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ABSTRACT

In this paper, we study ultra-high-dimensional partially linear models when the dimension of the
linear predictors grows exponentially with the sample size. For the variable screening, we propose
a sequential profile Lasso method (SPLasso) and show that it possesses the screening property.
SPLasso can also detect all relevant predictors with probability tending to one, no matter whether
the ultra-high models involve both parametric and nonparametric parts. To select the best sub-
set among the models generated by SPLasso, we propose an extended Bayesian information cri-
terion (EBIC) for choosing the final model. We also conduct simulation studies and apply a real
data example to assess the performance of the proposed method and compare with the existing

method.

1. Introduction

High-dimensional data are becoming increasingly pop-
ular in the past two decades, and they have wide appli-
cations in various fields such as genomics, economics,
finance and epidemiology. As one example, genome-
wide association studies usually encompass hundreds
of thousands, or millions, of single nucleotide poly-
morphism (SNP) at the same time, and that pose new
computational and statistical challenges. To analyse
ultra-high-dimensional data, Fan and Lv (2008) pro-
posed the sure independence screening (SIS) method
to ultra-high-dimensional linear models. Owing to its
great success, the SIS method was further extended
to more general models in the recent literature. To
name a few, Fan, Feng, and Song (2011) proposed the
nonparametric independence screening for ultra-high-
dimensional additive models. Fan, Ma, and Dai (2014)
extended the nonparametric independence screening
to ultra-high-dimensional varying coefficient models.
Li, Peng, Zhang, and Zhu (2012) developed a robust
rank correlation screening based on Kendall’s rank cor-
relation. Li, Zhong, and Zhu (2012) proposed a sure
independence screening method based on the dis-
tance correlation for general parametric models. Zhu,
Li, Li, and Zhu (2011) proposed the variable screen-
ing method under a unified model framework. Cui,
Li, and Zhong (2015) proposed a model free vari-
able screening method for categorical response variable.
Note also that Wang (2009) applied the forward regres-
sion (FR) in Weisberg (1980) to ultra-high-dimensional
linear regression models. Cheng, Honda, and Zhang
(2016) further extended the FR method to ultra-high-
dimensional varying coefficient models.
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Partially linear models are important semiparamet-
ric models and are widely used in practice, which pos-
sess both the flexibility of nonparametric models and
the ease of interpretation of linear regression models.
Partially linear models have been extensively studied in
the literature (see for example Hirdle, Liang, and Gao
(2000) and Li, Zhang, and Feng (2016)). In this paper,
we propose to analyse partially linear models when
the dimension of the linear predictors grows exponen-
tially with the sample size. Specifically, letting Y be
the response variable, we consider the partially linear
model as follows:

Y=gU)+X"B+e, (1)

where 8 = (81, ..., ,BP)T is a p-dimensional vector of
unknown regression coefficients, U is a univariate vari-
able, g( - ) is an unknown smooth function, and ¢ fol-
lows a distribution with mean 0 and variance o2. We
assume that ¢ is independent of the associated covari-
ates (U, XT), and that the predictor variable X has a
ultra-high-dimensionality or a nonpolynomial dimen-
sionality such that In p = O(n*) for some x > 0, where
p is the dimension and # is the sample size.

Variable selection for model (1) is very challenging
because it involves both parametric and nonparametric
parts. When p is fixed, variable selection and parameter
shrinkage are conventional and there are many related
methods in the literature such as Bunea (2004), Liang
and Li (2009), Liu, Wang, and Liang (2011), Mammen
and van de Geer (1997) and Wang, Liu, Liang, and
Carroll (2011). When p grows with n, Xie and Huang
(2009) applied the SCAD penalty to partially linear
models and studied the asymptotic properties of the
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proposed estimators. Sherwood and Wang (2016) con-
sidered partially linear additive quantile regression
models and studied the oracle property for a general
class of nonconvex penalty functions. We note how-
ever that, due to the challenges in computational expe-
diency, statistical accuracy and algorithm stability, the
aforementioned penalised variable selection methods
may not work well for model (1). To overcome the
challenges, Liang, Wang, and Tsai (2012) proposed the
profile forward regression (PFR) algorithm to perform
the variable screening for model (1). Li, Li, Lian, and
Tong (2017) extended the PFR algorithm to ultra-high-
dimensional varying coefficient partially linear models.

The L, penalty or Lasso proposed by Tibshirani
(1996) is a popular variable selection method. When
p diverges to infinity faster than n but not too fast,
under the irrepresentability condition, Zhao and Yu
(2006) established the selection consistency for the fixed
design, and Meinshausen and Bithlmann (2006) estab-
lished the selection consistency for the random design.
To alleviate the irrepresentability condition, Zou (2006)
proposed the adaptive Lasso and showed that the adap-
tive Lasso has the oracle property when p is fixed. Luo
(2012) and Luo and Chen (2014) proposed the sequen-
tial Lasso which chooses the largest tuning parame-
ter in the sequentially partially penalised least squares
objective function to assure at least one (mostly just
one) of the regression coefficients being estimated as
nonzero. Furthermore, under the partial positive cone
condition, they proved the set of the predictors which
maximise the correlation with the current residual, i.e.,
the response vector projected onto the orthogonal com-
plement of the space spanned by the currently selected
predictors, is the set of nonzero elements of the solu-
tion. This means that the next predictors being selected
by the sequential Lasso can be chosen from the set of
the predictors which maximise the correlation with the
current residual. Such a method enjoys the expected
theoretical properties including the screening property,
meanwhile, it has some advantages from the numerical
aspects.

Inspired by the above advantages, in this paper, we
also apply the profile technique to convert model (1) toa
linear model, and apply the sequential Lasso to develop
asequential profile Lasso (SPLasso) procedure. To select
the best subset among the models generated by SPLasso,
we propose an extended Bayesian information criterion
(EBIC) for choosing the final model. We further show
that our proposed SPLasso method can identify all rele-
vant predictors with probability tending to one, and that
the resulting model determined by EBIC possesses the
screening property.

