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ABSTRACT
We provide a detailed review for the statistical analysis of diagnostic accuracy in amulti-category
classification task. For qualitative response variables with more than two categories, many tra-
ditional accuracy measures such as sensitivity, specificity and area under the ROC curve are no
longer applicable. In recent literature, new diagnostic accuracy measures are introduced in med-
ical research studies. In this paper, important statistical concepts for multi-category classification
accuracy are reviewed and their utilities are demonstrated with real medical examples. We offer
problem-basedR code to illustrate how toperform these statistical computations stepby step.We
expect such analysis tools will become more familiar to practitioners and receive broader appli-
cations in biostatistics. Our program can be adapted to many classifiers among which logistic
regressionmay be themost popular approach. We thus base our discussion and illustration com-
pletely on the logistic regression in this paper.

1. Introduction

Statistical classification is needed in fields such as eco-
nomics, computer science, meteorology and biology.
Particularly in clinical studies, the accurate diagnosis
of a patient’s condition is crucial for proper treatment.
An assessment of these conditions and evaluation of the
prognosis of patients with disease can be achieved by
analysing clinical and laboratory data. For two-category
classification (e.g., diseased and non-diseased condi-
tions), receiver operating characteristic (ROC) curves
and the area under the ROC curve (AUC)measure have
been, for decades, the most recommended and applied
methods for evaluating the accuracy of numerical diag-
nostic tests (Pepe, 2003; Zhou,Obuchowski, &McClish,
2002).

Medical decision-making sometimes may involve
more than two categories. For example, cognitive func-
tion declines from normal function, to mild impair-
ment, to severe impairment and/or dementia. Another
example is the stage of cancer progression at the time of
detection, from localised cancer through distant metas-
tases already present. We need statistical methods for
the assessment of diagnostic accuracy when the true
disease status is multi-category. Accuracy measures for
binary classification are not applicable and their exten-
sions must follow a rigorous methodology construc-
tion.

Let us first consider three practical examples from
recent medical studies. They will be analysed using
methods introduced in this tutorial.

CONTACT Jialiang Li stalj@nus.edu.sg

Example 1.1 (Liver Cancer): In Ressom et al. (2007,
2008), 203 participants from Cairo, Egypt, were inves-
tigated, where 73 were hepatocellular carcinoma
(denoted by HC) cases, 52 were patients with chronic
liver disease (denoted byQC), and 78were healthy indi-
viduals (denoted by NC). The data contain intensity
measurements of hundreds of protein segments or pep-
tides, also called peaks. Each peak can be regarded as a
diagnostic test for differentiating the subjects from the
three distinctive classes. A set of 484 peaks after exten-
sive preprocessing of the raw data are available from
the authors’ website. We were interested in studying
the diagnostic accuracy of these peaks, and identifying
those peaks with the highest discriminatory ability.

Example 1.2 (Synovitis): In Ogdie et al. (2010) and
Beffa et al. (2013), immunohistochemical synovial tis-
sue biomarkers are used to classify arthropathies, study
their pathogenesis and to measure disease activity in
clinical trials. The markers are common inflammatory
cells (including subintimal CD15, CD68, CD3, CD20,
CD38 and lining CD68), proliferating cells (Ki-67) and
blood vessels (vonWillebrand factor, vWF). The disease
status for all patients included chronic septic arthritis
(SeA), early undifferentiated arthritis (Early), rheuma-
toid arthritis (RA), osteoarthritis (OA), noninflamma-
tory orthopedic arthropathies (Orth.A) and normal
synovium. Data from six categories were collected with
sample sizes 15 (normal), 26 (OA), 6 (Orth.A), 10
(Early), 11 (SeA) and 25 (RA), respectively. Placing
an individual into any wrong category may result in
adverse consequences. The accuracy of the gene should
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ideally be reflected by how often the gene correctly clas-
sifies all six categories.

Example 1.3 (Leukemia): Golub et al. (1999) anal-
ysed a leukemia data-set usingmicro-array gene expres-
sion. The data included three types of acute leukemias:
acute lymphoblastic leukemia arising fromT-cells (ALL
T-cell), acute lymphoblastic leukemia arising from B-
cells (ALL B-cell) and acute myeloid leukemia (AML).
The data-set contains 8 ALL T-cell samples, 19 ALL
B-cell samples and 11 AML samples. Each sample
contains 3916 gene expression values obtained from
Affymetrix high-density oligonucleotide micro-arrays.
The data-set to be analysed is downloaded from
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

In all the above examples, we need to statistically
assess the diagnostic accuracy of biomarkers or med-
ical tests for multi-category classification. This topic
has now been thoroughly studied. In fact, the usual
0–1 error rate and ROC analysis for binary classifica-
tion can be extended for multi-category classification.
In this tutorial, we first review familiar classification
devices and decision-making rules for multi-category
problem in Section 2 and then summarise the major
multi-category diagnostic accuracy measures in Sec-
tion 3. Many accuracy measures are constructed from
the correct classification probabilities (CCP) for indi-
vidual categories. These quantities themselves may be
important and provide category-specific assessment on
the classification performance. However, to summarise
the overall accuracy with a single diagnostic accuracy
index, we usually invoke the concept of ROC curve
and produce ROC-based accuracy measures. This kind
of analysis may be more relevant when we intend to
examine the marker’s discrimination ability as a whole
over all classes. Throughout this paper, we do not
assume that the categories are ordered. The distinction
between nominal and ordinal categorical variables does
not affect the statistical procedure for the evaluation
of diagnostic accuracy. The methods presented in this
paper can be straightforwardly adopted to deal with
ordinal multi-category problems.

When information of new markers becomes avail-
able, investigators may incorporate such markers in
their classification models and improve the diagnos-
tic accuracy. How to quantitatively assess the improve-
ment is of interest to biostatisticians. Two new metrics,
the net reclassification improvement (NRI) and the ite-
grated discrimination improvement (IDI), are proposed
in the literature (Pencina, D’Agostino Sr, D’Agostino Jr,
& Vasan, 2008) and enjoy wide acceptance in medical
practice. Their formulation for multi-category classifi-
cation has also been developed for medical applications
(Li, Jiang, & Fine, 2013a). We further discuss the accu-
racy improvement indices needed for multi-category
problem in Section 4.

Real case studies are presented in Section 5 to pro-
vide an illustration. All three examples described above
will be analysed with step-by-step operation instruc-
tions.We conclude in Section 6with comments and dis-
cussions on the use of the measures.

