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ABSTRACT
Monte Carlo and quasi-Monte Carlomethods arewidely used in scientific studies. As quasi-Monte
Carlo simulations have advantage over ordinaryMonte Carlomethods, this paper proposes a new
quasi-Monte Carlo method to simulate Brownian sheet via its Karhunen–Loéve expansion. The
proposed new approach allocates quasi-random sequences for the simulation of random com-
ponents of the Karhunen–Loéve expansion by maximum reducing its variability. We apply the
quasi-MonteCarlo approach toanoptionpricingproblem for a class of interest ratemodelswhose
instantaneous forward rate driven by a different stochastic shock through Brownian sheet andwe
demonstrate the application with an empirical problem.

1. Introduction

Monte Carlo (MC) methods are widely used in mod-
ern complex scientific studies. One such application
is to price complex financial instruments in finance.
Since asset price can be expressed as the discounted
expected value of its future pay-off under a martingale
measure in the absence of arbitrage, the pricing prob-
lem can be reduced to computation of an expectation,
and MC methods are natural choices especially in the
case of evaluating expectation for complicated stochas-
tic process numerically. For estimating the expectation
byMC simulation, wemay obtain unbiasedMC estima-
tors of the expectation with variability σn−1/2, where
n is sample size of the simulation and σ is a constant
depending on the underlying problem. Variance reduc-
tion techniques such as antithetic method, control vari-
ates and importance sampling can reduce the constant
σ but not the n−1/2 dependence on the sample size.
Quasi-Monte Carlo (QMC) methods adopt determin-
istic low-discrepancy sequences, which are more uni-
formly distributed compared to the random sequences
in MC simulation. These quasi-random sequences are
usually generated in the unit d-dimensional hyper-
cube, Cd = [0, 1)d , and attempt to fill the hypercube
as evenly distributed as is mathematically possible.
Among them, the Halton sequence (Halton, 1960), the
Sobol’ sequence (Sobol’, 1967) and the Faure sequence
(Faure, 1982) are well-known ones. The major advan-
tage of QMC methods is that the QMC approach can
achieve a much faster convergence rate than the order
of n−1/2, which makes it very attractive in applications
like asset pricing where problems involve high dimen-
sions and require efficient simulation.

CONTACT Xinyu Song xsong@wisc.edu

This paper investigates the QMC simulation of
Brownian sheet and then studies its application to an
option pricing problem. We consider a class of inter-
est rate models proposed by Santa-Clara and Sornette
(2001) whose instantaneous forward rate driven by
a different stochastic shock through Brownian sheet.
Compared with the traditional HJM model by Heath,
Jarrow and Morton (1992), the new model has a much
richer class of term structure dynamics of interest
rates that allows capturing a larger volatility in mod-
elling of pricing contingent claims. As forward interest
rate curve simulation requires a simulation scheme of
Brownian sheet, we introduce a new QMC method
to simulate Brownian sheet via its Karhounen–Loéve
expansion. The proposed QMC approach allocates
quasi-random sequences for the simulation of random
components of the Karhounen–Loéve expansion by
maximum reducing its variability. We show that the
QMC simulations of Brownian sheet and the option
price have a great performance.

The rest of the paper is organised as follows.
Section 2 provides a review of quasi-random sequences
with their properties and applications in MC simula-
tion. Section 3 describes the interest rate models and
proposes QMC simulation of Brownian sheet. We also
present empirical applications considering valuation of
long bond futures contract traded on theChicagoBoard
of Trade (CBOT) in this section. Section 4 concludes the
paper.

2. Quasi-Monte Carlo method

Consider the problem of numerically computing a
high-dimensional integral,
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Figure . (a) Scatter plot of  pseudorandom numbers; (b) scatter plot of  Sobol’ numbers (one example of quasi-random
numbers).

