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ABSTRACT
The Current Population Survey (CPS) is a monthly household sample survey with a sample con-
sisting of eight rotation groups. Sampled individuals of a rotation group are interviewed four con-
secutive months and another four consecutive months after resting eight consecutive months. A
composite-type estimator is adopted in the CPS for the estimation of the monthly population
total, which combines sample information from the currentmonth’s survey and previousmonths
using the fact that 75%households have data for two consecutivemonths. There are two values,A
and K, in the composite estimator to decide how to combine the available information, and thus
this estimator is called the AK composite estimator. In this paper, we use a formula of the mean-
squared error of AK composite estimator and propose an easy-to-use method of choosing A and
K based on data, which evolves the estimation of some population quantities using the method
ofmoments and replication. Some numerical studies are conducted to illustrate the effectiveness
of the proposed method.

1. Introduction

The Current Population Survey (CPS) is a house-
hold sample survey sponsored by the U.S. Bureau of
Labor Statistics and conducted monthly by the U.S.
Census Bureau to provide estimates of employment,
unemployment and other characteristics of the non-
institutionalised civilian population 16 years of age
and older. The CPS adopts a 4–8–4 rotation sample
design that consists of a sample of eight rotation groups,
approximately equal in size, partitioned in such a man-
ner that for any given month, one-eighth of the sam-
ple is interviewed for the first time, one-eighth for the
second time,… and one-eighth for the eighth time.
Households in a rotation group are interviewed for four
consecutive months, dropped for the next eight months
and then returned to the sample for the following four
months before they retire from the sample. The rota-
tion paradigm ensures a 75% month-to-month overlap
and a 50% year-to year overlap, which makes it possible
to increase the efficiency of the current month estima-
tors using data from previous months as well as to effi-
ciently estimatemonth-to-month changes.More details
of the CPS can be found in U.S. Bureau of Labor Statis-
tics (2006) and Cheng (2012).

Let Yt be the unknown population total of a variable
of interest (e.g. total unemployed) and Nt be the total
population units at month t. The unknown population
mean is Yt/Nt (e.g. population proportion for unem-
ployed). The current estimation procedure in the CPS
can be described as follows. Based on the data in rota-
tion group i andmonth t, let Ŷt,i be a ratio, regression or
calibration estimator ofYt using some covariates such as

CONTACT Yang Cheng yang.cheng@census.gov

age, sex, race, ethnicity and other household character-
istics. A simple estimator of Yt is the average of Ŷt.i over
the eight rotation panels, i.e.

Ŷt = 1
8

8∑
i=1

Ŷt,i. (1)

Using data from the 75% sampled units in month t hav-
ing data for the two consecutive months t and t − 1, we
can estimate the month-to-month change �t = Yt −
Yt − 1 by

�̂t = 1
6

∑
i∈s

(Ŷt,i − Ŷt−1,i−1),

where s = {2, 3, 4, 6, 7, 8}. Note that units in group i =
1 or 5 do not have data for month t − 1. This estimator
of change together with the estimated monthly total for
month t − 1 provides an alternative estimator of Yt:

Ŷt−1 + �̂t . (2)

While the simple estimator in (1) is based on the data
collected in month t only, the alternative estimator in
(2)might bemore efficient since it makes use of the data
from month t − 1 as well as data from month t in over-
lapping rotation groups in s. On the other hand, the esti-
mator in (2) does not use data from month t and rota-
tion groups 1 and 5 that are not in s. Thus, to combine
the advantages of the estimators in (1) and (2), the fol-
lowing first-generation composite estimator was used
prior to 1985:

Ŷ ′
t = (1 − K)Ŷt + K(Ŷ ′

t−1 + �̂t ), (3)
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which is a convex combination of two estimators
defined in (1) and (2) with a value K between 0 and 1.

After a series of pioneer research studies (e.g. Gurney
&Daly, 1965; Huang & Ernst, 1981), in 1985, a different
composite estimator was introduced by adding another
term to the composite estimator Ŷ ′

t in (3), which is the
estimator of the net difference between the incoming
and continuing parts of the current month’s sample:

ζ̂t = 1
8

(∑
i/∈s

Ŷt,i − 1
3

∑
i∈s

Ŷt,i

)
.

