0

)

+∂E{Ûη(η0, β0, 0)}
∂η

(
η̂ − η0

) + op(n−1/2). (B1)

In addition, we have

∂E{Ûη(η0, β0, 0)}
∂η

= ∂E
{
δU (η0; x, y)

}
∂η

+ 1
E(δ)

∂E
{
(1 − δi)δ jUη(η0; xi, yi)

}
∂η

+ op(1)

= ∂U (η0; x, y)
∂η

+ op(1), (B2)

and

∂E{Ûη(η0, β0, 0)}
∂β

= D∗ + op(1), (B3)

where D∗ is defined in Theorem 4.1. According
to Equations (A1), (A5), (A6), (A9), (B1)–(B3),
we have

η̂SFI − η0 = −
[

∂E
{
U (η0; x, y)

}
∂η

]−1

×
(
1
N

∑
i∈A

π−1
i ζi

)
+ op(n−1/2),

where ζ i is defined in Theorem 4.1.
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