The rest of this paper is organised as follows. In
Section 2, the SPLasso procedure is introduced for
model (1). In Section 3, the asymptotic properties are
derived under some regularity conditions. In Section 4,
simulation studies are carried out to evaluate the finite
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sample performance of our proposed method and to
compare it with existing method. Section 5 presents the
application of our proposed method to a real data set.
The technical proofs of the two theorems, together with
some lemmas, are given in the Appendix.

2. Sequential profile Lasso

To avoid confusion, we specify in the beginning that the
boldface roman B represents a matrix, and the boldface
italics B represents a vector. Throughout this paper, we
denote ymin (B) and ymax (B) as the smallest and largest
eigenvalues of an arbitrary matrix B, respectively. Sup-
pose that {(Y;, XiT, U)), 1 <i < n}areindependent and
identically distributed copies of (Y, X T U) that are
generated from model (1). For ease of notation, we
denoteY = (Y3, ...,Y,)" € R" as the response vector,
X = (X1,...,X,)T € R™? as the matrix of explana-
tory variables, where X; = (Xj, ... ,X,-p)T € R? is the
predictor vector, and & = (eq, ..., e,) T as the vector of
random errors. We write M r = {1, ..., p}and My =
{j : Bj # 0} as the index sets of the full and true predic-
tors, respectively. Let also | M| denote the number of
the elements of a candidate model M, where M is the
index set of the predictors in the corresponding candi-
date model. Thus, |IM x| = pand | M| = pg, where py
is the size of the true model or the number of relevant
predictors in the true model. For any candidate model
M, weuse X vy = {Xij : j € M} torepresent the sub-
vector of X; corresponding to M, and X = {X;j, i =
1,...,n, j € M}todenote the matrix consisting of the
column of X with indices in M. Similarly, let 81 denote
the vector consisting of the corresponding components
of B. For any candidate model M, let M¢ be the com-
plement of M in the full model M r.

By model (1) and the fact that g(U;) = E(Y;|U;) —
E(X;Fﬂ|U,~), we have

Y; — E(Yi|Up) = {X; — E(X,|U)}'B + «.. )

For simplicity, we define the profile response as
Y =Y; — E(Yi|U;) and the profile predictor vector
as X=X, —EXi|U) = (X, ..., X;;)T, where X =
Xij —E(X,Jll_],) fori=1,...,n andj =1..., p- BY
(2), model (1) reduces to the following linear regression
model:

Y =X"B+ei (3)

Note that model (3) contains the unknown functions
E(Y;|U;) and E(X;|U;) and they need to be estimated in
practice. In this paper, we approximate E(Y;|U;) locally

by a linear function, and consider the following objec-
tive function (Fan & Gijbels, 1996):

D (i — oy — (U — ) Ky(U; — ),
i=1

where Kj,( - ) = K( - /h)/h with K( - ) a kernel function
and h a bandwidth. By minimising the above weighted
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least squares objective function, we can obtain the local
linear regression estimator of E(Y;|U; = u) as follows:

> we(w)Ys,
k=1
where
S () — (U — w)Sm (u) }Ky (U — u)
wi(u) = ,

Sn2(u)Sn0(u) - Si1 (u)

and S, = Y 1, Kn(Ui — u)(U; — w)* for £ = 0, 1, 2.
We note that the above method can also be applied
to estimate E(X;|U; = u) for 1 < j < p. To facil-
itate the notation, we write the estimator of the
profile response as Y= (171, - ?H)T with Y, = Y, —
Y i—; Wk (U;)Yy, and the estimators of the profile predic-
tors as X = (X1, ..., X)) = 1, ... , Xp) with X, =
X; — Y i, wi(U)Xy. This gives rise to the following
linear model:

Vi~ X[ B+ e (4)

In what follows, we introduce our SPLasso proce-
dure. At the initial step, the SPLasso method minimises
the following penalised least squares objective func-
tion:

p
Li=F -XB'T-XB+1) IBl. )

j=1

where A; is the largest value such that at least one
(mostly just one) B; will be estimated as nonzero. The
index set of the selected predictors with nonzero esti-
mated coefficient is labelled as M. Let M; be the
index set of the predictors being selected until step k.
Atthe (k + 1)th step, we consider the following partially
penalised objective function:

Ly =¥ ~XB' ¥ ~XB) +heer ) 1B, (6)
JEM

where Ar4; is the largest value such that at least
one (mostly just one) B;, j ¢ My, will be estimated
as nonzero. According to the Karush-Kuhn-Tucker
(KKT) condition (see Proposition 3.3.1 in Bertsekas,
1999), the solution of L is equivalent to the minimi-
sation of

= X Bui) " ¥ =X Brg) +isr Y 1B,
jeM;
where Y = (I,, - HMk) Y, X= (In — HMk)i =
(*1,...,%p), 1, is an n x n identity matrix, and
HMAk = ka{x/TMkXMi}*IXLk. Let also Sppp={j:
|3c\]T-Y| = maxygp, [X; Y|}. Following Luo and Chen
(2014), we consider the new predictors selected by

the (k + 1)th step are from the set Siy. For this, we
consider the following objective function:

¥ —Xs,,,B5.,)" ¥ = X5, Bs.) + herr Y IBjl.
jE€Sk1
7)

If Sk+1 has only one element, then the jth predictor with
j € Sk is the predictor with nonzero estimated coeffi-
cient in the minimisation of Ly ;. If Sy, 1 has more than
one element, we need to minimise the objective func-
tion (7) by applying the R function ‘glmpath’ devel-
oped by Park and Hastie (2007). Our proposed SPLasso
is as follows:

[S1] Let S = {j:[%]Y| = maxi<<, X, Y]}. If S
has only one element, we update M; = &;. Oth-
erwise, use ‘glmpath’to Y and igl and obtain
the solution path. Let M, be the index of the first
predictor with nonzero estimated coefficient in
the solution path.