The resulting second-generation composite estimator is
called the AK composite estimator:

Ŷ ′′
t = (1 − K)Ŷt + K(Ŷ ′′

t−1 + �̂t ) + Aζ̂t , (4)

where A and K are two values to be determined based
on some criterion. By assigning more weights to rota-
tion groups that have been in the sample for the first
and fifth time, the additional term Aζ̂t might reduce
both the bias and variance of the composite estimators
(Gurney & Daly, 1965).

The population mean Yt/Nt is estimated by Ŷ ′′
t /N̂t ,

where N̂t is the same as Ŷ ′′
t with all observed values

being set to 1.
Kumar and Lee (1983) studied the mean-squared

error (MSE) of the AK composite estimator with a sim-
ple six rotation groups design for the Canadian Labor
Force Survey and discussed how to choose the optimal
A and K that minimise the MSE. For the 4–8–4 rota-
tion design under consideration in this paper, based on
the results in Lent andCantwell (1994) and Lent,Miller,
and Cantwell (1994, 1998, 1999) proposed to choose
A and K by minimising the variance of the AK com-
posite estimator on a grid, and to estimate unknown
population parameters in the optimal values A and K
by replication as developed in Lent (1991) and Adam
and Fuller (1992). Based on some empirical results, they
suggested that (A, K) should be chosen as (0.4, 0.7) for
estimating the total employed or as (0.3, 0.4) for esti-
mating the total unemployed, which were adopted by
the CPS. However, the rotation group bias issue in the
AK composite estimator (Bailar, 1975; Huang & Ernst,
1981) was not addressed in Lent et al. (1999).

Similar to the development inKumar and Lee (1983),
in this article, we re-express the variance formulae
(Cantwell, 1990; Lent et al., 1999) of the AK composite
estimator for the 4–8–4 rotation design as a quadratic
function of A for each fixed K. After taking the rotation
group bias into consideration, we find that the MSE of
the AK composite estimator is still a quadratic function
of A for each fixed K. Based on this MSE formula, the
optimal values A and K that minimise the MSE can be
obtained in terms of some unknown population param-
eters including the rotation group biases. To estimate
these unknownparameters, we propose amethod based

on the method of moments and replication. By sub-
stituting unknown parameters with appropriate sample
estimators, the resulting AK estimator is approximately
optimal in terms of the MSE. The proposed method is
examined via some simulation studies.

2. The optimal AK composite estimator

The biases of the composite estimator in (3) and the AK
composite estimator in (4) were studied in Bailar (1975)
and Huang and Ernst (1981), respectively, under the
following condition:

(C1) E(Ŷt,i) = Yt + ai for any month t, i = 1,… , 8.

The biases ai’s in (C1) aremainly caused by the differ-
ence in data collection among different rotation groups
and are assumed to be independent of time t. Hence,
they are called rotation group biases. Some empiri-
cal results showing this type of bias can be found in
Krueger, Mas, and Niu (2017).

Using condition (C1) and the results in Huang and
Ernst (1981), we express the bias of the AK composite
estimator as a linear function of A:

Bias(Ŷ ′′
t ) = E(Ŷ ′′

t ) −Yt = (γT
0 a)A + (γ1 − Kδ)Ta

1 − K
,

(5)

where

a = (a1, a2, a3, a4, a5, a6, a7, a8)T ,

γ0 = (1/8, −1/24, −1/24, −1/24, 1/8, −1/24,
−1/24, −1/24)T ,

γ1 =
(
1 − K
8

,
3 + K
24

,
3 + K
24

,
3 + K
24

,
1 − K
8

,
3 + K
24

,

3 + K
24

,
3 + K
24

)T

,

δ = (1/6, 1/6, 1/6, 0, 1/6, 1/6, 1/6, 0)T .

Next, we focus on the variance of the AK composite
estimator. Huang and Ernst (1981) first gave an approx-
imate variance formulae of the AK composite estimator.
We re-express the variance formula in Cantwell (1990)
as a quadratic function ofA for each fixedK.We assume
the same conditions as in Huang and Ernst (1981) and
Cantwell (1990), which are commonly used conditions
in studying the variance of composite estimators under
a longitudinal multi-level rotation plan.

