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ABSTRACT
Factor analysis which studies correlation matrices is an effective means of data reduction whose
inference on the correlation matrix typically requires the number of random variables, p, to be
relatively small and the sample size, n, to be approaching infinity. In contemporary data collec-
tion for biomedical studies, disease surveillance and genetics, p > n limits the use of existing
factor analysis methods to study the correlation matrix. The motivation for the research here
comes from studying the correlationmatrix of log annual cancer mortality rate change for p= 59
cancer types from 1969 to 2008 (n= 39) in the U.S.A. We formalise a test statistic to perform infer-
ence on the structure of the correlation matrix when p > n. We develop an approach based on
group sequential theory to estimate the number of relevant factors to be extracted. To facilitate
interpretation of the extracted factors, we propose a BIC (Bayesian Information Criterion)-type
criterion to produce a sparse factor loading representation. The proposed methodology out-
performs competing ad hoc methodologies in simulation analyses, and identifies three signifi-
cant underlying factors responsible for the observed correlation between cancer mortality rate
changes.

1. Introduction

Due to its flexibility in characterising multivariate data,
high-dimensional factor analysis is becoming popular
in many scientific disciplines including genetic (Zhou,
Wang, Wang, Zhu, & Song, 2017), biomedical (Shimizu
et al., 2016) and economic studies (Fan, Lv, & Qi,
2011). The objectives of exploratory factor analysis are
twofold: (1) identify the number of factors that influ-
ence a set of random variables; (2) measure the strength
of the relationship between the extracted factors and
each random variable.

Inmany studies where the random variables of inter-
est are highly variable (e.g., cancer mortality rates), it
is common to standardise the random variables and
analyse the correlation matrix. Standardisation ensures
that results from factor analysis will not be driven by
random variables with large variances, which is a chal-
lenge when performing factor analysis on covariance
matrices. Additionally, in the cases where the number
of random variables exceeds the sample size, a couple
of statistical challenges arise in the analysis of corre-
lation matrices via factor models. First, existing infer-
ence methods rely on the number of random variables,
p, to be relatively small and fixed, and the sample size,
n, to be approaching infinity (Anderson, 1963; Johnson
& Wichern, 1998). Another complication is that fac-
tor analysis is not invariant to change on the scale of
variables. Methods that infer structure from covariance
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matrices (Bickel & Levina, 2008; Carvalho et al., 2008;
Fan, Fan, & Lv, 2008; Ghosh & Dunson, 2009; Huang,
Liu, Pourahmadi, &Liu, 2006; Patterson, Price, &Reich,
2006;West, 2003;Wong, Carter, & Kohn, 2003) will not
always perform similarly on correlationmatrices. There
appears to be a lack of methodology for performing
inference on correlation matrices using factor analysis
when p > n. Furthermore, traditional methods for esti-
mating the number of factors to be extracted and their
interpretation are insufficient and need further devel-
opment for correlation matrices when p > n.

Wemake several contributions with this paper. First,
we formalise a test statistic to perform inference of
the structure of the correlation matrix using the limit-
ing distribution of eigenvalues. This test statistic from
Johnstone (2001) but was not delineated as fully as we
do in this paper. Second, we extend the work of John-
stone (2001) to identify the true number of underlying
factors present in a factor model, while controlling the
type I error. Finally, we propose a BIC (Bayesian Infor-
mation Criterion)-type criterion to produce sparse fac-
tor loadings to ease interpretation of extracted factors.

The format of this paper is as follows. In Section 2,
we present a test for inference on the structure of the
population correlation matrix, which we term the
Tracy–Widom test. In Section 3, we develop a
sequential-rescaling procedure to test for the num-
ber of significant factors in a given factor model.
Section 4 describes a sparse factor model that aids in

© East China Normal University 

http://www.tandfonline.com
https://doi.org/10.1080/24754269.2017.1399740
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2017.1399740&domain=pdf
mailto:marinom@ohsu.edu


STATISTICAL THEORY AND RELATED FIELDS 247

interpreting the factors detected from the proposed test.
Section 5 presents some designed simulation studies
based on the proposed methodology. Section 6 applies
the developed methodology to study the correlation
matrix of cancer mortality ARC data, followed by our
concluding remarks in Section 7.

2. Methods

2.1. Factormodel formulation

Consider a random vector X = (X1,… , Xp)T where
each component Xj follows a standard normal distribu-
tion. Because different cancers have varying degrees of
volatility, normalisationwill ensure that the analysiswill
not be dominated by a few cancer types. The primary
aim of this project is to study the correlation matrix of
X.