2. Multi-category classifiers

Consider a set of predictors � = {X1,… , Xp}, where
Xj ∈ R (j = 1,… , p). Suppose we have a sample of n
subjects with measurements {Xij, i = 1,… , n; j = 1,… ,
p}. Researchers want to make use of the markers to
accurately classify or predict the categorical outcome Y.
Let us first recall some familiar procedures for binary
classification where Y is a 0–1 variable, usually indicat-
ing the presence (Y = 1) or absence (Y = 0) of a dis-
ease condition.One of themostwell-known approaches
for binary classification is to regress Y on the predictors
for a training sample and then evaluate the probability
of class membership for the subjects based on the fit-
ted model. Based on the risk score obtained from the
model, one may thenmake a decision to assign the sub-
ject i to class 1 or 0 by comparing the relativemagnitude
of P(Yi = 1) and P(Yi = 0).

We now extend the aforementioned procedure for
a multi-category outcome. Suppose the multi-category
outcome Y takes values from Y = {1, 2, . . . ,M}. We
define the binary random variable Ym = I(Y = m) and
let the prevalence for themth category beρm =E(Ym)=
P(Y = m). We consider an order-free decision-making
approach which automatically incorporates multiple
markers. Suppose amodelM1 is constructed based on a
set of predictors�1��. Such amodelM1 can generate
a probability vector p(M1) = (p1(M1),…, pM(M1))

for each subject such that
∑M

m=1 pm(M1) =1. Each
component pm(M1) in the vector indicates the pre-
dicted probability of the mth class membership and
therefore generalises the risk score for binary regres-
sion. We may then consider the following rule:

Take-the-winner rule:

� Assign a subject to one of the M categories which
corresponds to the greatest component in the M-
dimentional probability vector p.

We note that when the model is fitted adequately,
the subject from a particular class should be rewarded
the highest probability score in that class. In a statisti-
cal analysis with a large sample size, the class probabil-
ity estimates are consistent to the true class probability.
The “winner” class of the risk score is thus of high agree-
ment with the true class and subsequently we achieve a
sensible classification.

Compared to other classification rules, this decision
rule does not need the specification of any cut-off val-
ues and is more flexible and realistic. This rule has
been widely used in the multi-category classification

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi
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(Li et al., 2013a). In a binary classification problem,
using this rule we assign the ith subject to class 1 if P(Yi
= 1) > P(Yi = 0) and to class 0 otherwise.

There are abundant research development to com-
pute the vectors of class probability estimates. Among
them, the simplest method perhaps is the multi-nomial
logistic regressionmodel by using themultiple-category
indicator variable as the response and using the diag-
nostic tests involved in �1 as the predictor. From the
fitted model, we may then evaluate the model-based
prediction on the probability scale. We will use logis-
tic regression as the working classifier in this paper.
More details for fitting this model can be found in
Appendix of this paper. In addition to multi-nomial
logistic regression analysis, one can also use other well-
known machine learning methods or classifiers such as
the classification trees (Breiman, Friedman, Olshen, &
Stone, 1984) and the support vector machines (SVM)
(Vapnik, 1998) with outputs being probability esti-
mates.

3. Diagnostic accuracy

3.1. Correct classification probability and R2

For the simplicity of presentation, we still consider a
fixed model M1 with a set of covariates �1. Following
the take-the-winner rule in the preceding section, a cor-
rect decision is obtained if a subject from Class m has
the highest predicted probability for themth class. The
correct classification probability (CCP) for themth cat-
egory is thus given by

CCPm(M1)

= P{pm(M1) = max p(M1)|Y = m} m = 1, . . . ,M.

(1)

In a binary classification M = 2, the two CCPs are
the well-known sensitivity and specificity (Pepe, 2003;
Zhou et al., 2002). The event defining theCCP is equiva-
lent to the zero–one scoring rule which rewards a prob-
abilistic forecast if the mode of the predictive distribu-
tion materialises (Gneiting & Raftery, 2007; Toth, Zhu,
& Marchok, 2001).

The CCP definitions (1) are based on events of suc-
cessful classification and can be easily estimated by
using empirical distribution estimates. These category-
specific accuracy measures, however, do not provide an
overall assessment of the classification accuracy. When
ranking different diagnostic tests for their discrimina-
tion ability, we need a single measure to quantify the
overall accuracy of the marker or the combination of
markers. A simple weighted average of the class-specific
CCP yields the overall CCP:

CCP =
M∑

m=1

ρmCCPm, (2)

where the weight ρm is usually taken to be the class
prevalence. CCP heavily depends on the class preva-
lences (Allwein, Schapire, & Singer, 2000) and hence is
not comparable across populations. This contrasts with
ROC-based measures to be introduced in the next sub-
section, which are prevalence independent.

Other model-based statistics such as log-likelihood
functions, deviance functions and some significance
tests along with their p-values are sometimes reported
as performance measures for multi-class problems.
These quantities may be helpful to evaluate the cor-
relation between the polychotomous outcome and the
markers but do not necessarily lead to classification
accuracy.

Another popular index derived from a fitted regres-
sion model is the model R2 (Cox & Wermuth, 1992;
Hu, Palta, & Shao, 2006; Menard, 2000; Tjur, 2009). The
interpretation and computation ofR2, also called a coef-
ficient of determination, has beenwell known for binary
logistic regression models. Simply speaking, the value
of R2 is the fraction of the total variation explained by
the model. For linear regression models, R2 is closely
related to the correlation coefficient and the ANOVA F-
test, while for binary regression, it is closely connected
to the probabilities of correct classification.

We consider the definition of R2 for multi-category
classification. Specifically, for the mth category, the R2

value for a modelM1 is defined to be

R2
m(M1) = var(Ym) − E{var(Ym|M1)}

var(Ym)

= var{pm(M1)}
ρm(1 − ρm)

. (3)

The second equality follows because E(Ym|M1) =
pm(M1). The overall accuracy may be computed as a
weighted sum of the R2 values as

R2(M1) =
M∑

m=1

wmR2
m(M1), (4)

where wm are properly chosen weights.

3.2. ROC analysis

Recall in binary classification, we need one cut-off c
for the disease probability p to define the separation of
disease-present subjects from disease-absent subjects.
For example, when fixing c = 0.5, we claim the sub-
ject as being diseased if his corresponding p > 0.5 and
being normal if p � 0.5. Varying the threshold value c
from 0 to 1, we obtain a set of sensitivity and specificity
pairs. When displaying the pairs in a two-dimensional
plane, the so-called ROC curve shows clearly the trade-
off between sensitivity and specificity. The AUC repre-
sents the overall accuracy of the marker(s).

The idea can be straightforwardly extended tomulti-
category classification. For M = 3, one can obtain the
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probability assessment vector p = (p1, p2, p3) for a sub-
ject and choose two cut-off values c1 and c2 to define the
classification rule as follows:

Thresholding rule:

� If p1 > c1, assign the subject to Class I;
� Otherwise if p2 > c2, assign the subject to Class II;
� Otherwise assign the subject to Class III.