[S2] At the (k + 1)th step, let Sgyy = {j: [#] Y| =
maxeg |5c\}?|}, where Y = (I, — Hayg,) Y and
X; = (I, — Hay,) Xj. If Sgyq has only one ele-
ment, we update My, = My | Sk41. Other-
wise, use ‘glmpath’ to Y and igkﬂ, where
)/ngﬂ = (I, — Hu,) )Aigkﬂ, and obtain the solu-
tion path. We add the index of the first predictor
with nonzero estimated coeflicient in the solu-
tion path in the current model My, and write
the new model as M ;.

[S3] Tterate the S2 step for n times to obtain a total of
n nested candidate models by the solution path
S={M:1<k=<n}

Note that we can update I, — Hyy,,, from I, — Hy,.
Suppose the predictors with indices {jx: k = 1,..., M}
are added to the current model at the (k + 1)th step,
and denote the index set as B, = {j1, ..., ju} form =
1 and let By = @. The recursive formula is given by

L —Hyys, = (I — Hu,Us, )

%% (I, —Hu,ys,.)
’\/T

x 11, — —
"% (L —Hyys,) %),

By the above discussion, it is evident that our proposed
SPLasso procedure has the advantage of reducing the
computational burden by avoiding the computation of
the inverse matrices.

3. Asymptotic properties

In this section, we establish the screening property of
SPLasso. We use an EBIC to obtain the best model in
the solution path S and show that this model contains
the true model M with probability tending to one. To
derive the theoretical results, we need some regularity
conditions.

(C1) There exist two positive constants T, and
Tmax> SUch that 27 iy < Y min (T) < ymax () <
2717 1ax, where ¥ is the covariance matrix of the
profile predictor X7;.



(C2) Assume that || ]| < Cg for some positive con-
stant Cg and PBin > vgn *m» for some pos-
itive constants £, and vg, where B, =
minjent, 16;l.

(C3) There exist positive constants &, & and v, such
that In p < min (vié, n*10), py < vn®, and & +
380 + 6Emin < 1.

(C4) E(X|U = u) and E(Y|U = u) are uniformly
Lipschitz continuous of order one.

(C5) The weight functions wy( - ) satisfy, with proba-
bility tending to one,
maXj<k<n ZLl wi(U;)) = 0(1), max; < ik<n
wi(U;)) = O(b,) with b, = n %, and
max;<i<y Y g Wk (UDI(|Ui—=Ug|>c,) = O(cy)
with ¢, = n=**Inn.

(C6) Assume that max{Eexp(u|Y;"|), max;<j<, E
exp(u|Xi’;|)} <ooforall 0 < u < ty/o,, where
ty and o, are positive constants, and that the
moment generating functions M;(u) of X for
j=1,..., pand My(u) of Y* satisfy

3

% In{M;(u)}

max sup < 0.
0=j=po<u<t,
Furthermore, assume that max{E|Y| 2k

max, < j<, B|X|?*} < 0} for some k > 2, and
that ¢ follows a normal distribution.

Conditions (C1)-(C3) are technical requirements
for model selection (see Li et al., 2017; Liang et al., 2012;
Wang, 2009). Conditions (C4) and (C5) are commonly
used in the semiparametric regression and can be eas-
ily verified (see Hardle et al., 2000). Condition (C6) fol-
lows from Liang et al. (2012) to obtain an exponential
inequality of a sum of random variables. It is worth not-
ing that we do not pose any restriction on the distribu-
tion on X, whereas the SIS method in Fan and Lv (2008)
requires it to be the spherically symmetric distribution,
and the FR method in Wang (2009) and Lasso in Zhang
and Huang (2008) require it to be the normal distribu-
tion. In addition, we replace the L, norm with the max-
imum norm of B that is slightly different from Li et al.
(2017), Liang et al. (2012) and Wang (2009).

Theorem 3.1: Suppose that
(C1)-(C6) hold, and let

(14 xo)?t2, Civ v
Kn — [ _[2 vza ﬁ n50+2‘§m1n _|_ 1,

min "~ g

regularity  conditions

where [t] denotes the largest integer less than t and X is
a constant larger than 1. Then,

Pr (MT C MK,,) -1, (8)

where My, denotes the selected K,,th model in the solu-
tion path S.

Theorem 3.1 shows that the proposed SPLasso
procedure can identify all relevant predictors within
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O(n5ot2min) steps with probability tending to one,
which is better than the order of O(nf*4min) derived
in Theorem 2 of Liang et al. (2012). Since the models
generated by SPLasso are nested, we need to determine
which model should be used for further statistical infer-
ence. To this end, we consider the EBIC as follows:

EBIC(M) = In(G(y,) +n M| (Inn+2nlnp), (9)

where 7 is a fixed positive constant, M is any candidate
model with [M] < n, and

Gy = nRSS(M) = ¥ (I, — Hpo) ¥/,

where Hy = iM{i/TMiM}’liij. Note that for
¢ = 1, EBIC has been used in Chen and Chen
/(\2008), Liang et al. (2012) and Wang (2009). Let
k = argmin; <x<, EBIC(M}), then the resulting model
is M. In the following, we show that M contains the
true model with probability tending to one.

Theorem 3.2: Under regularity conditions (C1)-(C6), as
n — oo, we have

Pr(Mr Cc M) — 1. (10)

4. Simulation study

In this section, we present the results of Monte Carlo
simulations to evaluate the finite sample performance
of the proposed SPLasso procedure. We employ the
Epanechnikov kernel K(u) = 0.75(1 — u?), and the
bandwidth h = 1.56yn~'/%, where oy is the sample
standard deviation of U. In all examples, the variable U
is generated from the uniform distribution on [0, 1]. We
consider n =100, 150 and 200, p =500, 1000 and 2000,
and compare SPLasso with the PFR method in Liang
etal. (2012).