A factor model postulates that X is linearly depen-
dent on a few underlying, but unobservable, random
quantities F1,… , Fm called common factors and p addi-
tional sources of variation ϵ1,… , ϵp called white noise
or specific factors, such that

X = LF + ε (1)

where F = (F1, . . . , Fm)T ∼ MVN(0, Im) is a vector
of m common factors, L = (�1, . . . , �m) is a p × m
matrix of factor loadings with �l = (�l1,… , �lp)T for l=
1,… , m and Im is an identity matrix of dimension m.
We denote the residual as ε ∼ N(0, �) where � is a
p × p diagonal matrix with the lth diagonal element
being ψl = 1 − �21l − · · · − �2ml to ensure that Var(Xj)
= 1.

If we assume that F and ε are independent in Equa-
tion (1), then it follows that the correlation matrix for
X is R = LLT + �. Using an eigenvalue decomposi-
tion, LLT = λ1e1eT1 + · · · + λmemeTm with m orthonor-
mal eigenvectors el for l= 1,… ,m such that λ1 � λ2 �
· · · � λm � 0 and eTl ek = δlk, which equals 1 if l= k and
0 otherwise.Hence,LF = ∑m

l=1
√

λlF lel and results in

X =
m∑
l=1

√
λlF lel + ε (2)

where λ1, λ2,… , λm correspond to them largest eigen-
values of R.

2.2. Testing complete independence
of the correlationmatrix

One of the first objectives of studying the correlation
matrix of a set of random variables is to determine if
factor analysis is a reasonable method of analysis. This
is equivalent to performing inference on the structure
of the correlation matrix with test of H0 : R = I versus
the alternativeHa : R �= I.We base our test forH0 : R =
I on the largest eigenvalue of the sample correlation
matrix of X. A result of random matrix theory (RMT)
suggests that we can build a theoretical distribution for

the largest eigenvalue of random matrices under the
null hypothesis of complete independence (Johnstone,
2001). A test of complete independence about the p
random variables compares the observed sample eigen-
value λ̂1 to the theoretical distribution of λ1 under RMT
prediction. This test will reveal one of two possibilities:
the first being that λ̂1 will be determined to not sig-
nificantly differentiate from RMT prediction. This sug-
gests that H0 : R = I cannot be rejected and therefore
that factor analysis will not prove to be useful because
specific noise factors play a more dominant role in the
observed correlation than common underlying factors.
The second possibility for a test of the largest eigenvalue
is that it will determine λ̂1 to significantly deviate from
RMT prediction (i.e.,H0 : R = I is rejected in favour of
the alternative). This scenario suggests that one (or pos-
sibly more) underlying factor(s) could be responsible
for the observed correlation between the random vari-
ables.

To proceed, we describe the test statistic for testing
H0 : R = I. Suppose that data matrix X = (Xi j)n×p has
entries that are independent and identically distributed
as standard normal. Let ξ̂1 ≥ ξ̂2 ≥ · · · ≥ ξ̂p denote the
sample eigenvalues of a Wishart Matrix, XTX . We can
test the significance of ξ̂1, the largest eigenvalue ofXTX ,
with test statistic

Tnp = (ξ̂1 − μnp)

σnp
(3)

where

μnp =
{

(
√
n − 1 + √

p)2, when n ≥ p
(
√
p− 1 + √

n)2, when p > n

and

σnp =
{

(
√
n − 1 + √

p)( 1√
n−1 + 1√

p )
1/3, when n ≥ p

(
√
p− 1 + √

n)( 1√
p−1 + 1√

n )1/3, when p > n.

Johnstone (2001) has shown that under H0, and n,
p → � such that n/p → γ for γ some constant and
the test statistic Tnp

d→ W1, where W1 is called the
Tracy–Widomdistribution (Tracy&Widom, 2000).We
term (3) the Tracy–Widom test and will reject the null
hypothesis of H0 : R = I when Tnp > W1, 1 − α where
W1, 1 − α is the (1 − α) × 100 percentile of the Tracy–
Widom distribution. One of the strengths of this test
is that it can be applied in the classical setting where
n > p as well as in high-dimensional settings where
p > n.

2.3. Correlation correction of Tracy–Widom test

A technical note suggests that the Tracy–Widom test
applies to the study of covariance matrices and does not
directly apply to correlation matrices, which is prob-
lematic for distribution theory (Anderson, 1963). To
be able to apply the Tracy–Widom test to study corre-
lation matrices, we expand on the procedure that was
briefly mentioned in Johnstone (2001) but has not been
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fully studied. To this end, suppose we draw n i.i.d. row
vector samples from N(0, �) to produce data matrix
Xn×p. Under the null hypothesis, the column vectorsX j
are i.i.d on the unit sphere Sn − 1. As a result, we canmul-
tiply each X j by an independent chi-distributed length
to synthesise a Gaussian matrix, call it X̃ such that X̃ =
[X̃1 . . . X̃ p] where X̃ j = ψ jX j andψ2

j ∼ χ2
(n−1).We can

then construct a sample pseudo-covariance matrix S̃ =
X̃

T
X̃ which approximately follows a Wishart distribu-

tion with n− 1 degrees of freedom. Under the null, this
data augmentation allows us to apply the Tracy–Widom
test on the largest eigenvalue of S̃ to test H0 : R = I.

