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ABSTRACT
Providing accurate anddynamic age-specific risk prediction is a crucial step in precisionmedicine.
In this manuscript, we introduce an approach for estimating the τ -year age-specific absolute risk
directly via a flexible varying coefficient model. The approach facilitates the utilisation of predic-
tors varying over an individual’s lifetime. By using a nonparametric inverse probability weighted
kernel estimating equation, the age-specific effects of risk factors are estimated without requir-
ing the specification of the functional form. The approach allows borrowing information across
individuals of similar ages, and therefore provides a practical solution for situationswhere the lon-
gitudinal information is only measured sparsely. We evaluate the performance of the proposed
estimationand inferenceprocedureswithnumerical studies, andmake comparisonswith existing
methods in the literature.We illustrate the performance of our proposed approach by developing
a dynamic prediction model using data from the Framingham Study.

1. Introduction

Accurate and individualised risk prediction is a key
component of precision medicine. For example in
colorectal cancer, risk calculator can help tailoring
individual’s screening regimen and making decisions
on specific ages for screening initialisation and surveil-
lance. Factors pertaining to specific ages, such as family
history and nutrition intake are important to be incor-
porated in the outcome prediction. For cardiovascular
disease (CVD), the Framingham risk score (FRS)
(Wolf, D’Agostino, Belanger, & Kannel, 1991) has been
developed separately for men and women based on risk
factors such as total cholesterol, HDL, systolic blood
pressure and smoking status. Patients with 10-year FRS
below 10% are considered to be at lower risk for vascu-
lar events during the next decade, whereas patients with
scores between 10% and 20% are at moderate risk and
those larger than 20% are at higher risk. Various inter-
vention strategies can be implemented based on such
risk stratification (Mosca et al., 2004). In these clinical
settings, the analytical goal is to provide patients with
an estimate of the likelihood of developing a disease
within the next τ -years given the subject is disease free
at age a and his/her risk profile updated by age a, i.e.,
the age-specific absolute τ -year residual life risk.

Currently available prediction models are often lim-
ited in predicting such age-specific absolute residual
life risk. For example, the FRS model includes age as
a standard risk factor with linear effects. However, it is
well recognised that the relationship between age and
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CVD risk may change in magnitude through complex
interactions with other risk factors (Ridker, Buring,
Rifai, & Cook, 2007). Naturally, a risk equation should
be a more stochastic function of age (Lloyd-Jones,
2010). Such simplistic models, failing to capture the
complex age varying effects, may lead to poor risk esti-
mates and prediction models with low discriminatory
power. To be clinically useful with sufficiently ade-
quate prediction accuracy, an ideal prediction model
should take into account an individual’s most up to
date health information and reflect the fact that risk
factors may have differential effects on the τ -year
residual life risk over various stages of an individual’s
life span.

Constructing a model that accurately captures how
risks change dynamically over lifetime, while of great
importance, is challenging for several reasons. Often
important risk factors change over time. However,
collecting such time-varying information for a large
prospective cohort can be a major undertaking. Most
cohort studies only collect age-specific information
intermittently, sometimes irregularly. Characterising
changes over time with limited measures at discrete-
time points requires much deliberation. Furthermore,
the importance of risk factors on disease outcome may
change during an individual’s lifetime. For example,
bodymass indexmay have substantially different effects
on future CVD risks depending on the age. Charac-
terising age-varying effects with a powerful yet flexible
statistical model can be challenging. Similar challenges
arise when assessing the prediction performance of an
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age-specific prediction model since the accuracy may
also vary with age.

A popular approach in the risk prediction literature
is to decompose the absolute risk into two compo-
nents: the age-dependent disease risk for a baseline
risk profile, which can be estimated from a prospective
cohort study or external disease incidence data, and
the relative risk of developing disease for a particular
risk factor profile compared to the baseline (Gail et al.,
1989; Liu, Zheng, Prentice, & Hsu, 2014). While such
an approach can accommodate differential effects of
risk factors at different ages by adding interaction
terms of age and the other covariates in the regression
model, it does not incorporate time-varying covariates
collected over time. To incorporate repeated mea-
surements, joint modelling (JM) of both the covariate
process Z(·) and a survival outcome T have been devel-
oped in recent years (Tsiatis, DeGruttola, & Wulfsohn,
1995; Wang & Taylor, 2001; Ye, Lin, & Taylor, 2008).
Parameter estimation typically involves specifying the
covariate process Z(·) and then linking Z(·) to T via
a proportional hazard (PH) model with time-varying
covariates. In addition to requiring strong modelling
assumptions about Z(·) and T, these joint modelling
(JM) methods have a limitation of being computa-
tionally infeasible when many time-varying covariates
are under consideration. Semi-parametric methods
have been proposed to directly make prediction of
τ -year residual life risk given covariate information at a
landmark time t0 (Parast, Cheng, & Cai, 2012; Zheng &
Heagerty, 2005). However, no existing methods allow
for incorporating age-specific effects nonparametrically
with sparsely measured time-varying covariates. Fur-
thermore, procedures for nonparametrically evaluating
such age-specific prediction models with longitudi-
nal markers and censored event times are not yet
available.