Let E(k) = (Elk, ...,Epk)T € R? be the estimator
obtained from the kth simulation, and the resulting
model be M® = {j: |,/B\jk| > 0}. We consider the fol-
lowing eight performance measures to evaluate the per-
formance of SPLasso: (1) AMS: the average model size
of the resulting model based on 200 simulations; (2) CP:
the average coverage probability that all relevant pre-
dictors are detected among 200 simulations; (3) CZ: the
proportion of correct identified zeros among 200 sim-
ulations; (4) IZ: the proportion of incorrect identified
zeros among 200 simulations; (5) CF: the average of
correctly fitted that all relevant predictors are detected
and no irrelevant predictors are contained in the result-
ing model among 200 simulations; (6) AEE: the aver-
age estimation error is computed as Zifl ||ﬁ(k) —
Bll2/200; (7) PDR: the average positive discovery rate
is computed as Zi(;ol I/T/l\(k) () M|/ (200po); and (8)
FDR: the average false discovery rate is computed as

Y0 IM® Y M|/ (200 MP)).

Example 4.1: In this example, we consider that the rele-
vant predictors are independent and are generated from
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Table 1. Simulation results for Example 4.1.

p n AMS PDR FDR AEE CcpP z V4 CF
Method: PFR
100 13.810 0.848 0.378 1.926 0.025 0.989 0.152 0.000
500 150 14225 0916 0.350 1170 0325 0989 0.084 0.000
200 13.930 0.974 0.293 0.498 0.770 0.991 0.026  0.000
100 12315 0.812 0.337 2.804 0.015 0.996 0.188 0.000
1000 150 13200  0.880 0.330 1.817 0150 0996 0120  0.000
200  13.530 0.953 0.290 0.881 0590 099  0.047 0.000
100 12.295 0.803 0.343 3.159 0.000 0.998 0.198 0.000
2000 150 13240 0.860 0.347 2348 0.065 0.998 0.141 0.000
200 13.450 0.927 0.305 1.295 0.385 0.998 0.073 0.000
Method: ~ SPLasso
100 11.490 1.000 0.124 0.274 1.000 0.997 0.000 0.000
500 150 11.285 1.000 0.m 0.137 1.000 0.997 0.000 0.000
200 1155  1.000 0.103 0.064 1.000 0.998 0.000 0.000
100 1.060 0.990 0.096 0.121 0.995  0.999 0.001 0.000
1000 150 11.035 1.000 0.094 0.060 1.000 0.999 0.000 0.000
200 11015  1.000 0.092 0.037 1.000 0.999 0.000 0.000
100 11.085 0.970 0.097 0.123 0.990 0.999 0.008 0.000
2000 150 11.015 1.000 0.092 0.067 1.000 0.999 0.000 0.000
200 1.030  1.000 0.093 0.045 1.000  0.999 0.000 0.000

the standard normal distribution. The regression coef-
ficient vector of relevant predictors is (3, 3.75, 4.5, 5.25,
6,6.75,7.5,8.25,9, 9.75). The irrelevant predictors are
generated as

X;=0.252;+ 075 Y X, for j € M5,
kEMT

where Z; are independent standard normal random
variables, and are independent of the relevant predic-
tors. The nonlinear function is g(U) = 4sin 27 U), a
non-monotonic function. The noises ¢ are generated
from the standard normal distribution. The simulation
results are reported in Table 1.

Example 4.2:In this simulation, we consider a
compound symmetry structure for the covariance
of the relevant predictors. Specially, the relevant pre-
dictors follow the py-dimensional multivariate normal
distribution AV (0, 3). The size of the true model is set
to po = 8. The covariance matrix ¥y haso;; = 1 and o
=0.5for 1 < i # j < po. The irrelevant predictors X;
are generated as

Z Xk,

1
Po 52,

where ¢ are independent and identically distributed
with A/ (0, 0.08). The nonzero coefficients are generated
as (— 1)V(4n=%1> 4 |T]), where V is a binary random
variable with Pr(V = 1) = 0.4 and T is a normal ran-
dom variable with mean 0 and satisfies Pr(|T| > 0.1) =
0.25. Let the nonlinear component g(U) = exp (3U), a
monotone function. The noises ¢ are independent and
identically distributed with A/(0, 0%). The variance o
is chosen such that SNR = var(XT8 + gU))/var(Y)is
approximately 80%. The simulation results are reported
in Table 2.

From Tables 1 and 2, we have the comparison results
in what follows.

(1) The irrelevant predictors are equally and almost
highly correlated with the relevant predictors in
both examples, and SPLasso is always better than
PFR. For example, when n = 200, PFR has the CP
values at 0.770, 0.590 and 0.385, while SPLasso has
the CP values all at 1, for p = 500, 1000 and 2000,
respectively, in Table 1.

(2) Note that the larger PDR values and the smaller
FDR values are, the better the associated proce-
dure performs. From this point of view, SPLasso
also behaves better than PFR.

(3) For the fixed p, SPLasso performs better as
the sample size increases. It is clear that the
coverage probability changes substantially as the
sample size increases. In addition, the coverage
probability approaches 1 as long as the sample
size is enough large. For the fixed #n, the finite
sample performance of SPLasso becomes worse as
the dimension of predictors increases. However,
from the variation rate, we note that the perfor-
mance does not deteriorate rapidly as the dimen-
sion p increases. This means that the sample size is
more important than the dimension of predictors
in ultra-high-dimensional variable screening.