μ =
∫
Cd

f (x) dx,

where x = (x1, . . . , xd ) and Cd = [0, 1)d . MC meth-
ods, as a useful tool, try to solve the integration problem
by computing the sample mean

Qn = 1
n

n∑
i=1

f (xi) ,

where x1, . . . , xn are independent and identically dis-
tributed random vectors drawn from the uniform dis-
tribution overCd . We focus on the simulation problem
for uniformly distributed random vectors since non-
uniformly distributed random vectors can be sampled
by applying the inverse cumulative distribution func-
tion or via other transformation algorithms, such as
acceptance–rejection method. MC methods are simple
to implement, and in many practical problems are the
only known computational method of solution. Despite
the advantages of MCmethods, their slow convergence
rate, σ ( f )n−1/2, is a problem, where σ ( f ) depends
on f . Even with the help of variance reduction tech-
niques such as antithetic method, control variates and
importance sampling, only the constant term, σ ( f ),
can be lowered. One alternative approach to improve
the convergence rate of MC methods is QMC meth-
ods. QMC methods adopt low-discrepancy sequences
(or quasi-random numbers), instead of randomly dis-
tributed sequences for x1, . . . , xn. These quasi-random
sequences are usually generated in the d-dimensional
unit hypercube, Cd = [0.1)d , and attempt to fill
the hypercube as evenly distributed as is mathemati-
cally possible. Figure 1 offers a visual comparison of
pseudo-random numbers and quasi-random numbers.
It demonstrates that pseudo-random numbers tend to

cluster whereas quasi-random numbers are more uni-
formly distributed.

2.1 Low-discrepancy sequence

First we define discrepancy (Morokoff & Caisch, 1995),
a measure for lack of uniformity given a set of points
and low-discrepancy sequences (Niederreiter, 1988).

Definition 2.1: For the sequence xi ofN points, letQ be
a cuboid contained in [0, 1)d and let m(Q) denote the
volume of the cuboid. Discrepancy DN of the sequence
is then defined as

DN = sup
Q∈[0,1)d

∣∣∣∣#of points in Q
N

− m (Q)

∣∣∣∣ ,
where N is the number of points in the sequence. This
is the common definition of discrepancy for studying
low-discrepancy sequences and intuitively, it compares
the difference between the ratio of generated points lie
within a selected rectangle Q to total generated points
N, with the ratio of volume for cuboid Q to [0, 1)d .

Definition 2.2: Given any N > 1, if the first N points
of a sequence xi satisfies

DN ≤ cd
(logN)d

N
,

where cd is a constant depending only on the dimension
d, then the sequence xi is a low-discrepancy sequence.
In this paper, we denote by cd a generic constant
depending only on the dimension d whose value may
change from appearance to appearance. The three basic
quasi-random (low-discrepancy) sequences that have
been often used in literature are Halton, Sobol’ and
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Faure sequences (Morokoff & Caisch, 1995; Niederre-
iter, 1973; Niederreiter, 1988; Niederreiter, 1992). They
are low-discrepancy sequences with good asymptotic
behaviours, i.e. smaller cd , and are easy for implemen-
tation.

.. Halton sequence
The one-dimensional Halton sequence (Halton, 1960;
Morokoff & Caisch, 1995 is generated by using a prime
p and expanding integers 0, 1, 2, . . . , into base p nota-
tion. Specifically, nth termof the sequence is defined as

zn = a0
p

+ a1
p2

+ a2
p3

+ · · · + am
pm+1 ,

where the ais are integers from the base p expansion of
n − 1,

[n − 1]p = amam−1 · · · · · · a1a0,

with 0 ≤ ai < p. For example, assume the base p = 2,
the one-dimensional Halton sequence follows to be

0,
1
2
,
1
4
,
3
4
,
1
8
,
5
8
,
3
8
,
7
8
,
1
16

,
9
16

, · · ·

For the generation of d-dimensional Halton
sequence, the d one-dimensional Halton sequences
with d different primes are generated and paired. In
a normal case, first d primes are selected to be the d
different primes.

.. Sobol’ sequence
Sobol’ sequence only uses p = 2. It is generated with
the first 2m (m = 0, 1, 2, . . .) terms for each dimension,
representing a permutation of the Halton sequence’s
corresponding terms with prime base of 2.

.. Faure sequence
Faure sequence uses the smallest prime greater than
or equal to the dimension as the prime base p. The
Faure sequence is then generated with the first pm

(m = 0, 1, 2, . . .) terms for each dimension, represent-
ing a permutation of the corresponding terms from the
Halton sequence with prime base p.

2.2 Convergence rate

It has been shown in Niederreiter (1978 , 1988) that dis-
crepancy DN for Halton, Sobol’ and Faure satisfies the
following property:

DN ≤ cd
(logN)d

N
+ O

(
(logN)d−1

N

)
,

where cd is a constant depending on dimension d only.
It is important to state the upper bound for integration

error when quasi-random sequence is applied to multi-
dimensional integral computation problem. Set

I
(
f
) ≡ μ =

∫
Cd

f (x) dx, x = (x1, . . . , xd ),

(1)

where Cd = [0, 1)d , the following Koksma–Hlawka
inequality gives the bounds of integration error.