We remark that this rule is usually only applica-
ble for ordered categories and is not as widely used as
the take-the-winner rule introduced in the preceding
section. We adopt the thresholding rule only as a con-
ceptual tool in this paper since it easily lends support to
themultidimensional ROC construction. The following
accuracymeasures are equally applicable to ordered and
unordered classes.

Under the above thresholding rule, the cut-off-
specific CCPs may be computed as

CCP1(c1, c2) = P(p1 > c1|Y = 1)
CCP2(c1, c2) = P(p1 ≤ c1, p2 > c2|Y = 2)
CCP3(c1, c2) = P(p1 ≤ c1, p2 ≤ c2|Y = 3).

When varying the threshold values (c1, c2) in [0, 1] ×
[0, 1], we may plot the triples CCP1(c1, c2), CCP2(c1,
c2) andCCP3(c1, c2) in the three-dimensional space and
obtain an ROC surface. Figure 1 provides two exam-
ples of the ROC surface based on the liver cancer data-
set. The volume under the ROC surface (VUS) becomes
a meaningful summary measure. More generally, we
may consider higher dimension whereM� 3. In math-
ematics, a multidimensional surface is termed mani-
fold. We may construct multidimensional ROC mani-
fold (CCP1,… , CCPM) and compute the hypervolume
under the multidimensional ROC manifold (HUM) as
an extension of AUC to evaluate the overall classifica-
tion accuracy for any biomarker in a multi-class prob-
lem.

Scurfield (1996) presented a rigorous extension of
two-class ROC to a finite number of classes and gen-
eralised the two-class AUC via an information theo-
retic derivation. This foundational work focused pri-
marily on the higher dimensional ROC framework at
the population level. No inferential procedure was pro-
posed for use with randomly sampled data, and empir-
ical results were not presented. Mossman (1999) intro-
duced the concept of three-way ROC analysis into
medical decision-making. Heckerling (2001) discussed
parametric estimation of three-dimensional ROCmea-
sures under the joint normality assumption. Dreiseiltl,
Ohno-machado, and Binder (2000) derived variance
estimators for the VUS estimator and provided a
hypothesis test method. Nakas and Yiannoutsos (2004)
considered the estimation of HUM for the ordered
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Figure . The estimated ROC surface for peak  (top) and peak 
(bottom) in liver cancer example.

three-class problem. Li and Fine (2008) further pro-
posed the estimation of HUM for unordered classifi-
cation by following the probabilistic interpretation and
applied HUM as a model selection criterion in micro-
array studies. Li and Zhou (2009) discussed the estima-
tion of three-dimensional ROC surfaces. Xiong et al.
(2006) also provided a test procedure to compare HUM
for three ordinal classes. Zhang and Li (2011) combined
multiple markers to improve diagnostic accuracy for
three-way ROC analysis.Most recently, Shiu andGatso-
nis (2012) developed a semi-parametric model for non-
binary classification.

HUM has an interpretation akin to AUC where a
large HUM value indicates a high classification accu-
racy (Dreiseiltl et al., 2000). Suppose Xm is the marker
value for a randomly selected subject from Classm, i.e.,
Ym = m. HUMmay be defined by

HUM = P(Xm1 < Xm2 < · · · < XmM |Y1
= 1, . . . ,YM = M), (5)

where (m1, m2,… , mM) is a permutation of (1, 2,… ,
M) such that (5) is the greatest among all possible per-
mutations. This is the probability of correctly sortingM
subjects each from one of the M categories. When the
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categories are naturally ordinal, the permutation may
be known exactly. Otherwise the numerical value of X
may indicate the correct permutation order among the
M classes. For example, the gene expression values for
one type of cancer patient may tend to be greater than
those for another type of cancer even though there is
no natural order for the two types of diseases. However,
this numerical order has to be discovered from the data
and cannot be given a priori. In fact, for M = 3, Scur-
field (1996) introduced six HUM measures which cor-
respond to six different triple-comparison probabilities
P(Xm1 < Xm2 < Xm3 )where (m1,m2,m3) is a permuta-
tion of (1, 2, 3). Among the six HUMs, only the largest
one is a reasonable measure of the accuracy of the
test (Nakas & Alonzo, 2007). For a generalM-category
problem, we need to evaluate M! such HUM measures
to identify the largest HUM. When Xm, m = 1,… , M,
are from the normal distribution, it was proved in Li,
Chow, Wong, and Wong (2014) that the order of the
mean E(Xm) can prescribe the definition of HUM. In
this special parametric case, the form of HUM can be
quickly determined. Alternatively, one has to exhaus-
tively compute all possible probabilities to arrive at the
correct HUM definition. Following this idea, the HUM
package was implemented in R by Novoselova et al. (in
press). The auxiliary functions CalcGene and Cal-
cROC of the HUM package are written in the C++ lan-
guage and are integrated in R through the Rcpp pack-
age. These functions improve computational efficiency
and shorten the computational time.

Another HUM calculation method for unordered
categories has been proposed in Li and Fine (2008). The
event described in the definition (5) may be extended
to the event of simultaneously correctly classifying M
subjects each from one of the M categories. The cor-
rect classification may not need to be established by the
inequality ofX and can be established by a slightly more
complicated geometrical rule.

Consider M subjects, each randomly drawn from
one of the M classes, with probability ratings p(1),
p(2),… , p(M), respectively. Each probability rating p(m)

is a vector (Em1, Em2,… , EmM), where Em1, Em2,… ,
EmM > 0 and Em1 + Em2 + ��� + EmM = 1. Each
component Emk in the vector indicates the likelihood
that the mth subject is from the kth category. In prac-
tice, the probability assessment vectors can be indirectly
derived from the continuous diagnostic test. The sim-
plestway to generate such vectors is to fit amulti-nomial
logistic regression model. Alternatively, one can choose
multi-category SVM techniques or classification trees
(Breiman et al., 1984), among many other classifiers
documented in the literature.

Let vm (m= 1, 2,… ,M) be anM-dimensional vector
whose elements are all 0 except that the mth element
equals 1. Now we consider the following classification
rule based on the probability assessment vectors of the
M subjects: assign subjects to class k1, k2,… , kM such

that

‖p(1) − vk1‖2 + ‖p(2) − vk2‖2 + · · · + ‖p(M) − vkM‖2

is minimised among all possible assignments k1 � ���
� kM, where ‖·‖ is the Euclidean distance. We may
notice that the distance displayed above is a direct gen-
eralisation of the Brier score widely adopted as classifi-
cation decision rules (Gneiting & Raftery, 2007; Selten,
1998). Let CR(p(1), p(2),… , p(M)) be 1 if all M subjects
are classified correctly, and 0 otherwise. The alternative
definition of HUM is then given by

HUM = Pr{CR(p(1), p(2), . . . , p(M)) = 1}, (6)

according to its probabilistic interpretation. We note
that (6) is mathematically equivalent to (5). A heuris-
tic proof of the equivalence can be found in Li and Fine
(2008).