(4) Note that the proportion of correctly zeros is
almost 1. As a result, the average model size is
small, and is close to the true model size when
the sample size increases. Consequently, the aver-
age estimation error decreases as the sample size
increases.

In conclusion, the numerical results are in line with
the theoretical results that SPLasso contains the true
model with probability tending to one. These results
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Table 2. Simulation results for Example 4.2.

p n AMS PDR FDR AEE CcpP cz Iz CF
Method: PFR
100 6.875 0.467 0.490 111.060 0.050 0.994 0.533 0.025
500 150 7255  0.638 0.354 80.577 0385 0996 0363 0290
200 7.490 0.658 0.335 55.135 0540 0.995 0340 0.500
100 7.375 0.464 0.516 144.029 0.055 0996 0.536 0.050
1000 150 6.980  0.523 0.455 14385 0230 0997 0478 0.180
200 7.230 0.603 0.380 90.892 0.435 0.998 0.397 0.345
100 9.150 0.426 0.608 205.817 0.010 0.997 0.574 0.005
2000 150 7.500 0.557 0.452 126.259 0.265 0.998 0.443 0.155
200 7.475 0.591 0.406 95.332 0.370 0999 0409 0.280
Method: ~ SPLasso
100 5.865 0.570 0.281 98.091 0.345 0.997 0.430 0.195
500 150 7.205 0.757 0.218 62.354 0.615 0.998 0.243 0.410
200 7760  0.840 0.165 34.328 0730 0998 0.160 0.500
100 6.145 0.561 0.315 116.950 0.355 0998 0.439 0.155
1000 150 6.580 0.623 0.306 100.934 0.425 0.998 0.378 0.270
200 7410 074 0.239 70.525 0.590 0999 0259 0380
100 6.250 0.486 0.375 144.353 0220 0.999 0.514 0.085
2000 150 7.08 0.666 0.305 106.756 0.500 0.999 0334 0.250
200 7295 0726 0.250 72.007 0570 0999 0274 0355

demonstrate that SPLasso is one of the best variable
screening methods and it can be useful in real data anal-
ysis.

5. Real data analysis

We demonstrate the effectiveness of SPLasso by an
application to a breast cancer data. As reported in
Stewart and Wild (2014), breast cancer is one of the
leading causes of cancer death among women, and there
were about 1.7 million new cases (25% of all cancers in
women) and 0.5 million cancer deaths (15% of all can-
cer deaths in women) in 2012. Breast cancer is the most
common cancer diagnosis in women in 140 countries
and is the most frequent cause of cancer mortality in
101 countries. van’t Veer et al. (2002) collected the sam-
ples from a total of 97 lymph node-negative breast can-
cer patients under 55 years old. The collected dataset
consists of expression levels for 24,481 gene probes and
seven clinical risk factors including age, tumour size,
histological grade, angioinvasion, lymphocytic infiltra-
tion, estrogen receptor (ER) and progesterone recep-
tor status for the 97 participators in this study. Among
the 97 participators, 46 developed distant metastases
within 5 years and 51 remained metastases free for
more than 5 years. Yu, Li, and Ma (2012) proposed a
receiver operating characteristic approach to rank the
genes by adjusting the clinical risk factors. In addition,
they removed the severe missing genes, and obtained
an effective number of 24,188 genes. Each data vector is
normalised to have sample mean 0 and standard devia-
tion 1.

Knight, Livingston, Gregory, and McGuire (1977)
found the absence of estrogen receptor in primary
breast tumours is associated with the early recurrence.
We are interested in finding genes that are related to the
estrogen receptor. We consider the following partially

linear model to fit the data:

24,188

ER =g(U)+ Y B;GE; +e,
j=1

(11)

where U is the age of the patients, GE; is the jth gene.

As in Section 4, the Epanechnikov kernel K(u) =
0.75(1 — u?), and the bandwidth h = 1.56yn~/> are
adopted to fit the nonlinear function, where 6y denotes
the sample standard deviation of U. We first compare
SPLasso with PFR in terms of the prediction mean
squared errors (PMSE) based on 100 random partitions.
For each partition, we randomly select 90 observations
as the training set and the remaining seven observa-
tions as the test set. Based on the training set, we fit
the data with the partially linear model (11) via SPLasso
and PFR. The resulting models are used to predict the
value of the seven observations in the test set. The
five-number summary of the prediction mean squared
errors is listed in Table 3. From Table 3, we know that
SPLasso is better than PFR in terms of the PMSE.

We observe that different models are often selected
for different random partitions. Table 4 shows the top
five genes selected by SPLasso and PFR in the 100 ran-
dom partitions. Gene 15835 is detected as important at
each time among the 100 random partitions by both
methods. We note that gene 15835 was also identified
in Cheng et al. (2016). In addition, gene 1279 is also
identified by both methods. From all these findings, we
conclude that gene 15835 is associated with the estrogen
receptor.

To investigate the estimated nonlinear effects of
the patient's age based on one random split in
which SPLasso identified two genes 15835 and 14117,
we present the estimated nonparametric function in
Figure 1. It shows that the patient’s age almost has a
positive impact on the estrogen receptor. We note that
the value of effect first decreases (up to about 5.2), then
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Table 3. Five-number summary of PMSEs for PFR and SPLasso.

Method ~ Minimum  Firstquartile ~ Median  Third quartile ~ Maximum
PFR 0.139 0.403 0.602 1.839 3494
SPLasso 0.130 0.305 0.368 0.478 1.906

Table 4. Top five genes selected among 100
random partitions.

PFR 1279
SPLasso 1279

1690
6257

5985
9918

15835
14117

23134
15835

-0.05 0.00 005 010 0.15

I I I I I I I
4.5 5.0 5.5 6.0 6.5 7.0 7.5

u

Figure 1. The fitted nonlinear function g(u).

increases (up to about 7), and then decreases again.
Hence, from a practical point of view, we have demon-
strated that our proposed SPLasso method can be an
efficient method for analysing partially linear models.