.. Koksma–Hlawka inequality
For any sequence xi and any function f with variation in
the sense ofHardy–Krause,V ( f ), bounded, there exists
an upper bound,

∣∣∣∣∣ 1N
N∑
i=1

f (xi) − I
(
f
)∣∣∣∣∣ ≤ V

(
f
)
DN, (2)

where DN is the discrepancy for a given set of points
x1, . . . , xN . With the application of quasi-random
sequences, one can expect to achieve an upper bound
for integration error as

∣∣∣∣∣ 1N
N∑
i=1

f (xi) − I
(
f
)∣∣∣∣∣ ≤ V

(
f
)
DN

≤ V
(
f
)
cd

(logN)d

N
+ O

(
(logN)d−1

N

)
,

where points x1, . . . , xN belong to a quasi-random
sequence (Niederreiter, 1992). Therefore, asymptoti-
cally, QMC provides a faster convergence rate than that
of MC methods, σ ( f )N−1/2. However, when d is large,
(logN)d/N is considerably larger than N−1/2 unless N
is large. Therefore, it is widely believed that QMC per-
forms better than MC when dimension d ≤ 15 (Wang
& Fang, 2003). Besides the theoretical upper bound,
many numerical examples and experiments have shown
that QMC methods converge much faster than MC
methods in real applications (Acworth, Broadie &
Glasserman, 1996; Morokoff & Caisch, 1995). Numer-
ical experiments in Morokoff and Caisch (1995)) show
that in one-dimensional integration problems, error is
bounded by c1N−1 for QMC methods and is bounded
by c2N−1/2 for MC methods. For multi-dimensional
integration problems or with less smooth functions f ,
QMCmethods perform at a convergence rate of c1N−λ,
where 1

2 ≤ λ ≤ 1, still better than that of MC methods.
Moreover, it is straightforward to combine variance

reduction techniques with QMC methods in order to
increase computation efficiency. Acworth, Broadie and
Glasserman (1996) present an example of using prin-
cipal components construction technique along with
Sobol’ sequences to generate far more accurate results
compared with other popular MC methods.
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3. Interest rate model with stochastic string
shocks

In this section, we demonstrate valuation of financial
assets, such as options, through QMC methods. As
option pricing requires a stochastic model for under-
lying asset, e.g., bond, in Section 3.1, we introduce a
bond pricing model to describe the dynamic evolution
of bond price over time. The key factor in bond pric-
ing model is instantaneous forward rate, the interest
rate at a future time. Traditional bond pricing mod-
els such as HJM model proposed by Heath, et al.
(1992) have term structures sharing the same set of
shocks that affects all forward interest rates. Our intro-
ducedmodel, interest ratemodel with stochastic strings
(Santa-Clara & Sornette, 2001), is capable of generating
much richer class of term structure dynamics of inter-
est rates, by driving each instantaneous forward rate
with a distinct stochastic shock and therefore, is capa-
ble of capturing a larger volatility in the modelling of
pricing contingent claims. In Section 3.2, we discuss
simulation for forward interest rate curves based on
model introduced in Section 3.1 via QMC method. In
Section 3.3, we apply QMC simulation method for
interest rate model with stochastic string shocks to an
empirical option valuation problem.

3.1 Interest ratemodel with stochastic string
shocks

First we give a brief description for the interest rate
modelwith stochastic string shocks. Assume at any time
t , riskless discount bonds of all maturity dates s trade in
an economy and let P(t, s) denote the time t price of the
smaturity bond. Assume

P (t, s) > 0, P (s, s) = 1,

and instantaneous forward rates at time t for all times
to maturity x > 0,

f (t, x) = −∂ logP (t, t + x)
∂x

.

f (t, x) is the rate that can be contracted at time t for
instantaneous borrowing or lending at time t + x. The
initial forward rate f (0, x) is assumed to be continuous
in x. The spot interest rate r(t ) at time t is the instan-
taneous forward rate at time t with time to maturity 0,
that is, r(t ) = f (t, 0). Forward rates fully represent the
information in the price of all zero coupon bonds. In
fact, with the instantaneous forward rates for all times
to maturity between 0 and time s − t , the price at time
t of a bond with maturity s can be obtained by

P (t, s) = exp
{
−

∫ s−t

0
f (t, x) dx

}
.