3. Identifying additional factors

If H0 : R = I is rejected, then at least one latent factor
is useful in describing the observed correlation among
the p random variables. One of the most crucial steps of
factor analysis is to estimate the true number of under-
lying factors, m, as misspecification of the number of
factors retained can lead to poor factor-loading pat-
tern reproduction and interpretation (Hayton, Allen, &
Scarpello, 2004). Furthermore, estimation of the num-
ber of factors can affect the factor model results more
than other decisions, such as the factor rotationmethod
used (Zwick & Velicer, 1986). In this section, we extend
the work of Johnstone (2001) to identify the number of
relevant factors to be used in a factor model.

Previous work on estimating the number of factors
have focused on factor analysis for covariance matri-
ces (Bai, 2003; Bai & Ng, 2002; Leek, 2011; Onatski,
2009). Johnstone (2001) and Baik and Silverstein (2006)
have considered the asymptotic behaviour of ξ̂r+1, the
(r + 1)th largest eigenvalue of a covariance matrix,
when the true population covariance follows a spiked
model with � = diag(τ1, . . . , τr, 1, . . . , 1), where τ 1
� · · · � τ r > 1. As factor analysis is not invariant to
changes in the scale of the variables, it is often rec-
ommended that factor analysis be performed for stan-
dardised variables. Standardisation converts a covari-
ance matrix problem into a correlation problem and it
is unclear how these methods would be applied to the
study of sample correlation matrices.

Common ad hoc methods of determining the num-
ber factors to extract from correlation matrices include
the scree plots, Guttman–Kaiser criterion and paral-
lel analysis. The number of extracted factors based
on the scree plot is highly subjective as the esti-
mate is visually selected as point that resembles an
elbow. The Guttman–Kaiser criterion (Guttman, 1954;
Kaiser, 1960) selects the number of factors to be equal
to the number of sample eigenvalues of the correla-
tion matrix that are greater than one. Parallel analy-
sis (Horn, 1965) is a simulation-based approach that
compares the eigenvalues of the sample correlation
matrix to eigenvalues from a matrix of random val-
ues of the same dimensionality. The estimated number
of factors retained are the number of observed sample

eigenvalues greater than the 95th percentile of the dis-
tribution of eigenvalues derived from the random data.

3.1. Sequential-rescaling testing procedure

We propose to view the testing procedure of extract-
ing relevant underlying factors as a sequential proce-
dure. Given that the Tracy–Widom test is used to test
the largest eigenvalue, we propose a sequential method
that removes the effect of the first factor (if significant)
and produces a new data matrix from which we can
construct a new correlationmatrix and apply once again
the Tracy–Widom test on the new largest eigenvalue. In
general, we will test for the significance of λk only after
verifying that λk − 1 are significantly different thanRMT
prediction and after eliminating the effect of the first k−
1 factors. We remove the effect of the first k − 1 factors
because of the phenomenon where the largest eigen-
value has the potential to pull other sample eigenval-
ues away from unity. The resulting procedure is termed
a sequential-rescaling procedure. The advantage of the
procedure that follows is that it controls the type I error
through the use of an alpha spending function, and it
is not a conservative technique based on what has been
proposed in Patterson et al. (2006).

Suppose we have declared the first k − 1 eigenval-
ues to be significantly different than RMT prediction.
The following procedure tests the subsequent eigen-
value λk. The procedure assumes the Tracy–Widom test
has already identified λ1, λ2,… , λk − 1 to be signifi-
cant. Associated with eigenvalue λ� is its corresponding
eigenvector e� = (e�1, . . . , e�p). We proceed to test λk
through the following two-step procedure:

Step 1. Construct a data matrix X (k) such that

X (k) = Dk−1
−1/2(X (k−1) −

√
λk−1ek−1Fk−1) (4)

where Dk−1 is the rescaling diagonal matrix
with its ith diagonal element being Dk−1,ii =
1 − λk−1e2k−1,i. The rescaling matrix,D−1/2

k−1 will
assure the desirable property that var(X (k)) =
1. Note that we have removed the effect of the
first k − 1 factors in Equation (4) through the
(X (k−1) − √

λk−1ek−1Fk−1) term.
Step 2. It can be shown that the sample correlation

matrix for the rescaled X (k), on which we will
test the significance of λk using the Tracy–
Widom test proposed in Equation (3) is

Rk
def= D−1/2

k−1 (Rk−1 − λk−1ek−1e′
k−1)D

−1/2
k−1 (5)

We perform this two-step procedure apply-
ing the Tracy–Widom test on each subsequent
eigenvalue until an eigenvalue is no longer sig-
nificant.