(C2) Var(Ŷt,i) = σ 2 for all t and i, and Ŷt,i and Ŷs, j are
uncorrelated whenever they are based on groups
with different sampled units;

(C3) Based on the structure of the rotation sample
design, the following covariances are possibly not
zero and we write them in terms of unknown σ 2
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and correlation coefficients ρ i’s:

Cov(Ŷt+1,i+1, Ŷt,i) = ρ1σ
2, i = 1, 2, 3, 5, 6, 7;

Cov(Ŷt+2,i+2, Ŷt,i) = ρ2σ
2, i = 1, 2, 5, 6;

Cov(Ŷt+3,i+3, Ŷt,i) = ρ3σ
2, i = 1, 5;

Cov(Ŷt+9,5, Ŷt,4) = ρ9σ
2;

Cov(Ŷt+10,i+2, Ŷt,i) = ρ10σ
2, i = 3, 4;

Cov(Ŷt+11,i+3, Ŷt,i) = ρ11σ
2, i = 2, 3, 4;

Cov(Ŷt+12,i+4, Ŷt,i) = ρ12σ
2, i = 1, 2, 3, 4;

Cov(Ŷt+13,i+5, Ŷt,i) = ρ13σ
2, i = 1, 2, 3;

Cov(Ŷt+14,i+6, Ŷt,i) = ρ14σ
2, i = 1, 2;

Cov(Ŷt+15,8, Ŷt,1) = ρ15σ
2.

Let V be the 8 × 8 matrix whose (i, j)th element is

Vi, j =

⎧⎪⎪⎨
⎪⎪⎩
Ki− jρi− j 1 ≤ j < i ≤ 4,
Ki− jρi− j 5 ≤ j < i ≤ 8,
Ki+8− jρi+8− j 5 ≤ i ≤ 8, 1 ≤ j ≤ 4,
0 otherwise.

Also, let γ = Aγ0 + γ1. Following Theorem 1 of
Cantwell (1990), we can obtain that

Var(Ŷ ′′
t )

= σ 2{γTγ + K2δT (δ − 2γ ) + 2(γ − K2δ)TV(γ − δ)}
1 − K2 .

By arranging terms as a quadratic form of A, we obtain
that

Var(Ŷ ′′
t ) = avA2 + bvA + cv , (6)

where

av = σ 2(γT
0 γ0 + 2γT

0Vγ0)

1 − K2 ,

bv = 2σ 2(γT
0 γ1 − K2δTγ0 − K2δTVγ0 − γT

0Vδ + γT
1Vγ0 + γT

0Vγ1)

1 − K2 ,

cv = σ 2(γT
1 γ1 + K2δTδ − 2K2δTγ1 + 2K2δTVδ − 2K2δTVγ1 − 2γT

1Vδ + 2γT
1Vγ1)

1 − K2

under conditions (C2) and (C3).
Combining results (5) and (6), we obtain the follow-

ing formula of the MSE of the AK estimator in terms of
a quadratic formofA for each fixedK. Under conditions
(C1)–(C3), the MSE of AK composite estimator is

MSE(Ŷ ′′
t ) = E(Ŷ ′′

t −Yt )2 = (av + ab)A2

+ (bv + bb)A + (cv + cb), (7)

where

ab = (γT
0 a)2

(1 − K)2
, bb = 2(γT

0 a){(γ1 − Kδ)Ta}
(1 − K)2

,

cb = {(γ1 − Kδ)Ta}2
(1 − K)2

.

Note that av in (6) should be positive; otherwise the
variance in (6) may be negative for some A. Hence, for
each fixedK� [0, 1), theMSE in (7) is a quadratic form

of A having a minimiser at −(bv + bb)/{2(av + ab)}.
Also, for each fixed K,

min
A

[
(av + ab)A2 + (bv + bb)A + (cv + cb)

]
= (cv + cb) − (bv + bb)2

4(av + ab)
.

Thus, if all population quantities in (C1)–(C3) are
known, then the optimal K and A that minimise the
MSE in (7) can be determined through the following
algorithm.

Step 1. Find the optimal K � [0, 1) that minimises (cv +
cb) − (bv + bb)2/{4(av + ab)} using some method;
for example, a grid search.

Step 2. The optimal A is then chosen as −(bv + bb)/
{2(av + ab)} with the K obtained in step 1.

3. Parameter estimation

The results presented in the previous section are useful
only when ai’s in (C1) and σ 2 and ρ j’s in (C2) and (C3)
are all known. In practice, however, these values are
usually unknown. In this section, we consider param-
eter estimation based on the method of moments and
replication.