The calculation of HUM (6) for unordered multi-
category outcomes with M = 3 and M = 4 has
been implemented in an R program, and the code
is freely downloadable from the following web-site
http://www.stat.nus.edu.sg/∼stalj.

Users may prepare data in the right format and paste
the code in R to obtain the HUM values. It is quite
unusual to examine M > 4 classes in medical research
studies. The R package HUM may allow M = 5 or 6 for
such special classification problems.

The inference procedure for HUM has been dis-
cussed in Nakas and Yiannoutsos (2004) for ordered
polychotomous responses and Li and Fine (2008) for
unordered polychotomous responses. Though variance
formula based on U-statistic theory are provided for
HUM, it may be easier for practitioners to use the
resampling approach. Simulation studies in Li and Fine
(2008) suggest the coverage of bootstrap confidence
intervals for HUM is in general satisfactory.

3.3. Other accuracy summarymeasures

We next consider a few other accuracy summary mea-
sures that have been used in medicine.

... Pairwise AUC
Because of the wide acceptance of the ROC curve
and the AUC statistic, some practitioners may choose
to produce similar results and consider pairwise
ROC curves and pairwise AUCs (Hand & Till, 2001;
Obuchowski, 2005). There are two possible methods to
generate pairwise summarymeasures. The first method
is one-versus-rest. One can construct M binary clas-
sifiers to differentiate class m (positive) from all other
classes (negative), m = 1,… ,M. For each classifier, we
may produce the familiar ROC curve and compute its
AUC. This would result inM ROC curves andM AUC
values which indicate how often individual classes may
be differentiated from the rest of classes. The second
method is one-versus-one. One can construct binary

http://www.stat.nus.edu.sg/~stalj
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classifiers to differentiate
(M
2

)
pairs of classes. For each

pair, we may produce the familiar ROC curve and com-
pute its AUC. This would result in

(M
2

)
ROC curves and

AUC values which indicate how often two classes are
differentiated from each other. These measures may be
helpful to investigate individual classes but do not easily
lend support to rank markers for their overall discrim-
ination ability. In the numerical analysis of Li and Fine
(2008), a marker may have large pairwise AUC values
for some classes but poor pairwise AUC values for oth-
ers. It is thus not straightforward to conclude the dis-
crimination strength of the marker.

... Umbrella volume
For three-class problems, some authors (Alonzo &
Nakas, 2007; Alonzo, Nakas, Yiannoutsos, & Bucher,
2009; Nakas&Alonzo, 2007) proposed an umbrella vol-
ume defined as P(X1 <X2 >X3) or P(X1 >X2 <X3) for
three markers randomly selected from the three classes.
This measure, similar to pairwise AUC, only quantifies
how often Class II is different from the other two classes
and does not offer any information on discrimination
ability between Class I and Class III. It is less meaning-
ful than the HUM when the goal is to assess the over-
all accuracy among all categories. Furthermore, it is not
easy to extend the umbrella definition forM > 3.

... Generalised Youden’s index
Youden’s index for binary classification has also been
extended to multi-category classification (Nakas,
Alonzo, & Yiannoutsos, 2010; Nakas, Dalrymple-
Alford, Anderson, & Alonzo, 2012) and some authors
(Luo & Xiong, 2013; Nakas et al., 2010) proposed to
use the generalised Youden’s index to seek optimal
cut-off values for multi-category diagnostic tests under
the thresholding classification rule. For a three-class
problem, the Youden’s index is given by

max
c1,c2

P(X1 ≤ c1) + P(c1 < X2 ≤ c2) + P(X3 > c2).

(7)

This measure is sensible when the categorical outcome
is ordinal or permits a natural order among the cate-
gories. The numerical optimisation to find out the cut-
off values will become challenging when the number of
categories increases.

... Misclassification
Many authors prefer reporting misclassification
probability (MCP) over CCP in their computation
(e.g., Delaigle & Hall, 2012; Edwards & Metz, 2006;
Koltchinskii & Panchenko, 2002; Schubert, Thorsen, &
Oxley, 2011). Each category-specific MCP is simply the
complement of the corresponding CCP, i.e., MCPm =
1 − CCPm. Furthermore, we note that in the engineer
society, there have been massive research efforts to
develop accuracy measures that incorporate the loss

function for multi-category misclassification (Edwards
& Metz, 2006; Edwards, Metz, & Kupinski, 2004; He &
Frey, 2007; He, Gallas, & Frey, 2010; Schubert, Thorsen,
& Oxley, 2011, among others). The resulting summary
measures appear to be an expected utility value where
the expectation is taken with respect to all correct and
incorrect classification events. These measures require
a known utility or cost assignment for individual classes
and have only been discussed at the population level.
There is still a lack of sample-based estimation and
statistical inference procedure and consequently these
measures are not easily accessible for practitioners in
biomedical research.

... Polytomous discrimination index
In an attempt to generalise HUM, Van Calster et al.
(2012a, 2012b) proposed a polytomous discrimination
index (PDI). To define this measure, it is also perti-
nent to consider the set of M subjects each randomly
drawn from one of theM classes. The overall PDI value
is interpreted as the probability of correctly identify-
ing one subject among the set and we may denote it
by PDI(1). The event in the definition of PDI(1) may
then be considered as the union ofM disjoint events of
correctly identifying the subject from themth category,
m = 1,… ,M. The PDI value is obtained as the average
of the M category-specific PDIs. In general, whenM is
large, the HUM value for an individual diagnostic test
may be rather small since it is usually quite difficult to
use only one test to simultaneous correct identifying all
M subjects in the set.On the other hand, the PDI(1)may
appear much larger for the same test since the event of
one correct identification has a greater chance to occur.
In fact, PDI(1) for a uselessmarker, i.e., a random guess,
attains a lower bound at 1/M which is much larger than
1/M!, the null value of HUM. Following the same man-
ner as Van Calster et al. (2012a, 2012b), we can sim-
ilarly define PDI(m) to be the probability of correctly
identifyingm subjects among the set ofM subjects each
from the M categories, 1 � m � M. It is straightfor-
ward to show that PDI(m1) � PDI(m2) for m1 < m2
and PDI(M) is equivalent to HUM. The lower bound
for PDI(m) is (M−m)!/M!, corresponding to a random
guess. All of these PDI quantities may be worth inves-
tigating as alternatives to HUM. The inference meth-
ods for PDI(1) have been rigorously studied in Li, Feng,
Fine, Pencina, and Van Calster (2017) and the relevant
code is available from the first author’s website.