6. Conclusion and discussion

In this paper, we propose a SPLasso procedure to screen
predictors for ultra-high-dimensional partially linear
models, and we further show that SPLasso can identify
all relevant predictors with probability tending to one,
and that it provides a satisfactory performance in finite
samples.

SPLasso selects the next predictor which has the
highest correlation with the current residual. It is inter-
esting to point out that LARS proposed by Efron, Hastie,
Johnstone, and Tibshirani (2004) also selects the next
predictor like SPLasso. However, the current residual
of LARS is based on a shrunken estimation of the
regression coefficients. The effect of the selected pre-
dictors on response variable is not fully used in this
estimation. Consequently, this gives a chance for the
predictors that have high spurious correlation with pre-
dictors in the current model. Simulation studies in
Wang (2009) also show that the finite sample perfor-
mance of LARS is worse than FR. Fitting the response
by adding one predictor to the current model, FR selects
the next predictor which minimises the residual sum of
squares. This amounts to select the next predictor with
the largest partial correlation {?c’]rQ Mxj 2 |?c']rQ MY

with Quq, = I, — Hpy,. It is clear that the difference
between SPLasso and PFR is the factor {?c'er Mxj T2
Asaresult, if ¥; has a higher correlation with the predic-
tors in My, it will have priority to be selected by PFR.
Therefore, we expect that SPLasso will perform better
than the profile LARS (or its variants) and the profile
FR.

Finally, we note that the errors are assumed to be
homogeneous in the current paper. However, as the het-
erogeneity is often presented in ultra-high-dimensional
data, we will investigate the heterogeneity in our future
study by combining the quantile regression with the
sequential Lasso. Another interesting direction is to
extend SPLasso to other semiparametric models includ-
ing generalised semiparametric models, varying coeffi-
cient models and semi-varying coefficient models.
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Appendices

We introduce the following notation to simplify our
presentation. Let O|x| be r if x = 0, where r is an
arbitrary number with |r| < 1, otherwise be sgn(x).
For any set M C Mg, let M~ = M°~ﬂ Mz, Qum =
I, —Hpy and ¥,(j, M, B) :}I;QMXﬂ/n. For any
n-dimensional vectors v; and v,, define A" (M) =
vIQuv, and A"™"2(M) = vIQuv,. Furthermore,
define p = XB, = = X"X/n and f(M) = {f,-]- ti,je
M} for any candidate model M.
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Appendix 1. Somelemmas

Lemma A.1: Suppose that regularity conditions (C3)-
(C6) hold. We have

max {max( max ’E(X |U;) —

1<i<n 1<j<p

[EQY|T) — E(Y|UD|)} = op(en), (A1)

where E@i) is the estimator of E(X;|U), Em) is
the estimator of E(Y|U;) for 1 <i<nand1<j<p, and

cp=n""n"1p

Lemma A.2: Suppose that regularity conditions (CI)
and (C3)-(C6) hold, and let m = O(n*ot4min) with
probability tending to one. Then,

Tmin < min~ Ymin (E(M)) =< max Ymax (i(/\/l)) < Tmax-
m

M < IM|<
(A2)

The proofs of Lemmas A.1 and A.2 can be found in
Liang et al. (2012), and hence we omit the details.

Lemma A.3: Suppose that regularity conditions (CI)
and (C3)-(C6) hold. Then, we have, for 1 < k < K,

(1) ic]T.QMke/n = Op(n~Y%1n p), uniformly for all j €
(2) max |¥,(j, My, B)| = D,nY?In p with D, —
JEM
0,

Proof: By Lemma A.2, it is easy to obtain that
1%} Qut, Il < %Il < /Tmax. Hence, we have

Pr(1 ’x Q. s‘ > or -1/2 lnp> < 2exp(—(lnp)2/2).
n

By the Bonferroni inequality,

1
Pr | max — ‘x
<]EM‘ QMk

> ot 2n 12 lnp)
< 2exp(—(lnp)2/2 +1Ilnp) — 0.

This leads to the result of (1). Next we prove (2). By
some simple calculations, we have

B X QuXB = B, X\ QuXB < nllB; I
x max [Y,(j, My, B)| (A3)

jeM;
and
B X" QuXB = Bl X\ QX B
= voin (X5 QuXag, ) 1Bag, 12
> Yinin (Xho Xnto) 1Bag 15 (A4)

with Moy —/\/lkU./\/lT Inequality (A.4) follows
the fact that (X QMkXM )~! is a sub-matrix of

Xt OXMO) ' by the inverse of the block matrix.

B =

Combining (A.3) and (A.4), we have

L o 1B
max | ( .7 Mk7 )l Z - i XT XM £
max [va(j Mo B 2 - min (X Xats) 1B

= D,n"?1n p,

where D, = p'cmm,Bmm By conditions (C2)-(C3)
along with Lemma A.2, we have D,, — o0o. Hence, the
proof of (2) is completed. O

Lemma A.4: Let Ay be the index set of the variables being
added at the (k + 1)th step of the SPLasso method. There

. 7 ian VR .
exists a vector B with componentwise nonzero ele-

ments such that |8(ﬂ( AE ))I <1, forje Mg, where

S(k+1)

AB; ) =204 %] Qu,,, Y

i (k+1)
+ xj QMkXAk {XA;( QMkXAk

CICYARSE

Ak+1)

and 3B, ) = (X7, Qu,Y).