Consider first the estimation of the biases ai, i =
1,… , 8. The biases are actually not estimable unless
some conditions or constraints are imposed to them.
The following assumption was considered in Bailar
(1975) and Krueger et al. (2017):

(C4)
∑8

i=1 ai = 0.

Condition (C4) means that the average of eight rota-
tion group estimators, Ŷt,1, . . . , Ŷt,8, is an unbiased esti-
mator of Yt. More generally, one may assume that∑8

i=1 λiαi = 0 for some specified λi’s and then estimate
ai unbiasedly by

∑T
t=1(Ŷt,i −

∑8
i=1 λiŶt,i)/T. How to

specify λi’s is a difficult problem and deserves some
further research. Our discussion hereafter is based on
Assumption (C4).

Under condition (C4),

E(Ŷt,i − Ŷt ) = ai − 1
8

8∑
i=1

ai = ai.
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Then, for a total of Tmonths, ai can be estimated unbi-
asedly by

âi = 1
T

T∑
t=1

(Ŷt,i − Ŷt ).

Now we turn to the estimation of σ 2 and ρ i’s in (C2)
and (C3). Under condition (C2), we obtain that, for any
i � j and t,

E(Ŷt,i − Ŷt, j)2 = E{(Ŷt,i −Yt − ai) − (Ŷt, j −Yt − a j)

+ (ai − a j)}2
= 2σ 2 + (ai − a j)

2.

Hence,

σ 2 = E(Ŷt,i − Ŷt, j)2 − (ai − a j)
2

2
.

Similarly, the following formulas can be derived under
(C2) and (C3):

ρ1 = E(Ŷt+1,i+1 −Yt+1 − ai+1)

× (Ŷt,i −Yt − ai)/σ 2, i = 1, 2, 3, 5, 6, 7;
ρ2 = E(Ŷt+2,i+2 −Yt+2 − ai+2)

× (Ŷt,i −Yt − ai)/σ 2, i = 1, 2, 5, 6;
ρ3 = E(Ŷt+3,i+3 −Yt+3 − ai+3)

× (Ŷt,i −Yt − ai)/σ 2, i = 1, 5;
ρ9 = E(Ŷt+9,5 −Y5 − a5)(Ŷt,4 −Yt − a4)/σ 2;

ρ10 = E(Ŷt+10,i+2 −Yt+10 − ai+2)

× (Ŷt,i −Yt − ai)/σ 2, i = 3, 4;
ρ11 = E(Ŷt+11,i+3 −Yt+11 − ai+3)

× (Ŷt,i −Yt − ai)/σ 2, i = 2, 3, 4;
ρ12 = E(Ŷt+12,i+4 −Yt+12 − ai+4)

× (Ŷt,i −Yt − ai)/σ 2, i = 1, 2, 3, 4;
ρ13 = E(Ŷt+13,i+5 −Yt+13 − ai+5)

× (Ŷt,i −Yt − ai)/σ 2, i = 1, 2, 3;
ρ14 = E(Ŷt+14,i+6 −Yt+14 − ai+6)

× (Ŷt,i −Yt − ai)/σ 2, i = 1, 2;
ρ15 = E(Ŷt+15,8 −Yt+15 − a8)(Ŷt,1 −Yt − a1)/σ 2.

With the available unbiased estimator âi for the rota-
tion group bias under (C4), approximately unbiased
estimators of σ 2 and ρ i’s based on data over T months
can be constructed as follows:

σ̂ 2 = 1
56T

T∑
t=1

∑
1≤i< j≤8

{(Ŷt,i − Ŷt, j)2 − (âi − â j)
2};

ρ̂1 = 1
6(T − 1)σ̂ 2

T−1∑
t=1

∑
i∈{1,2,3,5,6,7}

(Ŷt+1,i+1 − Ŷt+1 − âi+1)

× (Ŷt,i − Ŷt − âi);

ρ̂2 = 1
4(T − 2)σ̂ 2

T−2∑
t=1

∑
i∈{1,2,5,6}

(Ŷt+2,i+2 − Ŷt+2 − âi+2)

× (Ŷt,i − Ŷt − âi);

ρ̂3 = 1
2(T − 3)σ̂ 2

T−3∑
t=1

∑
i∈{1,5}

(Ŷt+3,i+3 − Ŷt+3 − âi+3)