Thus we can naturally model forward rates given a
fixed time to maturity (Santa-Clara & Sornette, 2001)

with stochastic string shock model

dt f (t, x) =
[

∂ f (t, x)
∂x

+ σ (t, x)

(∫ x

0
c
(
x, y

)

× σ (t, y)dy +
∫ ∞

0
c
(
x, y

)
φ

(
t, y

)
dy

)]
dt

+ σ (t, x) dtZ (t, x) ,

where Z(t, x) is a stochastic string that is assumed to be
continuous in x for all t and in t for all x, which further
satisfies

E [dtZ (t, x)] = 0, Var [dtZ (t, x)] = dt,
c
(
x, y

) = corr
[
dtZ (t, x) , dtZ

(
t, y

)]
.

φ(t, y) is the market price of risk which could in prin-
ciple be different for each shock to curve (for simplicity,
we may take φ(t, y) = φ(t )). Define

A (t, x) = σ (t, x)

(∫ x

0
c
(
x, y

)
σ

(
t, y

)
dy

+
∫ ∞

0
c
(
x, y

)
φ

(
t, y

)
dy

)
.

Then, f (t, x) can be solved as

f (t, x) = f (0, t + x) +
∫ t

0
A (u, t + x − u) du

+
∫ t

0
σ (u, t + x − u) duZ (u, t + x − u) .

This is a forward rate model driven by the stochas-
tic string Z(t, x), which is a two-dimensional stochas-
tic process depending on time t and time to maturity x.
dtZ(t, x) denotes a stochastic perturbation to the for-
ward rate curve at time t , with different magnitudes for
forward rates with different times to maturity. dt means
that the increment is taken with respect to time.

.. Stochastic strings constructed from Brownian
sheet
Denote by W (t, x) a standard Brownian sheet, and
define the corresponding white noise

δ (t, x) = ∂2W (t, x)
∂t∂x

.a

It follows that

Cov
[
W (t, x) ,W

(
s, y

)] = min (t, s)min(x, y).

Given any continuous function h(x), we define the first
kind of stochastic string as

dtZ (t, x) = dt
∫ h(x)

0

1√
h (x)

δ (t, v ) dv,

Z (t, x) = Z (0, x) +
∫ t

0
du

∫ h(x)

0

1√
h (x)

δ (u, v ) dv

= Z (0, x) + W (t, h (x))√
h (x)

,
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with

Var [dtZ (t, x)] = dt,
c
(
x, y

) = corr
[
dtZ (t, x) , dtZ

(
t, y

)]
=

√
min

(
h (x) , h

(
y
))

max
(
h (x) , h

(
y
)) .

Wedefine the second kind of stochastic string for any
g(u, v ) with

∫ ∞
0 [g(u, v )]2dv = 1 as

dtZ (t, x) = dt
∫ ∞

0
g (x, u) δ (t, u) du,

Z (t, x) = Z (0, x) +
∫ t

0
du

∫ ∞

0
g (x, v ) δ (u, v ) dv,

and

c
(
x, y

) =
∫ ∞

0
g (x, u) g

(
u, y

)
du.

Important examples belonging to the two kinds of
stochastic string defined are summarised below:

Example 1. Brownian sheet Z(t, x) = W (t, x) with

c
(
x, y

) = min
(
x, y

)
max

(
x, y

) .

Example 2. Modified Brownian sheet. Take h(x) = x,
we have

dtZ (t, x) = dt
∫ x

0

1
x
dvW (t, v ) ,

Z (t, x) = Z (0, x) +
∫ t

0
du

∫ x

0

1
x
dvW (u, v )

and

c
(
x, y

) =
√
min

(
x, y

)
max

(
x, y

) .

Example 3. The Ornstein–Uhlenbeck (O–U) sheet
U (t, x).

U (t, x) = U (0, x) + exp (−λx)
∫ x

0
exp (λv ) dv

×
∫ t

0
δ (u, v ) du,

with

Cov
[
U (t, x) ,U

(
s, y

)] = min (t, s) exp
(−λ

∣∣x − y
∣∣) ,

and

c
(
x, y

) = exp
(−λ

∣∣x − y
∣∣) .

Example 4. Integrated O–U sheet.

V (t, x) = √
2λ exp (−λx)

∫ x

0
exp (λu)U (t, u) du,

and

c
(
x, y

) = (
1 + λ

∣∣x − y
∣∣) exp (−λ

∣∣x − y
∣∣) .