Proof: Differentiating the objective function £y, with
respect to 8 q,, we have
0Ly
B,

Let the above derivative equal to zero, we can get the
following solution:

= —2X0, Y 42X} Xt B, + 2X0, Xovec B -

Bt = (X0 X} Xy, (¥ - X0 KB ) -
(A.5)
Substituting (A.5) into Ly, we obtain Ly is equiva-
lent to solve the following objective function:

~ ~ T ~ ~
(¥ - RuiBug) Qu (T =RagBug) +2 Y 181
JEM;
(A.6)
By the KKT condition, (A.6) can reach its minimum at
ﬂMc if and only if

Zi}\/l;QMk (Y - iM;ﬂMi) = )”a(ﬁ/\/li) (A.7)
Noting that 9 (/IE/\/%)T/[;/VI2 = ”ﬁ/vt; ll1, we have
~ ~ o~ T ~ o~
2 (Y - XMiﬂMi) Qut X B
A (A.8)

1B I
Plugging (A.8) into (A.7), we have

XigQui (7 — XuBg)

(17 - iM,fﬁM ) QMkXMCﬂMC ~
= 3(ﬂMc) (A9)
1B I
As Ay is the set of variables bein& added at the (k +
1)th step, (A.7) holds for some B M which satisfies

~k+1) ~k+1)
0,8y ,0)" and [3(B; )| =
be the correspondlng Ain

1 for any] € M Let)\

k+1° k+1



(A.8) for this estimator E M- Noting that this particular
ﬁMi also satisfies (A.7) and (A.9), we have

~(k+1) ~ > -1
ﬂ_Ak - {X,T;leMkXAk}
< < Ay, stkeD
X {x;kQMkY - %a(ﬂAk )} , (A.10)
~(k+1) 2 ~ o Skt
08" = ¥ Qu, (¥ - X484,
k+1
Vje M. (A.11)
By (A.10) and the definition of 0( - ), it is easy to see
that B(Ejjl)) = 8()’25le Mki?)- Furthermore, plugging

(A.10) into (A.11), it can be shown that 8(3;““) is

equal to

;lerpkﬂy ~T N o -1 Akt
=2 % QuiXa (X, Qu X} 3By, ).
k+1

o - ~ (A.12)
where P¥1 = QMkXAk{XEkQMkXAk}_IXJTL‘kQMk _1,
By some algebraic operations, we have PHl = —Q M-
Plugging this result into (A.12), the proof of Lemma A.4
is completed. 0

Lemma A.5: Suppose that regularity conditions (C1)-

(C6) hold. If M, # 0, for 1 < k < K, — 1, we have
A (M) — A (M)
— 00

Inn

Proof: We prove this conclusion by contra-
diction. Assume that there exists k such that
AR (M) — A*(Mjy1) = O(Inn). Let k41 =
argmax,,c e |Vn(m, My, B)). If axy, is not
unique, we choose one of them. Note that Ak +1 may
be the index of the predictor being selected at the (k +
2)th step. Let the two terms of 3By in Lemma A 4

Afet1
as I; and I, respectively. By Lemma A.3, we have

VY (ars1, Mg, B

Inp

By Lemma A.l, it is easy to see that, with probability

tending to one,

RSS(My) — RSS(Mi1)
= {&F (M) — AR (M)}

+2{A%F (M) — A (M)}
AT (M) = A* (M)}

For the last two terms of (A.14), if M, # ¥, we have,
for any t > 0,

(A.13)

> D, — o0.

(A.14)

Pr <1<§£211<X_1(A€ (M) — A (M) = t>
<K, Pr(x*(1) > t)

(5]
< —exp(—t/2+clnn

with some positive constants c; and ¢,. Letting t =4In n,
the right-hand side of the above inequality converges to
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0asn — oo, Since 22-MO—A" (Mii) fo6ws the stan-
N BE (M) = AF (M)

dard normal distribution, we have

ARE (M) — A (Mig)
AP (M) — AF (M)

_\/ Op(Inn)

O\ ARM) — AR (M)

This leads to RSS(Mj) — RSS(Mj41) = Op(Inn). By
the fact that

RSS(Mi) — RSS(My1)
77T X 12.,-1 (XT o~
Z ”Y Q./VlkX.Ak ||2ymax (X.AkQMkX-Ak) ’

X
1<k<K,—1

= 0p(1).

we have

~T ~ ~ ~
1Y " QX ll2 = Vimax (X4, QutXoa,) Op(Inn)
= Op(nlnn).
1. ~(k+1)
On the other hand, multiplying (B8, ) on both

sides of (A.10), by the last equation of Lemma A.4 along
with the positivity of the left-hand side, we have

~ ~ [~ ~ 1-1~ ~
ZYTQMkXAk {XEkQMkXAk} X:EthMkY
kD o [ =
28T X QX
= 21X}, QY -
Noting that | X% Q¥ Il and XY, Qu, Y |12 have the
same order, by (A.13)-(A.15), we have
n| Y (g1, Migr, B
= ~ — 00
IX%, Qe Yl

Al <
k1 1 ~(kt1)

3B, DXL Qu Yl

(A.15)

|| = (A.16)

Note that

~T X . IXT R ) ~
X Qi X4, {XAk QMkXAk} XAk Qkaak+1
~T v 2, —1 (YT v

> 1%, Qut XA B Vi (X, Qe X,

> (nTma) "' 1%5,,, Qe Xa 13 (A.17)

Hence, ||?cgk+lQMk)~(Ak||2 = O(n). By the above results,
we have

Ll < 17 Qu X, (X5 QuXa) ' I
< IR, QueXa il (K5, QuuXos ) I
< JAAIF. Qu Xl { X5 Que X ) Iz
< Cn M7, QuXallz = O(1).
Therefore, we have |BZ,]:L11)| = |I; + | = oo, which

contradicts with Lemma A .4, that is, the assumption is
false. This completes the proof of Lemma A.5. O

Appendix 2. Proof of Theorem 3.1

To prove Theorem 3.1, we consider what happens if
My # 0, that is, there still exist relevant variables,
which are not identified after K, steps. For simplicity,
we assume that the variables enter the model one by

one. We first focus on the two terms in 8(/\(affll)) asin
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Lemma A.5. Note that