× (Ŷt,i − Ŷt − âi);

ρ̂9 = 1
(T − 9)σ̂ 2

T−9∑
t=1

(Ŷt+9,5 − Ŷt+9 − â5)

× (Ŷt,4 − Ŷt − â4);

ρ̂10 = 1
2(T − 10)σ̂ 2

T−10∑
t=1

∑
i∈{3,4}

(Ŷt+10,i+2 − Ŷt+10 − âi+2)

× (Ŷt,i − Ŷt − âi);

ρ̂11 = 1
3(T − 11)σ̂ 2

T−11∑
t=1

∑
i∈{2,3,4}

(Ŷt+11,i+3 − Ŷt+11 − âi+3)

× (Ŷt,i − Ŷt − âi);

ρ̂12 = 1
4(T − 12)σ̂ 2

T−12∑
t=1

∑
i∈{1,2,3,4}

(Ŷt+12,i+4 − Ŷt+12 − âi+4)

× (Ŷt,i − Ŷt − âi);

ρ̂13 = 1
3(T − 13)σ̂ 2

T−13∑
t=1

∑
i∈{1,2,3}

(Ŷt+13,i+5 − Ŷt+13 − âi+5)

× (Ŷt,i − Ŷt − âi);

ρ̂14 = 1
2(T − 14)σ̂ 2

T−14∑
t=1

∑
i∈{1,2}

(Ŷt+14,i+6 − Ŷt+14 − âi+6)

× (Ŷt,i − Ŷt − âi);

ρ̂15 = 1
(T − 15)σ̂ 2

T−15∑
t=1

(Ŷt+15,8 − Ŷt+15 − â8)

× (Ŷt,1 − Ŷt − â1).

Theorem 3.1: Assume conditions (C1)–(C4). Then, as
T → �,

√
T

(
σ̂ 2

σ 2 − 1
)

= OP(1),

√
T (âi − ai)/Nt = OP(1), i = 1, . . . , 8,

√
T (ρ̂ j − ρ j) = OP(1), j = 1, 2, 3, 9, . . . , 15,

where Nt is the population size at time t and OP(1)
denotes a quantity bounded in probability.

The proof of this result is given in Appendix.
The derived estimators are moment estimators. The-

orem 3.1 indicates that they are consistent 2with the
convergence rate

√
T , under (C1)–(C4). To improve

the efficiency by repeated computations, we consider
a replication method such as the balanced half sample
or balanced repeated replication (e.g. Adam & Fuller,
1992; Lent, 1991; Lent et al., 1999). Suppose that a bal-
anced half sample set of size B has been created. Define
Ŷt,k,i as the kth replicate estimate for Yt, i with replicate
weights 0.5 and 1.5 in each half sample. We apply the
momentmethod to each replicate and then average over
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the replicates, which lead to the following estimators for
σ 2 and ρ j’s:

σ̃ 2 = 4
56BT

B∑
k=1

T∑
t=1

∑
1≤i< j≤8

{(Ŷt,k,i − Ŷt,k, j)

− (âi − â j)}2;

ρ̃1 = 4
6B(T − 1)σ̃ 2

B∑
k=1

T−1∑
t=1

∑
i∈{1,2,3,5,6,7}

(Ŷt+1,k,i+1

− Ŷt+1 − âi+1)(Ŷt,k,i − Ŷt − âi);

ρ̃2 = 4
4B(T − 2)σ̃ 2

B∑
k=1

T−2∑
t=1

∑
i∈{1,2,5,6}

(Ŷt+2,k,i+2

− Ŷt+2 − âi+2)(Ŷt,k,i − Ŷt − âi);

ρ̃3 = 4
2B(T − 3)σ̃ 2

B∑
k=1

T−3∑
t=1

∑
i∈{1,5}

(Ŷt+3,k,i+3

− Ŷt+3 − âi+3)(Ŷt,k,i − Ŷt − âi);

ρ̃9 = 4
B(T − 9)σ̃ 2

B∑
k=1

T−9∑
t=1

(Ŷt+9,k,5 − Ŷt+9 − â5)

× (Ŷt,k,4 − Ŷt − â4);

ρ̃10 = 4
2B(T − 10)σ̃ 2

B∑
k=1

T−10∑
t=1

∑
i∈{3,4}

(Ŷt+10,k,i+2

− Ŷt+10 − âi+2)(Ŷt,k,i − Ŷt − âi);