Example 5. String with term structure of correlations.
Take h(x) = exp(2λ

√
x) to produce a stochastic string

of the first kind with

Z (t, x) = Z (0, x) + exp
(−λ

√
x
) ∫ x

0
exp

(
λ
√

v
)
dv

×
∫ t

0
δ (u, v ) du,

and

c
(
x, y

) = exp
(−λ

∣∣√x − √
y
∣∣) .

Example 6. Take [g(x, ·)]2 to be the density of N(x, 1)
and obtain a stochastic string of the second kind with

Z (t, x) = Z (0, x) +
∫ t

0
du

∫ ∞

0
g (x, v ) δ (u, v ) dv,

and

c
(
x, y

) = exp
(

−|x − y|2
8

)
.

Similarly, take [g(x, ·)]2 to be the density ofN(0, x2)
and obtain a stochastic string with.

c
(
x, y

) =
√

2xy
x2 + y2

.

3.2 QMC simulations of Brownian sheet and
forward curve

In Section 3.1, we have reviewed a bond pricing
model, the interest rate model with stochastic string
shocks, which is a continuous stochastic diffusion pro-
cess driven by a two-dimensional stochastic process
depending both on time and time to maturity that is
constructed from Brownian sheet. Simulation of bond
price based on introduced model therefore requires
discretisation of the continuous stochastic process and
extension of QMC method for two-dimensional appli-
cations. In Section 3.2.1, we present discretised version
for forward interest rate curves and in Section 3.2.2,
we propose a new QMC method to simulate Brownian
sheet via Karhunen–Loéve expansion (Mallat, 2008).

.. Forward curve simulation
To simulate the evolution of the forward curves, we
need to discretise the process both in time and time
to maturity. Let � t be the length of discretised time
interval and � x be the length of the discretised time-
to-maturity interval.

f (t + �t, x) = f (t, x) + f (t, x + �x) − f (t, x)
�x

�t

+ σ (t, x)
(∫ x

0
c
(
x, y

)
σ

(
t, y

)
dy

)
�t

+ σ (t, x) [Z (t + �t, x) − Z (t, x)] .
(3)
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Suppose that we have simulatedW (t, x) at (t, x) =
(i/n, j/n) for i, j = 1, . . . , n. Given

Z (t, x) = Z (0, x) + 1
h (x)

∫ x

0
h (v ) dv

∫ t

0
δ (u, v ) du,

we simulate Z(t, x) by

Z (tk, xm) = Z (0, xm) + 1
h (xm)

m∑
j=1

h
(
x j

)
× [

W
(
tk, x j

) −W
(
tk, x j−1

)]
. (4)

On the other hand, given

Z (t, x) = Z (0, x) +
∫ x

0
g (x, v ) dv

∫ t

0
δ (u, v ) du,

Z(t, x) can be simulated via

Z (tk, xm) = Z (0, xm) +
m∑
j=1

g
(
xm, x j

)
× [

W
(
tk, x j

) −W
(
tk, x j−1

)]
.

.. QMC simulation by Karhunen–Loéve
expansion
As the forward curve simulation requires a simulation
scheme of Brownian sheet, we propose a new QMC
method to simulate Brownian sheet via its Karhunen–
Loéve expansion (Mallat, 2008). As the Karhunen–
Loéve expansion decomposes Brownian sheet into ran-
dom components, which may be considered as an ana-
log of an infinite dimensional principal components
analysis. In Acworth, Broadie and Glasserman (1996),
the principal components QMC method is introduced
to allocate maximum variability to each initial portion
of driving sequence, and is argued to be the optimal
method when applied together with Sobol’ sequence.
Our proposal is to allocate maximum variability to
each initial portion of the random components in the
Karhounen–Loéve expansion in order to have a bet-
ter performance for the QMC approach than usual MC
methods.