4. Accuracy improvement

While ROC-based measures have been widely adopted,
it has been argued by many authors (Pepe et al., 2004;
Pencina et al., 2008) that such measures may not be
good criteria to quantify improvements in diagnos-
tic accuracy when the added value of a new predic-
tor to an existing model is of interest. Such analyses
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are critical in the development of predictive models
based on biomarkers, where the added value of mark-
ers which may be expensive to obtain must be weighed
against the associated financial costs. The interpreta-
tion of the AUC provides an indirect assessment of
the predictive performance of a model. Thus, the gain
with a new predictor may be unclear. A related issue
is that the AUC measures may be relatively insensi-
tive to the addition of predictors in certain regions of
the AUC space. To address these limitations, Pencina
et al. (2008) proposed two novel criteria based on
reclassification in order to directly quantify the extent
to which a new predictor improves classification per-
formance: the net reclassification improvement (NRI)
and the integrated discrimination improvement (IDI).
These measures have met with a widespread success in
the medical literature, with many practitioners prefer-
ring their ease of interpretation versus ROC-basedmea-
sures. For additional discussion of these recent devel-
opments, we refer the reader to Steyerberg et al. (2010),
Pencina, D’Agostino Sr, and Steyerberg (2011), Pencina,
D’Agostino Sr., and Demler (2012) and Austin and
Steyerberg (2013). We note that these metrics provide
different perspectives for accuracy studies and there are
also critiques in the literature (see e.g., Hilden & Gerds,
2014; Kerr et al., 2014; Pepe, Feng, & Gu, 2008b). In
particular, Hilden and Gerds (2014) pointed out that
NRI and IDI sometimes may inflate the prognostic per-
formance of added biomarkers and Kerr et al. (2014)
argued that NRI may perform poorly under some non-
linear data-generatingmechanisms. Thus users of these
popularmetrics should also exercise caution in practice.

We adopt the same notations in the preceding sec-
tion. Now suppose more variable(s) are included in
addition to the existing model M1 and we construct
a model M2 which is based on a set of predic-
tors �2��1.The newly constructed model M2 gener-
ates another probability vectorp(M2)= (p1(M2),…,
pM(M2)) for each subject where

∑M
m=1 pm(M2) =

1. Again, decision-makers may follow the take-the-
winner rule and assign the subject according to the
greatest value of this probability vector and the mth-
category accuracy ofM2 based on�2 can be quantified
by

CCPm(M2)

= P{pm(M2) = max p(M2)|Y = m} m = 1, . . . ,M.

(8)

The net reclassification improvement from M1 to
M2 may be computed by

NRI =
M∑

m=1

wm{CCPm(M2) − CCPm(M1)}, (9)

where wm are positive weights for the mth category.
WhenM = 2, the NRI quantifies the overall increase of
the weighted sum of sensitivity and specificity. When

equal weights are used for the two categories,NRI is sim-
ply the difference of Youden’s index between the two
models (Li et al., 2013a, 2013b).

The IDI can be generalised to multiple categories
by noticing the connection between IDI in binary clas-
sification problems and R2 (Cox & Wermuth, 1992;
Menard, 2000; Tjur, 2009). The interpretation and com-
putation ofR2, also called a coefficient of determination,
has been discussed for binary logistic regression mod-
els. Simply speaking, the value of R2 is the fraction of
the total variation explained by the model. For linear
regression models, R2 is closely related to the correla-
tion coefficient and the ANOVA F-test, while for binary
regression, it is closely connected to the probabilities of
correct classification.

Let R2(M j) = (R2
1(M j), . . . ,R2

M(M j)) be an M-
dimensional vector with R2

m defined in (3). It has been
shown in Pepe et al. (2008a) that the increase in R2 for
binary classification (M = 2) frommodelM1 to model
M2 is equivalent to the IDI in Pencina et al. (2008).
A natural adaptation of the R2 definition of IDI to the
multi-category set-up is

IDI =
M∑

m=1

wm{R2
m(M2) − R2

m(M1)}. (10)

The multi-category IDI (10) reduces to that in Pencina
et al. (2008) when M = 2 and equal weights w1 = w2
= 1/2 are used. This generalised version of IDI may be
viewed as an extension of the familiar Brier score which
is usually defined as the sum of quadratic differences
(Gneiting & Raftery, 2007).

The choice of weights in the definitions of NRI and
IDI may depend on the goal and design of the study.
When aiming for the overall test accuracy to differenti-
ate multiple classes, it is natural to weigh all categories
equally; on the other hand, as pointed out in Pencina
et al. (2011), sometimes it is useful to reward some cate-
gorieswith higherweightswhen savings associatedwith
correct classification of such categories outweigh other
categories. When cost-efficiency information is avail-
able, we can incorporate them easily in the inference
for weightedNRI and IDI. There are also other practical
considerations that invoke unequal weights and one can
run a Bayesian prior elicitation procedure to construct
reasonable weights (Li & Fine, 2010).

The estimation and statistical inference for multi-
category NRI and IDI was discussed in Li et al. (2013a).
The parameter estimation and variance estimation for-
mula were implemented inR and the code is download-
able at http://www.stat.nus.edu.sg/∼stalj. Alternatively,
one can choose a resampling-based approach to con-
struct confidence intervals for NRI and IDI. An advan-
tage of the resamplingmethod is that the sampling vari-
ability in estimation of the probability vector may be
formally accounted for in the inference.

http://www.stat.nus.edu.sg/~stalj
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5. Examples

In this tutorial, we used R version 3.0.3. All data-sets
and computing code can be downloaded from the first
author’s website.

5.1. Liver cancer

Wereturn to the liver cancer examplementioned in Sec-
tion 1. The data-set was analysed in a recent mass spec-
trometry study for the detection of Glycan biomark-
ers for liver cancer (Ressom et al., 2007, 2008). The
researchers investigated 202 participants from Cairo,
Egypt: 73HC, 52QC, and 77NC. The spectra were gen-
erated by matrix-assisted laser desorption/ionisation
time-of-flight (MALDI-TOF) mass analyser (Applied
Biosystems Inc., Frammingham, MA). We downloaded
the full data-set from the authors’ public website and
focused on a set of 484 peaks after extensive preprocess-
ing of the raw data.

In this study, the diagnostic task involved three dif-
ferent categories. We were interested in assessing the
diagnostic accuracy of these peaks and identified those
peaks with the highest discriminatory ability. Previ-
ously, Ressom et al. (2007, 2008) conducted analysis
by reducing the number of categories to frame a few
pairwise two-category classification problems. Pairwise
ROC curves and the AUCs were reported to investigate
the differentiability between two classes (e.g., HC vs.
QC). However, such AUC measures cannot summarise
the overall accuracy for three categories.