ρ̃11 = 4
3B(T − 11)σ̃ 2

B∑
k=1

T−11∑
t=1

∑
i∈{2,3,4}

(Ŷt+11,k,i+3

− Ŷt+11 − âi+3)(Ŷt,k,i − Ŷt − âi);

ρ̃12 = 4
4B(T − 12)σ̃ 2

B∑
k=1

T−12∑
t=1

∑
i∈{1,2,3,4}

(Ŷt+12,k,i+4

− Ŷt+12 − âi+4)(Ŷt,k,i − Ŷt − âi);

ρ̃13 = 4
3B(T − 13)σ̃ 2

B∑
k=1

T−13∑
t=1

∑
i∈{1,2,3}

(Ŷt+13,k,i+5

− Ŷt+13 − âi+5)(Ŷt,k,i − Ŷt − âi);

ρ̃14 = 4
2B(T − 14)σ̃ 2

B∑
k=1

T−14∑
t=1

∑
i∈{1,2}

(Ŷt+14,k,i+6

− Ŷt+14 − âi+6)(Ŷt,k,i − Ŷt − âi);

ρ̃15 = 4
B(T − 15)σ̃ 2

B∑
k=1

T−15∑
t=1

(Ŷt+15,k,8 − Ŷt+15 − â8)

× (Ŷt,k,1 − Ŷt − â1).

These estimators will be called replication-moment
estimators. Note that this method is different from the
replication method in Lent et al. (1999) in two aspects.
The first is that we include bias estimators. The second
is that we use past data from Tmonths to improve effi-
ciency under (C2) and (C3).

The performance of the different estimation proce-
dures in obtaining the optimal A and K was compared
through a numerical study.

4. Numerical study

We generated a finite population of size N = 15, 000, in
which the employment status variables were generated
such that the unemployment proportion is the same
as the estimated unemployment rate by the CPS from
2004 to 2014. We considered the estimation of Yt, the
population-level unemployment total at month t, and
rotation groups of the same size n = 50, 100 and 200.
For each month, we selected a simple random sample
of size n from the population, and kept them on track
in the next 15 months. Such sampling scheme ensures
that condition (C4) holds approximately. Based on the
simulated sample, we estimated the optimal coefficients
A and K, and obtained the optimal AK estimators for
all months in 2014. The proposed estimators based on
moment estimation alone and replication moment are
denoted by Ŷ ′′

t,M and Ŷ ′′
t,R, respectively, in which the total

number of replications isB= 48.We compared Ŷ ′′
t,M and

Ŷ ′′
t,R with two other AK composite estimators, the AK
composite estimator Ŷ ′′

t,C with fixed A = 0.3 and K =
0.4, and the AK composite estimator Ŷ ′′

t,L with A and
K determined by the replication method proposed in
Lent et al. (1999). The estimator Ŷ ′′

t,C is based on all data
from January 2004 to December 2013. For estimators
Ŷ ′′
t,L, Ŷ ′′

t,M and Ŷ ′′
t,R, we tried two different T’s, T = 120

(January 2004 to December 2013) and T = 60 (January
2009 to December 2013).

Based on 500 simulation repetitions, we approxi-
mated the MSE for each estimator and listed them in
Table 1 for t ranging from January to December 2014.
The result of estimation bias for each estimator is omit-
ted, because the bias of each estimator is negligible com-
pared with the standard deviation. We have the follow-
ing observations from Table 1.

1. Ŷ ′′
t,L, Ŷ ′′

t,M and Ŷ ′′
t,R aremuch better than Ŷ ′′

t,C, indi-
cating that updatingA andK is necessary at least
periodically.

2. Ŷ ′′
t,R is better than Ŷ ′′

t,M in most cases, indicating
that the additional computations by replication
is worthwhile.

3. In 63 of the total of 72 cases, Ŷ ′′
t,R is better than

Ŷ ′′
t,L, and some of the improvements are sub-
stantial. The estimator Ŷ ′′

t,M based on moment
estimation alone is better than Ŷ ′′

t,L in 28 of the
72 cases.

Because the bias is negligible in this simulation study,
possible reasons for the improvement of our method
over the one in Lent et al. (1999) are (i) our method
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Table . Simulation MSE of four estimators in  (all results are in %).