We note that caution should be taken when test-
ing subsequent sample eigenvalues. To circumvent the



STATISTICAL THEORY AND RELATED FIELDS 249

multiple testing issues that are present in this procedure,
we applymethodology from the group sequential analy-
sis literature to control the type I error. Lan and DeMets
(1983) proposed an alpha spending technique in which
the nominal significance level needed to reject the null
hypothesis at each analysis is less than α and increases
as the study progresses. If an overall type I error (α) is
desired, we propose to use the following alpha spending
function:

α∗(k) = α/2k (6)

where α∗(k) is the significance level for the kth hypoth-
esis test. This is opposed to Lan and DeMets (1983),
as alpha spending function (6) does not depend on the
overall number of tests being conducted. Therefore, one
need not specify the maximum number of eigenvalues
being tested, which is ideal for unsupervised learning.

We define type I error as the probability of incor-
rectly choosing a model that has extracted more fac-
tors than the truemodel. Compared to Lan andDeMets
(1983) who suggest that the alpha spending function
should be non-decreasing, our spending function is
non-increasing (α∗(1)> α∗(2)> · · · > α∗(K)); because
finding a parsimonious model is preferred, we need
strong evidence for choosing amore complicatedmodel
with more significant eigenvalues over a simpler one.
We have shown in supplementary material that the
overall type I error rate using the proposed spending
function (6) will not exceed α.

4. Interpretation of factors

After an estimation is made for the number of factors
to be used, the next objective in factor analysis is to
provide an interpretation for each underlying factor.
In principle, the factor loadings provide the basis for
interpreting the factors underlying the data. The size
and direction of the extracted factor loadings denote the
strength and direction of the correlation between the
random variables and the extracted factors. Tradition-
ally, the task of interpreting factors has been subjective
and unsatisfactory.

Because the original factor loadingsmaynot be easily
interpretable, it has become common to rotate the load-
ings (e.g., varimax, oblique, etc.) to increase or decrease
the size of factor loadings to ease of interpretation.
Unfortunately, regardless of the factor rotation used, it
is rare for factor loadings to be set exactly to zero which
would ease in the interpretation of the underlying
factor.

With the recent developments of regularised regres-
sion in mind, we propose to implement a regularisation
technique to detect a set of sparse factor loadings for
easier interpretation of identified factors. The resulting
sparse factor loading vector sets the loadings of negli-
gible random variables to zero, assuring that they will
not contribute to the interpretation of the underlying

factor, making the interpretation of the factors more
straightforward. Additionally, because negligible ran-
dom variables are removed, the variance explained by
the sparse factor loadings will not suffer much from
their removal.

Eigenvalue decomposition (2) provides the factoring
of the correlationmatrix ofR. The factor loadingmatrix
L is given by L = (

√
λ1e1, . . . ,

√
λmem) where (λl, el )

are the eigenvalue–eigenvector pairs of R. Producing
sparse factor loadings is equivalent to setting compo-
nents of el to zero. It can be shown that apart from the
scale value

√
λl , the factor loading column el are the

coefficients of the principal components of the popu-
lation. This observation allows us to implement well-
studied sparse principal components methods to pro-
duce sparse factor loadings.

We propose to regularise el for l= 1,… ,m using the
sparse principal components analysis (SPCA) method
proposed by Zou, Hastie, and Tibshirani (2006). SPCA
essentially takes the problem of setting PCA loadings
to zero and transforms it into a regression-type prob-
lem that uses an elastic net regularisation technique to
detect sparse loadings evenwhen p>n. Details of SPCA
methodology can be found in Zou et al. (2006), but we
provide a brief description in the following.

4.1. SPCA for sparse factor loadings

We consider the problem of producing sparse fac-
tor loadings for the m estimated factors. Let Ap×m =
(α1, . . . , αm), Bp×m = (β1, . . . , βm) and X be the n ×
p data matrix as before and X i denote the ith row vector
of X . The problem of producing sparse factor loadings
can be transformed into the following regression-type
criterion with an elastic net penalty:

(Â, B̂) = argmin
A,B

n∑
i=1

||X i − ABTX i||2

+ γ

m∑
l=1

||βl ||2 +
m∑
l=1

γ1,l ||βl ||1

subject to ATA = Im×m (7)

for any γ > 0. The last term in Equation (7) uses the L1
penalty to produce sparse factor loadings because the
estimated sparse factor loadings, defined as êsl = βl

||βl ||
for l = 1,… ,m, are a function of the sparse β l vector.

4.2. Selection of tuning parameter

The optimisation problem in Equation (7) contains two
tuning parameters that must be selected. The first tun-
ing parameter, γ , is the same for all them factors. It has
been shown (Zou et al., 2006) thatwhen p>n, a positive
γ is required to produce exact loadingswhen the second
tuning parameter is set to zero. The tuning parameter
γ has been studied and is well understood. Empirical
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evidence has shown that for the case when n > p, γ

can be set to zero. When p > n, γ can be set to a small
positive number to overcome collinearity between the
columns of X .