A more appropriate summary measure is the HUM
from multi-category ROC analysis. We have selected
four representative peaks from the raw data file for this
tutorial. Let us first compute the HUM value for the
peak in the first row of the data-set. After the data are
prepared as we have done in Appendix, we may apply
the following code using the ThreeHUM function to
obtain the HUM value.

> ThreeHUM(y,d1)
[1] 0.1680032

Recall that the null value of HUM for three-category
classification is 1/3! = 1/6 = 0.1667. The accuracy of
this marker is thus slightly better than a random guess,
indicating the probability of correctly classifying three
subjects randomly selected from the three groups is
0.1680.

For the sake of comparison, we also compute the
PDI(1) value for the same marker using the Three-
PDI function.

> ThreePDI(y,d1)
[1] 0.6649002

This value indicates that the probability of correctly
classifying one of three subjects randomly selected from
the three groups is 0.6649.

BothHUMand PDI(1) suggest the first row is a weak
marker and therefore not useful for the discrimination
of disease classes.

In order to identify important biomarkers in this
data-set, we need to repeat the above calculation for all
the peaks and rank the peaks with their HUM values.
Wemay use the following loop to compute HUM for all
the 484 peaks:

hum=rep(0,4)
for(i in 1:4)
{
hum[i]=ThreeHUM(y, ex1[i,2:203])
}

After the calculation, we may sort the HUM values
and identify the peaks with high HUM values:

> shum=sort(hum,decreasing=T,index.return=T)
> shum$ix
[1] 3 4 2 1
> shum$x
[1] 0.6268526 0.5872484 0.1717426 0.1680032

The peaks with their corresponding HUM values
are shown in the above output. The peak in the third
row of the data-set has the highest HUM value, sug-
gesting that in approximately 63% of all classification
jobs, this marker can correctly sort the three classes.
This is almost four times the chance of a random guess.
This peak can thus be deemed as a potentially useful
biomarker to differentiate the three classes. The other
HUM values can be interpreted similarly.

One can use a simple bootstrap procedure to com-
pute the standard error and percentile-based confi-
dence intervals. For example, for the third peak, wemay
use the following code to produce a bootstrap sample of
repetition B = 250:

B=250
hum3=rep(0,B)
for(b in 1:B)
{
id=sample(1:202,202,replace=T)
hum3[b]=ThreeHUM(y[id], ex1[3,id])
}

The resulting bootstrap sample of HUM estimates
is plotted in Figure 2. The boostrap standard error is
0.0404. The 95% percentile-based bootstrap confidence
interval for HUM is [0.5325, 0.6897] by using the fol-
lowing code:

> sd(hum3)
[1] 0.04044191
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Figure . Bootstrap sample of HUM for the third peak in the liver cancer example.

> shum3=sort(hum3)
> shum3[250*.025]
[1] 0.5325509
> shum3[250*.975]
[1] 0.6897272

To generate a nice three-dimensional view of the
ROC surface, we may use a function ROCsurf down-
loadable at the first author’s website mentioned before.
We may use the following code:

> k=3;
> X=ex1[k,2:74];
> Y=ex1[k,75:151];
> Z=ex1[k,152:203];
> ROCsurf(X,Y,Z);

The corresponding graph is shown in the top panel
of Figure 1. By changing k=4, we may also produce the
ROC surface for the fourth peak in the data-set (the
bottom panel of Figure 1). These graphs can visually
display the trade-off of correct classification probabil-
ities among the three categories and help practitioners
select a desirable cut-off to achieve satisfactory accuracy
requirement for the classes.

Finally, if the goal is to combine multiple markers
to form a more accurate classifier, we may consider
using logistic regression coupled with a forward selec-
tion algorithm. Specifically, at each step, we include one
more marker on top of existing markers. The stepwise
results are given in the following output:

> ThreeHUM(y,cbind(ex1[3,2:203],
ex1[4,2:203]))

[1] 0.7290655

Wemay also compute CCP for the peaks after fitting
a multi-nomial logistic regression. For example, for the
naive model fm we fitted in Section 2, the CCP is com-
puted to be 0.381 by the following code, indicating that
roughly 40% of the subjects in the sample are correctly
classified using the first two markers in the data-set:

> mean(predict(fm)==y)
[1] 0.3811881

Using all four peaks in the data-set, we obtain the
CCP by applying the following code, indicating that
about 80% of the subjects are correctly classified using
the four peaks:
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> fmf=multinom(y˜ ex1[1,2:203]+ ex1[2,2:203] + ex1[3,2:203]+ ex1[4,2:203])
> mean(predict(fmf)==y)
[1] 0.7871287

Although the numerical values of HUM and CCP may appear similar, they contain entirely different mes-
sage. The event defining CCP does not require the joint consideration of all categories and only reflect the fre-
quency of correct identification of individual categories. One needs to be mindful interpreting these accuracy
values.

5.2. Synovitis

We return to the synovitis example described in Section 1 forwhichwe need to analyse six distinct disease categories.
The data-set is available in an R package HUM and is called sim. We may load the data in R and inspect the data
structure using the following code:

> library(HUM)
> data(sim)
> str(sim)
’data.frame’: 92 obs. of 13 variables:

$ SampleID : int 1 2 3 4 5 6 7 8 9 10 ...
$ Disease : Factor w/ 6 levels "Early","Normal",..: 2 2 2 2 2 2 2 2 2 2 ...
$ CD15 : num 0 0 0 0 0 0.05 0 0.4 0 0 ...
$ CD15TIC : num 0 0 0 0 0 0.69 0 1.89 0 0 ...
$ CD3 : num 10.2 4.3 3.6 0.14 2.1 1.2 2 9.8 0.2 0.5 ...
$ CD3TIC : num 39.7 31 30.2 10.4 26.2 ...
$ CD20 : num 2 0.38 0.3 0.1 0 2 0 0 0 0 ...
$ CD20TIC : num 7.78 2.74 2.52 7.46 0 ...
$ CD38 : num 0 0 0 0 0.2 0 0 0 0 0 ...
$ CD38TIC : num 0 0 0 0 2.5 0 0 0 0 0 ...
$ CD68subintima : num 13.5 9.2 8 1.1 5.7 4 8 11 2.15 1.34 ...
$ CD68subintimaTIC: num 52.5 66.3 67.2 82.1 71.2 ...
$ Total : num 25.7 13.88 11.9 1.34 8 ...

> table(sim[,2])

Early Normal OA OrthArthr RA SeA
10 15 26 6 24 11

There are 92 rows corresponding to the available observations. The first column is the subject index. The second
column indicates disease categories where the frequency for these categories has been shown in the above output.
All the other columns are different synovial tissue biomarkers studied in Beffa et al. (2013). It it of interest to assess
the diagnostic accuracy of these markers to differentiate the six disease categories.