MSE

T=  T= 

n t Yt/N Ŷ ′′
t,C Ŷ ′′

t,L Ŷ ′′
t,M Ŷ ′′

t,R Ŷ ′′
t,L Ŷ ′′

t,M Ŷ ′′
t,R

 Jan . . . . . . . .
Feb . . . . . . . .
Mar . . . . . . . .
Apr . . . . . . . .
May . . . . . . . .
Jun . . . . . . . .
Jul . . . . . . . .
Aug . . . . . . . .
Sep . . . . . . . .
Oct . . . . . . . .
Nov . . . . . . . .
Dec . . . . . . . .

 Jan . . . . . . . .
Feb . . . . . . . .
Mar . . . . . . . .
Apr . . . . . . . .
May . . . . . . . .
Jun . . . . . . . .
Jul . . . . . . . .
Aug . . . . . . . .
Sep . . . . . . . .
Oct . . . . . . . .
Nov . . . . . . . .
Dec . . . . . . . .

 Jan . . . . . . . .
Feb . . . . . . . .
Mar . . . . . . . .
Apr . . . . . . . .
May . . . . . . . .
Jun . . . . . . . .
Jul . . . . . . . .
Aug . . . . . . . .
Sep . . . . . . . .
Oct . . . . . . . .
Nov . . . . . . . .
Dec . . . . . . . .

adopts a more precise method to determine the opti-
mal coefficient A, which is supported by the fact that
Ŷ ′′
t,M improves Ŷ ′′

t,L in some cases, although the moment
estimation of σ 2 and ρ j’s without replication may not
be efficient; and (ii) Ŷ ′′

t,R uses more past observations in
estimating σ 2 and ρ j’s under (C2) and (C3). Note that
the method in Lent et al. (1999) also uses (C2) and (C3)
in the derivation of the variance formula of theAKcom-
posite estimator, although not in the estimation of σ 2

and ρ j’s. Furthermore, in applications, the biases should
be checked empirically before applying the method in
Lent et al. (1999).

5. Discussions

Selecting A and K in the AK composite estimators
has been a long-standing issue in the CPS. We revisit
the MSE formula of the AK composite estimator and
express it as a quadratic form of A for each fixed K so
that the optimal A and K can be easily obtained. Based
on our simulation results, we recommend the pro-
posed replication-moment method in estimating the
unknown parameters in the optimal values of A and K.

Different from existing methods for choosing A and K
in the CPS (Lent et al., 1999), our approach selects A in
a more precise manner, and uses past data and takes the
rotation group bias into consideration when estimat-
ing the unknown parameters in the optimal values of A
and K.

Both our approach and the one in Lent et al. (1999)
are based on (C2) and (C3) which are covariance sta-
tionarity conditions when monthly data are viewed as a
time series. Without these covariance stationarity con-
ditions, the variance or MSE of Ŷ ′′

t does not have any
explicit form so that selectingA andK becomes very dif-
ficult. Some further research along the following lines is
desired.

1. For a long period of time (a large T), the covari-
ance stationarity conditions are likely to be vio-
lated. However, it may be reasonable to assume
these conditions in a moderate time period, and
our method can be applied periodically.

2. Some ideas for relaxation of the stationarity con-
ditions are discussed in Cantwell (1990). For
example, we may assume that Cov(Ŷt,i, Ŷs, j) =
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ρ|t−s|,i, jσ 2 if the two estimators are from the
same panel but |t − s| months depart. Our
method may be extended to this situation where
data are non-stationary, but a certain structure is
imposed to Cov(Ŷt,i, Ŷs, j).

3. Without any assumption other than the exis-
tence of the second-order moments, the MSE
of Ŷ ′′

t does not have any explicit form. If an
accurate MSE estimator can be derived (e.g. by
replication or bootstrapping), we may select A
and K by minimising the MSE estimator over
a grid.

Our result also relies on condition (C4) for the rota-
tion biases. Without any condition, the rotation biases
are not estimable. Previous researchers either assumed
(C4) or simply ignored the rotation biases (Bailar, 1975;
Cantwell, 1990; Krueger et al., 2017; Lent et al., 1999).
A further investigation on the rotation biases when they
are not ignorable is needed.