The eigenvalues and eigenfunctions for the covari-
ance kernel of Brownian sheet∫ 1

0

∫ 1

0
min (t, s)min

(
x, y

)
ψ

(
s, y

)
dsdy = λψ (t, x)

are

λi j = 2
π2 (i − 1/2)

(
j − 1/2

) ,

ψi j (t, x) = sin
{(

i − 1
2

)
πt

}
sin

{(
j − 1

2

)
πx

}
,

where i, j = 1, 2, . . .. Thus, Wt,x has the Karhounen–
Loéve expansion

Wt,x =
∞∑
i=1

∞∑
j=1

λi jψi j (s, t )Zi j,

where Zi j are i.i.d. standard normal random vari-
ables. We rank λi j from the largest to the smallest.
First, since λi j = λ ji, (i, j) and ( j, i) have the same
rank; second, λi j decreases in both i and j. Given
i ≤ j, we find k = k(i, j) = (2i − 1) j − i + 1 such that
λ1k = λi j. Note k (i, i) = (2i − 1) i − i + 1 = 2i2 −
2i + 1 = 5, 13, 25, 41 for i = 2, 3, 4, 5. Our next step
is to insert (i, i) in (1, k, k, 1) right after k(i, i) and
then after every 2i − 1 number of (1, k, k, 1)’s, insert
(i, i + 1, i + 1, i), (i, i + 2, i + 2, i), etc.

More specifically, value for k has been obtained given
a set of i, j values as below:

i = 2, k = 3 j − 1, j = 2, 3, 4, 5, 6, k = 5, 8, 11, 14, 17;
i = 3, k = 5 j − 2, j = 3, 4, 5, 6, 7, k = 13, 18, 23, 28, 33;
i = 4, k = 7 j − 3, j = 4, 5, 6, 7, 8, k = 25, 32, 39, 46, 53;
i = 5, k = 9 j − 4, j = 5, 6, 7, 8, 9, k = 41, 50, 59, 68, 77.

Now for k = 1, 2, 3, . . ., line up all (1, k, k, 1):
(1, 1), (1, 2, 2, 1), (1, 3, 3, 1), . . .. Right after k(i, i) =
2i2 − 2i + 1 for i = 2, 3, . . ., insert (i, i) and once
(i, i) is inserted, after every 2i − 1 positions, insert
(i, i + 1, i + 1, i), (i, i + 2, i + 2, i), etc. The 99 largest
λi j are listed in Table 1 and approximation to Brownian
sheet with top 99 terms can be expressed as

Ŵ (t, x) =
34∑
k=1

{λ1kψ1k (t, x)Z1k + λk1ψk1 (t, x)Zk1}

+
11∑
k=2

{λ2kψ2k (t, x)Z2k+λk2ψk2 (t, x)Zk2}

+
7∑

k=3

{λ3kψ3k (t, x)Z3k+λk3ψk3 (t, x)Zk3}

+
5∑

k=4

{λ4kψ4k (t, x)Z4k+λk4ψk4 (t, x)Zk4} .

(5)

We use quasi-random sequences to simulate Zi j in
an order according to the decreasing order of λi j listed
above and in Table 1 and then compute Ŵ (t, x).

3.3 Pricing the long bond futures delivery option

This section provides an empirical application of pro-
posedQMCmethod to introduced forward interest rate
model with stochastic string shocks. We consider the
problem of pricing the delivery option of long bond
futures contract traded on the CBOT (Santa-Clara &
Sornette, 2001). The underlying asset for long bond
contract is 20-year Treasury bondwith 8% coupon. This
Treasury bond is hypothetical and in reality, on the
delivery day, seller of the contract can choose from the
Treasury bond with either at least 15 years to matu-
rity or first call date to delivery, which is referred to
as the delivery option (Santa-Clara & Sornette, 2001).
It is clear that deliverable bonds circulated in the mar-
ket are not worth the same. To ensure that sellers of
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Table . (i, j) pairs for 99 largest λi j in Karhunen–Loéve expansion.

k (i, j) pairs k (i, j) pairs

k = 1 (1, 1) k = 19 (1, 19, 19, 1)
k = 2 (1, 2, 2, 1) k = 20 (1, 20, 20, 1, 2, 7, 7, 2)
k = 3 (1, 3, 3, 1) k = 21 (1, 21, 21, 1)
k = 4 (1, 4, 4, 1) k = 22 (1, 22, 22, 1)
k = 5 (1, 5, 5, 1, 2, 2) k = 23 (1, 23, 23, 1, 2, 8, 8, 2, 3, 5, 5, 3)
k = 6 (1, 6, 6, 1) k = 24 (1, 24, 24, 1)
k = 7 (1, 7, 7, 1) k = 25 (1, 25, 25, 1, 4, 4)