We next consider using the R package HUM to compute the HUM values for the marker Lining. To this end, we
need to specify a few optional parameters in the function CalculateHUM_Ex. The option indexF specifies the
column number for the marker we wish to investigate. The option indexClass specifies the column number for
the disease categories. The option allLabel is a character vector, containing the column names of the class labels,
selected for the analysis. The option amountL specifies the number of categories used for the calculation of HUM.
This number must be less than or equal to the distinct number of categories in the data:

> indexF=3
> indexClass=2
> allLabel=c("Normal","OA","Early","RA","SeA","OrthArthr")
> amountL=6
> out=CalculateHUM_Ex(sim,indexF,indexClass,allLabel,amountL)
> out$HUM

Diagnosis1 Diagnosis2 Diagnosis3 Diagnosis4 Diagnosis5 Diagnosis6 3
[1,] "Normal" "OA" "Early" "RA" "SeA" "OrthArthr" "0.0866"

In this example, we select the marker CD15 from the third column of the data-set sim for the classification. For
the six-category classification task, we attain the HUM value to be 0.0866 for CD15 from the above output. Recall
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that the null HUM value is 1/6!= 0.00138 in this case (M= 6). CD15 thus achieves an accuracy more than 60 times
of the chance of a naive random guess.

The HUM package depends on the R packages gtools, rgl and Rcpp which must be installed in
advance. The program does not permit missing values and one must clean the data-set to remove all missing
records.

The program also allows the computation of sub-HUM values with fewer classes. For example, the
(6
5

) = 6 pos-
sible five-category HUM values are computed below by changing the option amountL to be 5:

> out=CalculateHUM_Ex(sim,indexF,indexClass,allLabel,5)
> out$HUM

Diagnosis1 Diagnosis2 Diagnosis3 Diagnosis4 Diagnosis5 3
[1,] "Normal" "OA" "Early" "RA" "SeA" "0.2641"
[2,] "Normal" "OA" "Early" "RA" "OrthArthr" "0.1021"
[3,] "Normal" "OA" "Early" "SeA" "OrthArthr" "0.2036"
[4,] "Normal" "OA" "RA" "SeA" "OrthArthr" "0.2362"
[5,] "Normal" "Early" "RA" "SeA" "OrthArthr" "0.2212"
[6,] "OA" "Early" "RA" "SeA" "OrthArthr" "0.1996"

Suppose we remove category OrthArthr and only investigate the other five categories. We obtain an HUM value
0.2641 formarker CD15. For five classes (M= 5), the null HUMvalue is 1/5!= 0.0083.We can see that all computed
HUM values are much larger than the chance of a random guess. This marker is potentially useful even if we only
investigate five categories. Furthermore, if one is only interested in two-category pairwise comparison, the following
code can be used to generate the desired results for all

(6
2

) = 15 pairwise AUC values:

> out=CalculateHUM_Ex(sim,indexF,indexClass,allLabel,2)
> out$HUM

Diagnosis1 Diagnosis2 3
[1,] "Normal" "OA" "0.7102"
[2,] "Normal" "Early" "0.9933"
[3,] "Normal" "RA" "1"
[4,] "Normal" "SeA" "1"
[5,] "Normal" "OrthArthr" "0.6111"
[6,] "OA" "Early" "0.8730"
[7,] "OA" "RA" "0.9599"
[8,] "OA" "SeA" "1"
[9,] "OA" "OrthArthr" "0.5769"
[10,] "Early" "RA" "0.6083"
[11,] "Early" "SeA" "0.9727"
[12,] "Early" "OrthArthr" "0.8833"
[13,] "RA" "SeA" "0.9242"
[14,] "RA" "OrthArthr" "0.9791"
[15,] "SeA" "OrthArthr" "1"

The above computation can be carried out for all other markers in this data-set. To compute HUM for all the
markers, wemay select their corresponding columns (3–12) in the data-set and assign that toindexF. The function
CalculateHUM_Ex can then be applied to obtain HUM values simultaneously:

> indexF=seq(3,12)
> out=CalculateHUM_Ex(sim,indexF,indexClass,allLabel,6)
> out$HUM

3 4 5 6 7 8
[1,] "0.0866" "0.0315" "0.0698" "0.0090" "0.0183" "0.0090"

9 10 11 12
[1,] "0.0819" "0.0368" "0.1055" "0.0435"
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Eyeballing the HUM list, we may notice that marker
in the 11th column achieves themaximumHUMvalues
0.1055 among all markers. This marker may be more
informative for differentiating themultiple categories of
the disease.

5.3. Leukemia

We next illustrate NRI and IDI using a data-set
extracted from the leukemia data (Golub et al., 1999).
We consider evaluating the improvement for their abil-
ity to differentiate the three classes using two selected
gene expressions. The first gene achieves a CCP value
0.7854. The R2 value for this gene is 0.6364. The fol-
lowing is the code to input the data from an external
file trains.dat and to evaluate the CCP and R2. We
note that CCP andR2 are the parentmeasures for evalu-
ating the NRI and the IDI, respectively, when the base-
line is a null model:
> leuk=read.table(’trains.txt’, head=T)
> Y=leuk[, 3]
> e1=leuk[, 1:2]
> rsq=RSQ( Y, e1[, 1])
> ccp=CCP( Y, e1[, 1])
> rsq
[1] 0.6364734
> ccp
[1] 0.7854864

We then evaluate the accuracy improvement mea-
sures by adding the second gene expression in addition
to the first gene expression. The IDI for adding the sec-
ond gene is 0.3906, indicating about 40%more variation
can be explained by the marker. The NRI for adding the
second gene is computed to be 0.2145. The following R
code generates the numerical result:

> nri=NRI(Y, e1[,1], e1[,2])
> nri
[1] 0.2145136
> idi=IDI(Y, e1[,1], e1[,2])
> idi
[1] 0.3905515

Finally, we may also compute PDI using this sample.
To compute PDI(1) for the 1184th gene, wemay use our
R program ThreePDI in a similar way as ThreeHUM.
The resulting PDI value 0.9868 is quite high, indicat-
ing that the marker can almost always identify one cat-
egory correctly. In comparison, the HUM value for this
marker is slightly above 80%. The R code is given as fol-
lows:

> PDI=ThreePDI(Y, e1[,1])
> PDI
[1] 0.9868421
> HUM=ThreeHUM(Y, e1[,1])
> HUM

[1] 0.8116029

6. Discussion

The sample sizes in diagnostic accuracy studies must
be sensibly determined at the design stage. For multi-
category classification, we need to ensure that the num-
ber of subjects from every group is sufficient to allow
a realistic estimation of the accuracy measures for the
study population. Sometimes because of low failure
rates or uneven prevalence, a medical study would
yield relatively small number of subjects in some cat-
egories relative to the massive number of markers.
Even though the point estimation for many diagnos-
tic measures such as AUC, HUM, NRI and IDI might
still be unbiased for small samples, their inferences
would heavily rely on the large sample assumption. We
thus have to weigh the statistical findings in consider-
ation of the samples used and make a final claim with
cautions.