Combining with Theorem 2 in Cantwell (1990), our
method can be applied to the selection of the optimal
A and K for estimating the month-to-month change �t
by Ŷ ′′

t − Ŷ ′′
t−1, because the MSE of Ŷ ′′

t − Ŷ ′′
t−1 is also a

quadratic form of A for any fixed K. Note that Ŷ ′′
t −

Ŷ ′′
t−1 is always unbiased for �t and hence its MSE is its
variance. The proof of the following result is given in
Appendix.

Theorem 5.1: Let L be the 8 × 8 matrix with 1’s on the
subdiagonal and 0’s elsewhere. Under (C1)–(C3),

MSE(Ŷ ′′
t − Ŷ ′′

t−1) = a(0)
c A2 + b(0)

c A + c(0)c for K = 0,
MSE(Ŷ ′′

t − Ŷ ′′
t−1) = a(1)

c A2 + b(1)
c A + c(1)c for 0 <

K < 1,
where

ac,0 = 2σ 2γT
0 (I8 − ρ1L)γ0;

bc,0 = 4σ 2γT
1 (I8 − ρ1L)γ0;

cc,0 = 2σ 2γT
1 (I8 − ρ1L)γ1;

ac,1 = {σ 2γT
0 γ0 − (1 − K)2av}/K;

bc,1 = {2σ 2γT
0 γ1 − 2σ 2Kρ1γ

T
0 Lδ − (1 − K)2bv}/K;

cc,1 = {σ 2γT
1 γ1 + σ 2K2δTδ − 2σ 2Kρ1γ

T
1 Lδ

− (1 − K)2cv}/K.

If we consider the estimation of the total and change
together, then we may minimise a compromised loss
function λMSE(Ŷ ′′

t ) + (1 − λ)MSE(Ŷ ′′
t − Ŷ ′′

t−1) with a
fixed λ, 0 � λ � 1, to determine the optimal A and K.
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Appendix

Proof of Theorem 3.1: We only prove the results for
âi’s and σ̂ 2 under (C1)–(C4). We first deal with âi’s.
LetUt,i = Ŷt,i −

∑8
j=1 Ŷt, j/8. Then {U1, i,… , UT, i} is a

stationary 16-dependent sequence. By Theorem 9.1 in
DasGupta (2008), we have

√
T (âi − ai) = 1√

T

T∑
t=1

{Ut,i − E(Ut,i)} −→ N(0, τ 2
i );

as T goes to infinity, where τ 2
i = Var(U1,i) +

2
∑16

j=2 Cov(U1,i,Uj,i) and i = 1,… , 8.
Nowwe deal with σ̂ 2. Let St = ∑

i< j{(Ŷt,i − Ŷt, j)2 −
(ai − a j)

2}/56. Then St is also a stationary 16-
dependent sequence. Again by Theorem 9.1 in Das-
gupta (2008), we can see that

1√
T

T∑
t=1

{Ŝt − E(St )} −→ N(0, τ 2
0 );

as T goes to infinity, where τ 2
0 = Var(S1) +

2
∑16

j=2 Cov(S1, S j). Then σ̂ 2 − σ 2 = OP(T−1/2) since
âi − ai = OP(T−1/2). The proof is completed. �
Proof of Theorem 5.1: Recall that γ = Aγ0 + γ1. By
Theorem 2 in Cantwell (1990), we know that for
K = 0,

Var(Ŷ ′′
t − Ŷ ′′

t−1)

= 2σ 2γT (I8 − ρ1L)γ

= 2σ 2γT
1 (I8 − ρ1L)γ1A

2 + 4σ 2γT
1 (I8 − ρ1L)γ0A

+ 2σ 2γT
0 (I8 − ρ1L)γ0

= ac,0A2 + bc,0A + cc,0,

and for 0 < K < 1,

Var(Ŷ ′′
t − Ŷ ′′

t−1)

= σ 2(γTγ + K2δTδ − 2Kρ1γ
TLδ)/K

− (1 − K)2Var(Ŷ ′′
t )/K

= σ 2(γT
0 γ0A

2 + 2γ T
0 γ1A + γT

1 γ1 + K2δTδ

− 2Kρ1γ
T
0 LδA − 2Kρ1γ

T
1 Lδ)/K

− (1 − K)2(avA2 + bvA + cv )/K
= ac,1A2 + bc,1A + cc,1.

Then proof is completed by noting that (Ŷ ′′
t − Ŷ ′′

t−1) is
an unbiased estimator for �t. �
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