RSS(My) — RSS(Mys1)
=Y Qu X4 (X, QuXa} X QY
~T ~ _ ~ ~
> 1Y Qui X 3 (X5, Qi X4,

ST
> (Tma) " 1Y Qe Xoa 13- (A.18)

On the other hand, by Lemma A.5, we have

RSS(My) — RSS(Mi1) = [A* (M)

— A (M )11 + 0p(D)). (A.19)

Therefore, by (A.3), (A.18), (A.19), with probability
tending to one,

1| (@ry1, Miy, B
17" Qe Xl
1| (a1, Mitr, Bl
T T (A (M) — A* (Miy1))
- A (Miyr) A
”'BMZH v/ Tmax (AF (M) — AE(Mis1))
(A.20)

| >

tkn-

By some simple calculations, we have

17" Que X 17T, Qui X, (X5, Que X} ' I

< 17" Que X 127 Qu X (X5 Que X} 2

< 1Y Qu X, ||z||3€;rk+lQMk7~(Ak ll2Ymin (i};\kQMkiAk)

Ymax (iik QMJN(Ak)

Ymin (i,ak QMkiAk) ’
(A21)

< VT (BF (M) — A (M)

where the last inequality is obtained by (A.17) and
(A.18). Let

A0 > Aok = Vmax (X,TAkQMkiAk) yl’l’_li}’I (i,thkQMkiAk) > 1.

By (A.20) and (A.21), we have

|1 n| Y (g1, Migr, B tkon
> > —

LI ™ Ao/ NTmax (AE (M) — A (Mrr))  ho

If ty, , — o0, we have I/’S\éﬁl” — 00, which contradicts
with Lemma A.4. This means that t , < oco. Then, we
have || < 2—0 |I;|. Together with Lemma A.4, we have

—~,

Ao
1> 0B > L] - L] > (1 —~ ;) 1|
N

= tk,n - )\0-

By this result, we have 0 < tx, , < Ao + 1. Using the def-
inition of ¢ , in (A.20), we have

AF(Mis1)?

ntmax(l + )\-0)2 ”ﬂ/\/l];rl ”% ‘
(A.22)

A (M) = A (Miqr) =

If M # @for 0 < k < K, — 1, by the Cauchy-Schwarz
inequality and (A.4), we can further get
AP (Mir)?
ntmax(l + )"0)2 ||B(M]:+1) ”%
nzfélin”ﬂ/\/l;H ||‘2l

>
T NTmax(1+ 20)% 1B, I3IM |

- ”zfﬁlin”ﬂ/\/t;ﬂ I3 - ntl B
N ntmax(l + )”0)2|Mk_+1|2 N Tmax(l + )\0)2
Then,
K,—1
A (M) = AF (M) = D (AF (M) — A* (Myy))
k=0
2 2
> nKnﬂmintmin (A23)

- fmax(l + }\0)2 '
where My = . On the other hand, we have

AF(Mp) — A (Mg,) < AF(M) < NTmalI Bl

< NTmax poCy- (A.24)

Under regular conditions (C1)-(C3), and by the defini-
tion of K,,, we have

2 2
nK”Tmin min >

tmax(l + )"0)2 N
It contradicts with the results (A.23) and (A.24), and
this means that My C Mk, with probability tending
to one. Hence, the proof of Theorem 3.1 is completed.

Tmaxh pOCfg.

Appendix 3. Proof of Theorem 3.2

Define kyin = min;<x<,{k : M7 C Mj}. By Theorem
3.1, kmin is well defined and satisfies kpi, < Mk, . For
any 1 < k < kpyin , M are underfitted models such that
M7 & My and M are nested. Therefore, if we can
prove Pr(k < kmin) — 0, the conclusion (10) will fol-
low. According to Theorem 3.1, with probability tend-
ing to one,

EBIC(M,) — EBIC(My1)

52
=In (AZ(M") ) —n'(nn+2¢1np)
O M)

2 -2
> In (1 + O(M’iz—U(M“)> —n (1 +20)Inp
O (Mt
AP (M) — AR (Migr) )
4 max{A* (Miq1), A8 (Mig1))
—n ' (1+2¢) Inp.

> In (1 +
(A.25)

Next, we study (A.25) under the following two cases.
First, if max{A" (M), A*(Mig1)} = A (Mip),
then by (A.4) and (A.22), with probability tending to
one, the right-hand side of (A.25) is bounded below by

NTmin ,3 min

_ rmin/Fmim. _ —1
n<1+4(1+/\0)2nrmax> ndr2)Inp.

(A.26)



According to the inequality In(1 + x) = min(In2,
x/2) and Lemma A.2, the right-hand side of (A.26) is
bounded below by, with probability tending to one,

TV~

min {ln 2, ———MM
8(1 + )‘O)zfmax

} —n Y1+ 20)vnt.
(A.27)

Under condition (C3), the right-hand side of (A.27) is
positive with probability tending to one uniformly for
k < kmin .

Second, if max{A* (Mpy1), A* (M)} =
A% (Mis1), by the fact A*(Myy) = n(l +op(1))
along with (A.4) and (A.22), with probability tending
to one, the right-hand side of (A.25) is bounded below
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by

In 14+ nzrriin r?;iin
4(1 + )LO)znszax

) —n 1 +2¢)Inp.
(A.28)

By Lemma A.2, with probability tending to one, the
right-hand side of (A.26) is further bounded below by

23,3
ToinVgh "

min{ln2, ————
{ 8(1+ A0)?)

} —n (14 20)vrb.

(A.29)

Under condition (C3), the right-hand side of (A.25) is
positive with probability tending to one uniformly for
k < kmin - This finishes the proof of Theorem 3.2.
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