We recommend the use of ROC analysis for mutli-
category classification accuracy studies. This type of
analysis extends the familiar two-category ROC anal-
ysis and lends support to the accuracy investigation by
reporting a single numerical measure that summarises
the overall accuracy for differentiating multiple cate-
gories. The statistical merits of this approach are well
justified by previousmethodological works. In addition,
user-friendly programs are now available to facilitate
applications in medical research.

When evaluating the accuracy improvement, it may
be more appropriate to report NRI and IDI. These
two metrics may find their mathematical connection
with the difference between CCP and R2, respectively
(Li et al., 2013a, 2013b). Besides being easy to under-
stand, they are now also widely implemented in all
kinds of applications. In this paper, we mainly review
nested model improvement but the development for
NRI and IDI can be readily extended to non-nested
model improvement as well. See Shao, Li, Fine, Wong,
and Pencina (2015) for a recent discussion. In addition,
Bayesian estimation for improvement statistics is also
available and may be useful for inference (Huang, Li,
Cheng, Cheung, & Wong, 2016).

Other measures such as pairwise AUC, individual
class-specific CCP and PDI are briefly reviewed in
this paper. They usually lead to indirect evaluation
of the diagnostic accuracy and thus require users to
report multiple values for all the categories. In com-
parison, ROC-based metrics lead to a direct quantifi-
cation of multi-category classification accuracy. The
PDI (Li et al., 2017; Van Calster et al., 2012a) may
be viewed as a useful extension from HUM when
the accuracy for classifying at least one group is of
interest.
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Appendix

The multi-nomial logistic regression model gives class
probability by a logistic-type regression equation com-
paring the class with a chosen baseline class, say class
1,

pm(M1) =
{ M∑

k=1

exp(βT
k X)

}−1

exp(βT
mX),

m = 1, . . . ,M, (11)

where X represents the vector of selected markers in
model M1 and β1 = 0. In R, fitting a multi-nomial
logistic regression can be easily realised using the
library nnet.

We consider the liver cancer data-set in Section 1
as an example to illustrate the calculation of member-
ship probabilities using the logistic regression. The data
is downloadable from the authors’ public website and
we save the data-set in the current working directory as
example1.txt. One can read the data into R using
the following code:

> ex1=read.table(’example1.txt’,head=T)
> str(ex1)
’data.frame’: 4 obs. of 203 variables:
$ M.Z : num 1507 1511 1512 1519 1523 ...
$ HC.146 : num 239.6 120 175.1 91.6 68.4 ...
$ HC.147 : num 540 104 204 186 122 ...

...

From the above output for the data frame structure,
we can see that this data file contains 4 rows and 203
columns where each row corresponds to a peak. Col-
umn 1 gives the peak IDs, columns 2–74 refer to the
73 HC subjects, columns 75–151 refer to the 77 NC
subjects, and column 152–203 refer to the 52 QC sub-
jects. To conduct multi-category analysis, we may gen-
erate the three-category outcome Y using the following
code:

> y=c(rep(1,73),rep(2,77),rep(3,52))

Let us select the first two markers from the
data-set as predictors and use multi-nomial logistic
regression to obtain the fitted probability assessment
vectors:

> library(nnet)
> d1=as.numeric(ex1[1,2:203])
> d2=as.numeric(ex1[2,2:203])
> fm=multinom(y˜d1+d2)
> pp=fm$fitted

Now the object pp stores the probability assessment
vectors for all the subjects. For the first five subjects in
the data-set, we obtain the following probability assess-
ment:

> head(pp)

1 2 3
1 0.3152325 0.4630516770 0.2217159
2 0.4513196 0.1925552390 0.3561252
3 0.4716263 0.1442867970 0.3840870
4 0.4330918 0.2402745719 0.3266336
5 0.3716372 0.3785004557 0.2498624

The value in each row sums up to one, while each
column corresponds to the membership probability for
a particular class. For the first subject, his membership
probability for class 2, 0.4630, is the highest among the
three values, and this observation leads us to a deci-
sion of classifying him into the second category. Using
the same rule, we classify subjects 2, 3 and 4 into the
first category; we classify subject 5 into the second cat-
egory. Note that the true status for all these five sub-
jects are actually the first category and thus only sub-
jects 2, 3 and 4 are correctly classified by using the
first two markers, defined as d1 and d2 in the above
code.

Another popular classifier usually adopted by
researchers is the support vector machine (SVM). This
learning approach is based upon the idea ofmaximising
the margin, i.e., maximising the minimum distance
from the separating hyperplane to the nearest class
member. The basic SVM supports only binary classifi-
cation, but extensions (Crammer & Singer, 2001; Lee,
Lin, & Wahba, 2004) have been proposed to handle
the multi-category classification as well. In these exten-
sions, additional parameters and constraints are added
to the optimisation problem to handle the separation
of the different classes. These sophisticated methods
are all implemented in R, SAS, STATA and other
statistical softwares. As an illustration, we still consider
the above example and use R function ksvm to obtain
the SVM classification. This function is contained in
package kernlab:

> library(kernlab)
> fm2=ksvm(y ˜ d1+d2, prob.model =
TRUE,type = "C-bsvc")
> pv=predict(fm2,cbind(d1,d2),
type=’probabilities’)
> head(pv)

1 2 3
[1,] 0.3846878 0.4396745 0.1756376
[2,] 0.4395848 0.2605536 0.2998616
[3,] 0.4297978 0.3155074 0.2546948
[4,] 0.3917314 0.2833164 0.3249522
[5,] 0.3512656 0.4469142 0.2018203

The output for the first five subjects gives similar but
distinct probability assessment estimates from the logis-
tic regression. For the first subject, we still classify him
into the second category since the class probability is the
highest for this category. Using take-the-winner rule,
we classify subjects 2, 3 and 4 into the first category
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and subject 5 into the second category. The classifica-
tion results based on SVM are thus identical to those
based on multi-nomial logistic regression for these
subjects.

In general sophisticated classification tools such as
support vectormachine can be implemented to improve
the model fitting accuracy and provide robust proba-
bility estimates. However, these complicated classifiers
also rely heavily on the large sample assumption and

other technical conditions and thus their performance
may be less satisfactory or stable for small and moder-
ate data. In contrast, the logistic regression may suffer
from model mis-specification since it assumes a sim-
ple linear regression equation for the log odds. Though
it is widely adopted in medical data analysis, one must
be aware of its limitation and sometimes may consider
other alternatives in order to achieve more informative
results.
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