The second tuning parameter γ 1, l is a factor-specific
tuning parameter and requires more development. Zou
et al. (2006) did not provide clear guidance on select-
ing γ 1, j, other than choosing γ 1, j such that it provides
a good compromise between explained variance and
sparsity. Other methods exist for selecting the tuning
parameters, such as cross validation (Shen & Huang,
2008) which could be computationally extensive and
requires a large sample size. We add to the current liter-
ature on producing sparse factor loadings by proposing
a BIC-type criterion for selecting the factor specific tun-
ing parameters (γ 1, 1,… , γ 1, m).

For a fixed γ , we propose to use the following
BIC-type criterion for selection of tuning parameters
(γ 1, 1,… , γ 1, m):

BIC = log

⎡
⎣ 1
np

n∑
i=1

p∑
j=1

(Xi j − �̂ jF̂i)2
⎤
⎦

+ d f (γ1,l, L̂)
log(np)
np

(8)

where �̂ j = (�̂1 j, �̂2 j, . . . , �̂mj) = (

√
λ̂1ês1 j, . . . ,√

λ̂mêsm j), L̂ = (�1, . . . , �p)
T is the factor loading

matrix and F̂i = (λ̂1
−1/2

ês1X i, . . . , λ̂m
−1/2

êsmX i) where
X i = (Xi1, . . . ,Xip)

T . We define the degrees of free-
dom, d f (γ1,l, L̂), to be the number of non-zero
loadings in the loading matrix L̂. Zou, Hastie, and Tib-
shirani (2007) showed that the number of of non-zero
coefficients in lasso regression provides an unbiased
estimate for the degrees of freedom and suggests that
BIC can be used to determine the optimal number of
nonzero factor loadings.

5. Analysis of simulated data

To assess the performance of the proposed method, we
simulate data from factor models where the p observ-
able random variables are constructed from zero, one,
two or three underlying factors. The zero factor model
is given by Xj = ϵj where ϵj ∼ N(0, 1) for j = 1,… , p.
The one factor model is given by

Xj = U1F1 + ε1j ε1j ∼ N(0, 1), j = 1, . . . , 30

Xj = ε0j ε0j ∼ N(0, 1), j = 31, . . . , p

whereU1 ∼Unif(0, 1) and F1 ∼N(0, 1). The two factor
model is simulated from

Xj = U1F1 + ε1j ε1j ∼ N(0, 1), j = 1, . . . , 30

Xj = U2F2 + ε2j ε2j ∼ N(0, 1), j = 31, . . . , 50

Xj = ε0j ε0j ∼ N(0, 1), j = 51, . . . , p

where U2 ∼ Unif(0.5, 1.5) and (F1, F2)′ ∼ MVN(0, I).
Finally, the three-factormodel is simulated from the fol-
lowing model:

Xj = U1F1 + ε1j ε1j ∼ N(0, 1), j = 1, . . . , 30

Xj = U2F2 + ε2j ε2j ∼ N(0, 1), j = 31, . . . , 50

Xj = U3F3 + ε3j ε3j ∼ N(0, 1), j = 51, . . . , 75

Xj = ε0j ε0j ∼ N(0, 1), j = 51, . . . , p

whereU3 ∼Unif(1, 1.5) and (F1, F2, F3)′ ∼ MVN(0, I).
We consider configurations of the data by taking n

samples from each of the factor models and we vary p
to be less than, equal to or more than n. The following
parameter configurations are considered: (p= 100, n=
500), (p = 500, n = 500), (p = 500, n = 100). We also
consider the special case when p = 59, n = 39, which is
the number of distinct cancer types and the sample size
of the SEER cancer mortality data. In this special case,
the number of random variables loading on F1 is 25, the
number of random variables loading on F2 is 15 and 10
on F3.

5.1. Simulation results for estimating the number
of factors

In this section, we use the simulated data-sets to
demonstrate the behaviour of the sequential-rescaling
procedure when used to estimate the number of fac-
tors in a model with zero, one, two or three underly-
ing factors. We compare the proposed procedure to the
Guttman–Kaiser criterion and parallel analysis.

We present simulation results in Table 1 for 1500
simulated data-sets derived from zero-, one-, two- or
three-factor models. The results in Table 1 shows that
the proposed method performs well, and in almost all
cases outperforms the Guttman–Kaiser criterion and
parallel analysis. The Guttman–Kaiser criterion con-
sistently overestimates the number of factors to be
retained, compared to other methods (even when n >

p). We note that when p is vastly larger than n, the
Guttman–Kaiser criterion always estimates the number
of factors to be the rank of R̂.

The parallel analysis method of estimating the num-
ber of factors is relatively accurate across the range of
factor models when n > p. When p becomes compara-
ble to n, the parallel analysis estimator overestimatesm
compared to the proposed methodology. As p becomes
significantly larger than n, the parallel analysis estima-
tor breaks down and significantly overestimatesm.