k = 8 (1, 8, 8, 1, 2, 3, 3, 2) k = 26 (1, 26, 26, 1, 2, 9, 9, 2)
k = 9 (1, 9, 9, 1) k = 27 (1, 27, 27, 1)
k = 10 (1, 10, 10, 1) k = 28 (1, 28, 28, 1, 3, 6, 6, 3)
k = 11 (1, 11, 11, 1, 2, 4, 4, 2) k = 29 (1, 29, 29, 1, 2, 10, 10, 2)
k = 12 (1, 12, 12, 1) k = 30 (1, 30, 30, 1)
k = 13 (1, 13, 13, 1, 3, 3) k = 31 (1, 31, 31, 1)
k = 14 (1, 14, 14, 1, 2, 5, 5, 2) k = 32 (1, 32, 32, 1, 2, 11, 11, 2, 4, 5, 5, 4)

k = 15 (1, 15, 15, 1) k = 33 (1, 33, 33, 1, 3, 7, 7, 3)
k = 16 (1, 16, 16, 1) k = 34 (1, 34, 34, 1)
k = 17 (1, 17, 17, 1, 2, 6, 6, 2) k = 35 (1, 35) · · · · · ·
k = 18 (1, 18, 18, 1, 3, 4, 4, 3)

futures contract will be indifferent about which bond
to deliver, CBOT publishes conversion factors so that
all bonds are worth the same to sellers. More specifi-
cally, if a seller would like to deliver a bond trading at
a lower price, the seller will have to deliver a greater
par value, which is determined by the conversion factor.
The method of adopting conversion method, however,
do not work perfectly and the bonds price will not be
exactly the same. As a result, there is usually one bond
that is cheapest to deliver (CTD), which will be the one
bond that a seller will choose to deliver. Therefore, val-
uation of delivery option embedded in futures contract
becomes crucial. Besides delivery option, seller of the
futures contract has the right to choose the exact deliv-
ery date during the delivery month, which is referred to
as timing option (Santa-Clara & Sornette, 2001). As our
purpose in this section is to demonstrate the implemen-
tation of QMCmethod with proposedmodel in Section
3, the timing option is ignored.

The data set studied in Santa-Clara and Sornette
(2001) are long bond futures from March 1999, deliv-
ery option as of 15 October 1998 was the focus. Since

the timing option is ignored, we fix the delivery date as
15March 1999. The volatility function is assumed to be

σ (t, x) = σ exp (−γ x) ,

and three forward interest rate models are selected for
comparison: the simple Brownian motion

c
(
x, y

) = 1;
the O–U sheet

c
(
x, y

) = exp
(−λ

∣∣x − y
∣∣) ;

and string with term structure of correlations

c
(
x, y

) = exp
(−λ

∣∣√x − √
y
∣∣) .

Several additional inputs are required for imple-
mentation of proposed QMC methods for long bond
futures contract valuation. Input values are provided in
Tables 2–4. More specifically, the initial forward rates
as of 15 October 1998 are listed in Table 2; parame-
ter values used in the volatility and correlation func-
tions are provided in Table 3; specifics for 33 deliverable

Table . Implied forward interest rates.

Date Forward Date Forward Date Forward Date Forward

 October  .%  October  .%  October  .%  October  .%
 April  .%  April  .%  April  .%  April  .%
 October  .%  October  .%  October  .%  October  .%
 April  .%  April  .%  April  .%  April  .%
 October  .%  October  .%  October  .%  October  .%
 April  .%  April  .%  April  .%  April  .%
 October  .%  October  .%  October  .%  October  .%
 April  .%  April  .%  April  .%  April  .%
 October  .%  October  .%  October  .%  October  .%
 April  .%  April  .%  April  .%  April  .%
 October  .%  October  .%  October  .%  October  .%
 April  .%  April  .%  April  .%  April  .%
 October  .%  October  .%  October  .%  October  .%
 April  .%  April  .%  April  .%  April  .%
 October  .%  October  .%  October  .%  October  .%
 April  .%  April  .%  April  .%  April  .%
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Table . Parameter estimates of volatility and correlation functions.

Parameter Brownian motion O–U Sheet Subexponential correlation

σ . . .
γ . . .
λ . .

bonds, e.g., maturity date, coupon value, are presented
in Table 4.