5.2. Simulation results of BIC criterion

For each of the simulated data-sets, there are numer-
ous random variables that have zero loadings on the
underlying factors. We perform SPCA on each of the
simulated extracted factor loadings to obtain vectors of



STATISTICAL THEORY AND RELATED FIELDS 251

Table . Simulation results based on  simulated data-sets for selecting the true number of factors compar-
ing Guttman criterion (Gu), parallel analysis (Pa) and the proposed methodology (Pr). Presented is the discrete
probability of the estimated number of factors (m̂) and its correspondingmean and standard deviation for one-,
two- and three-factor models. The number of random variables (p) and sample size (n) are varied.

Zero-factor One-factor Two-factor Three-factor

(p, n) m̂ Gu Pa Pr Gu Pa Pr Gu Pa Pr Gu Pa Pr

(, )  . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .

+ . . . . . . . . . . . .
mean(m̂) . . . . . . . . . . . .
sd(m̂) . . . . . . . . . . . .
(, )  . . . . . . . . . . . .

 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .

+ . . . . . . . . . . . .
mean(m̂) . . . . . . . . . . . .
sd(m̂) . . . . . . . . . . . .
(, )  . . . . . . . . . . . .

 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .

+ . . . . . . . . . . . .
mean(m̂) . . . . . . . . . . . .
sd(m̂) . . . . . . . . . . . .
(, )  . . . . . . . . . . . .

 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .

+ . . . . . . . . . . . .
mean(m̂) . . . . . . . . . . . .
sd(m̂) . . . . . . . . . . . .

factor loadings with zero loadings that can help in inter-
preting the underlying factors. We choose the factor-
specific tuning parameters (γ 1, 1,… , γ 1, m) based on
the BIC criterion described in Section 4.2. We consider
200 simulated data-sets for one-, two- and three-factors
models with varying (p, n) as described earlier.

We present the estimated number of non-zero fac-
tor loadings, the false positive rate and false negative
rate for each factor based on sparse PCA using the pro-
posed BIC criterion in Table 2. Across all factor models,
the BIC tuning parameter selection method selects the
true non-zero loadings with good consistency when n

Table . Simulation results based on  simulated data-sets for the pro-
posed BIC-type criterion tuning parameter selection. The |�m| denotes the
true number of random variables that load on each corresponding factor
and |�̂m| denotes the mean number of non-zero factor loadings for each
factor across the simulated data-sets. FP and FN denote the false positive
rate and false negative rate, respectively. The number of random variables
(p) and sample size (n) are varied.

One-factor Two-factors Three-factors

(p, n) F F F F F F

(, ) |�m| . . . . . .
|�̂m| . . . . . .
FP . . . . . .
FN . . . . . .

(, ) |�m| . . . . . .
| ˆ�m| . . . . . .
FP . . . . . .
FN . . . . . .

(, ) |�m| . . . . . .
| ˆ�m| . . . . . .
FP . . . . . .
FN . . . . . .

(, ) |�m| . . . . . .
| ˆ�m| . . . . . .
FP . . . . . .
FN . . . . . .
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Figure . Visualisation of the standardised log-annual cancer mortality rate change correlation matrix of the  unique male cancer
types. Ellipse-shared glyphs for each entry represent the level curve of a bivariate normal density with the matching correlation.
Darker Ellipses denote a positive correlation greater than . and lighter ellipses denote a negative correlation of more than −..
Ellipses with no color denote correlation between−. and .. The cancer type can be matched to the number on the figure and in
Table .

is large and when n is larger or comparable to p. When
p > n, the BIC tends to select larger models for factor 2
and factor 3 and the false positive rate and false negative
rate are no longer negligible.

6. Data analysis

The motivation for the proposed statistical methodol-
ogy is derived from work on identifying change pat-
terns in cancer mortality trends. Cancer mortality data
for the United States come from the National Cancer
Institute’s Surveillance, Epidemiology and End Results
(SEER) Program. We analyse age-adjusted cancer mor-
tality change patterns separately for males and females.
For the sake of brevity and to avoid redundancy, we only
present the results for males.

In the study of cancer mortality change pattern
trends, it is common to use the log transformed annual
rate change (ARC) instead of the actual mortality rate.
The ARC of cancer type j in year i denoted by ARCij
is defined as ARCij = log rij − log ri − 1, j, where rij

Table . Sequential-rescaling procedure: largest
four estimated eigenvalues of the pseudo-
covariance matrix (ξ̂i) are denoted in the second
column. The p value for the corresponding Tracy–
Widom test and alpha spending function, α∗(k),
are in the third and fourth column, respectively.
The last column denotes the decision to retain or
not retain the factor.

Factor ξ̂i p value α∗(k) Decision

 . <. . Retain
 . <. . Retain
 . . . Retain
 . . . Do not retain

denotes the cancermortality rate of cancer type j in year
i, and the log transformation is applied to normalise the
data and the difference to construct independent com-
ponents (Kim, Fay, Feuer, & Midthune, 2000). Because
the different cancer types have varying levels of volatil-
ity, we will centre and standardise ARCij such that it
has mean 0 and variance 1. We denote the standard-
ised rate change as Xij. We obtain an estimate of the
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Table . Specific male cancer types and their corresponding sparse factor load-
ings. Sparse loadings are estimated by SPCA.

# Cancer type Factor  Factor  Factor 

 Lip
 Tongue
 Salivary gland − .
 Floor of mouth
 Gum and other mouth
 Nasopharynx
 Tonsil
 Oropharynx
 Hypopharynx .
 Other oral cavity and pharynx − .
 Esophagus
 Stomach
 Small intestine
 Colon excluding rectum − .
 Rectum and rectosigmoid junction .
 Anus, anal canal and anorectum .
 Liver − .
 Intrahepatic bile duct − .
 Gallbladder
 Other biliary
 Pancreas .
 Retroperitoneum
 Peritoneum, omentum and mesentery
 Other digestive organs .
 Nose, nasal cavity and middle ear
 Larynx − .
 Lung and bronchus − .
 Pleura − .
 Trachea, mediastinum and other respiratory organs
 Bones and joints − .
 Soft tissue including heart .
 Melanoma of the skin − . − .
 Other non-epithelial skin .
 Breast − .
 Prostate − .
 Testis
 Penis
 Other male genital organs
 Urinary bladder
 Kidney and renal pelvis − . − .
 Ureter
 Other urinary organs .
 Eye and orbit − .
 Brain and other nervous system − . − .
 Thyroid
 Other endocrine including thymus
 Hodgkin lymphoma
 Non-hodgkin lymphoma − .
 Myeloma − .
 Acute lymphocytic leukemia − .
 Chronic lymphocytic leukemia
 Other lymphocytic leukemia .
 Acute myeloid leukemia
 Acute monocytic leukemia .
 Chronic myeloid leukemia − . − .
 Other myeloid/monocytic leukemia .
 Other acute leukemia
 Aleukemic, subleukemic and NOS
 Miscellaneous malignant cancer .

correlation matrix, R̂ = 1
n−1X

TX where Xn×p is the
data matrix with Xij as its (i, j)th entry. Cancer mortal-
ity rates were obtained for p = 59 distinct male cancer
types over n = 39 years (1969–2008).

6.1. Application of proposedmethodology to SEER
data

To visualise the correlation matrix of cancer ARC,
we construct a correlation matrix using ellipse-shared

glyphs for each entry in Figure 1. Overall, Figure 1
displays how the correlation matrix is dominated by
low correlations between the cancer types. It is feasible
that the population correlation matrix of ARC could be
equal to the identity matrix and that the few moderate
observed correlations are simply noisy estimates.

We begin our investigation of the correlation matrix
of ARC by testing the null hypothesisH0 : R = I versus
the alternative HA : R �= I. To test this hypothesis, we
study the largest eigenvalue of R̂ which was estimated
to be 7.12. After performing the correlation correction
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of the Tracy–Widom test described in Section 2.3, the
estimated largest eigenvalue of the pseudo-covariance
matrix is 268.90. Applying the Tracy–Widom test
on this value, we calculate the test statistic Tnp =
8.63 where μnp = (

√
59 − 1 + √

38)2 = 189.89 and
σnp = (

√
59 − 1 + √

38)( 1√
59−1 + 1√

38
)1/3 = 9.16.

Compared to the Tracy–Widom distribution of
order 1, the test statistic results in a p value<0.0001.We
reject the null hypothesis of complete independence
in ARC between cancer types which suggests that at
least one factor is sufficient to describe the observed
correlation among the cancer types.

Next, we determine the number of factors to be used
in the analysis using the sequential rescaling procedure
described in Section 3.1 and present those results in
Table 3. Table 3 suggests that three underlying factors
are important in characterising the correlation matrix
of cancer mortality ARC.

Next, for the three extracted factors we performed
sparse principle components analysis described in
Section 4 to regularise the factor loadings. Only can-
cer types with meaningful associations to each under-
lying factor will have a non-zero factor loading, and we
consider these to be important for the interpretation of
the factors. We set γ = 1.0 × 104 in our SPCA analysis
because the number of cancer types exceeded the num-
ber of data points available. To determine the degree of
sparsity for each factor, we selected (γ 1, 1, γ 1, 2, γ 1, 3) to
be the values that minimised the BIC criterion in Equa-
tion (8).