Given all inputs values, the forward rate curve was
simulated based on discretised version of proposed
model seen in Equation (3). We chose � t to be 1 day
and � x to be 6 months, i.e., x = 0, 0.5, 1, 1.5, . . . , 30.
Z(t, x) were simulated according to Equation (4).
Sobol’ sequence was chosen to be the low-discrepancy
sequence for implementation of QMC method. For
each simulation, a set of 99 dimensional Sobol’ points
were generated according to functions in Press, Teukol-
sky, Vetterling and Flannery (Numerical Recipes in
C). Sobol’ points were transformed to normal distri-
bution by applying inverse of cumulative distribution
function for normal distribution. Equation (5) was
used to compute Brownian sheet W (t, x) for (t, x) =
(i/64, j/64), i, j = 1, . . . , 64.With obtained Brownian
sheetW (t, x), Equations (3) and (4) together were used
to compute f (t, x), the forward rate at time t and with
time to maturity x. Fifty thousand simulations were

repeated for each of the three interest rate models to
capture the evolution of forward rate curve on a daily
basis from 15 October 1998 to 15 March 1999. Under
risk-neutral probability measure and for each simula-
tion, values for all 33 deliverable bonds were computed
using simulated forward interest rate on 15March 1999.
The bond that is cheapest-to-deliver was also recorded
and corresponding futures price at maturity was com-
puted. Table 5 summarises simulation results for three
different correlation functions where futures price is
the average of all simulated futures prices at maturity
for cheapest-to-deliver bonds. We note that the cur-
rent cheapest-to-deliver bond is the bond with matu-
rity in February 2015. To evaluate the delivery option,
we compute the futures price for the bond with matu-
rity in February 2015 and subtract the futures price that
includes the delivery option from it. Table 5 presents
the value of the delivery option based on three dif-
ferent correlation functions. We demonstrate the ease
of implementation for proposed QMC method with

Table . Deliverable bonds.

Bond no. Maturity Coupon Conversion factor Market price

  February  . . .
  November  . . .
  August  . . .
  February  . . .
  May  . . .
  August  . . .
  May  . . .
  November  . . .
  May  . . .
  November   . .
  February  . . .
  August  . . .
  May  . . .
  February  . . .
  August  . . .
  May  . . .
  February  . . .
  August  . . .
  November    .
  November  . . .
  August  . . .
  February  . . .
  August  . . .
  November  . . .
  February  . . .
  August  . . .
  August  . . .
  November  . . .
  February   . .
  February  . . .
  August  . . .
  November  . . .
  August  . . .
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Table . Simulation results of the option prices.

Model Futures price of today’s CTD Futures price Delivery option value

Brownian motion . . .
O–U sheet . . .
Subexp. corr. . . .

proposed model and simulation results suggest that
delivery option is around five times more valuable in
the interest rate model constructed based onO–U sheet
compared to model driven by Brownian sheet; around
six times more valuable in the interest rate model con-
structed based on subexponential correlation compared
tomodel driven by Brownian sheet.We understand this
observation as the interest rate models with stochastic
strings are capable of generating much richer class of
term structure dynamics of interest rates and therefore
result in larger variability in the forward rates at matu-
rity. Therefore, the delivery option becomes more valu-
able due to greater variety at maturity.

4. Conclusion

In this paper, we review QMC simulations and discuss
its advantages over ordinary MC simulations. We focus
on the application of QMC simulations for valuation
of financial assets such as options. Under the assump-
tion of no arbitrage and based on risk-neutral valua-
tion, option value can be expressed as the discounted
expected pay-off of the underlying asset at maturity.
When the underlying asset is a bond, pay-offof the bond
at maturity requires a stochastic model on the dynamic
evolution of bond price over time.We introduce a bond
pricing model, the interest rate model with stochastic
strings, which is a continuous stochastic diffusion pro-
cess driven by two-dimensional stochastic strings con-
structed based on Brownian sheet. For simulation, we
investigate discretised version of introduced model and
propose a new QMC method for simulating Brownian
sheet via its Karhunen–Loéve expansion. Karhunen–
Loéve expansion, which can be considered as princi-
pal components decomposition in infinite dimensions,
decomposes Brownian sheet into random components
and allocates maximum variability to each initial por-
tion of the random components. We demonstrate pro-
posed QMC simulation method for introduced inter-
est rate model via an empirical application. In the
empirical study, we investigate delivery option in long
bond futures contract and show that delivery option is
more valuable in stochastic string models compared to
model driven by simple Brownian sheet. This obser-
vation from empirical study is consistent with the fact
that introduced model has a much richer class of
term structure dynamics of interest rates that allows
capturing a larger volatility in modelling and pricing

contingent claims. We demonstrate the ease of imple-
mentation with the proposedQMCmethod and believe
that it can be easily extended or modified for studying
valuation of other contingent claims.
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