We present in Table 4, the 59 unique cancer types
and their corresponding sparse factor loadings for the
extracted factors. Of all the 59 cancers, 28 cancer types
had zero loadings on all three factors.We note that lung
and bronchus, prostate and colon cancer sites load heav-
ily on the first factor but has exactly zero loadings for
factors 2 and 3. Factor 1 might provide more support
to the hypothesis that, as for colorectal cancer, early
detection through screening and advances in treatment
for prostate cancer are important factors that underlie
the change in mortality rate. Factor 2 appears to con-
trast soft tissue cancers and leukemia, however, it is not
clearly evident what is driving to their observed correla-
tion. The interpretation of factor 3 appears to be highly
related to miscellaneous cancer types (miscellaneous
malignant cancer, other myeloid/monocytic leukemia,
other digestive organs, etc.). Figure A1 provides addi-
tional information on each factor and their ARC change
over time.

7. Discussion

We have described a methodology based on RMT
that uses factor analysis to make inference on
correlation matrices for settings where p > n. The
methods described herein are applicable to a wide

range of data, because it can be applied to cases where
p > n as well as to traditional cases where n > p.
We observed that current methods for selecting the
number of factors (Guttman–Kaiser criterion and
parallel analysis) do not perform well when p > n.
Thus, we developed a sequential-rescaling procedure to
determine the number of significant factors in a factor
model using the Tracy–Widom test. This procedure
is based on group sequential theory to control for the
overall type I error. We described a practical approach
to interpret the significant factor loadings using SPCA
and a novel BIC-type criterion which regularises the
noisy estimates of the factor loadings. Simulation stud-
ies demonstrate great performance for the proposed
methodology in selecting the number of factors to be
extracted and for identifying the important random
variables that load on the underlying factors.

A number of open problems present themselves. The
methods herein were constructed under the normality
assumption. It is unclear how to determine complete
randomness against any deviation from normality. For
future work, it would be ideal to study the robustness
of this methodology and the Tracy–Widom test against
different distributional assumptions. Another limita-
tion is that we have not explored any methods that test
whether the change patterns of any two specific cancer
types are correlated over time. Factor analysis identifies
groups of cancers that are linearly dependent upon a
few unobservable latent random variables, but cannot
make specific statements about pairwise correlations.
Identifying specific pairs of cancers that share similar
change patterns could be extremely useful for can-
cer researchers. One avenue to explore related to the
identification of significant pairwise change patterns
would be to regularise the elements of the correlations
themselves, which have been extensively studied for
covariance matrices (Cai & Liu, 2011; Fan, Liao, &
Liu, 2016; Rothman, Levina, & Zhu, 2009). Finally,
although our focus was on the study of the correlation
matrix when p > n, future studies should compare the
performance of the Tracy–Widom test and sequential-
rescaling procedure on covariance matrices to compare
the performance and generalisability of these methods.
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Appendix

In this section, we show that the proposed alpha spend-
ing function

α∗(k) = α

2k

to test the number of significant factors will not exceed
α, by calculating three probabilities.

(1) Probability that a model with one or more fac-
tors is chosen given a true zero-factor model.
Let Lm be the event that the true model has m
significant factors and L̂m the estimated number
of factors. Then it follows that

P(L̂k≥1|Lo) = 1 − P(L̂0|L0) = 1 − (1 − α) = α

(2) Probability that amodel is selectedwith k factors
given a true zero-factor model for any k � 1.

P(L̂k|L0) =
(
1 − α

2k+1

) k∏
q=1

α

2q
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Figure A. Line plots of standardised log annual cancer mortality rate change over time. Left panel includes all cancer types and the
last three panels plot the standardised log ARC for the cancer types that have non-zero loadings on factors ,  and , respectively. The
solid thick gray line denotes Lowess smoothing curves.

Because ( α
2k+1 ) < 1 it follows that

P(L̂k|L0) <

k∏
q=1

α

2q
< α

k∏
q=1

1
2q

where the last equality follows as the result of
αk < α as α � (0, 1). Finally, as

∏k
q=1

1
2q < 1, we

get the result that

P(L̂k|Lo) < α

(3) Probability that a model is selected with more
than k factors given a true factor model with k
factors.

P(L̂q>k|Lk) =
∞∑

w=1

⎡
⎣(

1 − α

2k+w

) k+w∏
q=k+1

α

2q

⎤
⎦

<

∞∑
w=1

k+w∏
q=k+1

α

2q

<

∞∑
w=1

α

2w
= α

Thus, the type I error does not exceed alpha in any
of the settings.

In Figure A1, we plot the cancer mortality stan-
dardised log ARC over time for for all 59 cancer types
and also three separate plots for the cancer types that
have non-zero loadings for each factor. To visualise the
pattern over time, we fit a Lowess smoothing line across
time. Overall, when we consider the change patterns
of ARC for all 59 cancer types simultaneously, we do
not observe much change in ARC over time. The factor
analysis performed identifies three distinct cancer mor-
tality patterns of ARC over time. Factor 1 is a collection
of cancer types (primarily influenced by colon, prostate
and lung cancers) that have exhibited a decrease in
ARC cancer mortality across time. The cancer types in
factor 2 have decreasing ARC that levels off after the
year 1990. Finally, factor 3 (miscellaneous) cancer types
show no change in ARC over time.
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