In this paper, we propose to directly model the age-
specific absolute risk function via a flexible varying-
coefficient model and estimate the covariate effects as
functions of age via inverse probability weighted (IPW)
kernel estimating equations. The procedure allows the
estimation of age-specific risks flexibly with the longi-
tudinally collected risk factor information on the same
patient, while borrowing strength across individuals of
similar ages at different study time points. It also han-
dles irregularly measured serial covariates and censor-
ing easily. Our proposed model, by allowing the effects
of risk factors to change over age and the target residual
life span τ , is more realistic and could potentially lead
to improved predictive performance. To quantify the
performance of the age-specific models of τ -year resid-
ual life risk, it would be desirable to consider measures
of prediction performance specific to age and predic-
tion time since the prediction accuracy of such models
is likely to vary over both dimensions. A wide range of
performance measures has been considered to quantify

the time-specific prediction accuracy of τ -year absolute
risk models constructed with baseline markers (Gerds,
Cai, & Schumacher, 2008; Uno, Cai, Tian, & Wei, 2007;
Zheng, Cai, & Feng, 2006). In the longitudinal setting,
Zheng and Heagerty (2004) considered a model-based
approach for estimating the accuracy in the absence
of censoring. To guard against potential model mis-
specification and incorporate censored outcomes, we
propose an IPW kernel estimator to calculate model
performance parameters that quantify the accuracy of
the proposed prediction models in predicting τ -year
residual life at age a. No existing methods provide non-
parametric estimates of such prediction performance
with longitudinal markers and censored outcomes.

The remainder of this manuscript is organised as
follows. In Section 2; we describe the proposed model
and estimation framework. Then, we present simula-
tion results comparing our approach to other popular
methods in Section 3. We apply the proposed method
to the Framingham Heart Study in Section 4, assessing
the age-specific effects of routinely used cardiovascular
risk factors on the 10-year residual CVD risk and quan-
tifying the performances of the prediction models. We
conclude with a brief discussion in Section 5.

2. Methods

Let Ti be the time to event onset since a baseline time
such as study entry. Due to censoring, one can only
observe Xi = min {Ti, Ci} and δi = I(Ti � Ci), where Ci
is the censoring time and I(·) is the indicator function.
To facilitate the calculation of age-specific risks, we also
record age at the occurrence of the event and censoring.
LetAi0 be the age at which subject i enters the study and
thenTA

i = Ti + Ai0 is the age at which the event occurs,
andCA

i = Ci + Ai0 is the age at which TA

i might be cen-
sored. Let XA

i = Xi + Ai0 = min{TA

i ,CA

i }. In addition
to the event time information, risk markers are ascer-
tained repeatedly during the follow-up. For the ith sub-
ject, let Zi(a) = (

Zi1(a),Zi2(a), . . . ,Zip(a)
)T denote a

vector of p risk factors measured at age a, let {Aik, k =
0, ...,mi} be the ages at which these risk factors are col-
lected and Zij = Zi(Aij), where mi is the total number
of measurement times. We assume that Zi(a) is poten-
tially observable among those with TA

i > a, the values
of Zi(Aij) are not dependent on the study measurement
time Aij − Ai0 given age Aij. In addition, Ci is assumed
independent ofTi ,Zi(·), entry ageAi0, and the underly-
ing study measurement times, with support not shorter
than that ofAij −Ai0 + τ . Figure 1 provides a graphical
illustration of the data structure.

2.1. Modelling, estimation and inference

We are interested in estimating the risk of experiencing
the event in the next τ -years for subjects who are at age
a and event-free, based on the risk factor measured at
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Figure . Data structure.

age a, Z(a). Thus, the goal is to estimate the conditional
risk function:

πτ,a(z) = Pr
{
TA−a ≤ τ | TA>a,Z(a) = z,A = a

}
.

To approximate πτ , a(z), we propose a flexible varying
coefficient model:

πτ,a{Z(a)} = g
{
βτ (a)

TU(a)
}
, (1)

where g(·) is a known smooth probability distribution
function, such as g(x) = exp (x)/{1 + exp (x)} (which is
used in Section 4), U(a) = ψ{Z(a)} represents trans-
formed risk factors for some known function ψ and
U(a) includes 1 as the first component, such as a log
transformed risk factor (used in Section 4), βτ (a) is an
unknown smooth function representing the covariate
effects on the τ -year residual life risk at age a. Model
(1) allows the effects of risk factors Z(a) to vary over
both age and the residual life span τ . This flexibility is
attractive when the risk factors have different effects
on long-term versus short-term risks and when certain
risk factor profiles have more detrimental effects for
younger subjects than for older subjects.

To estimate βτ (a) for any given age a in the presence
of censoring, we propose to obtain β̂τ (a) as the solu-
tion to the IPW kernel smoothed estimating equation,

�̂a(β) = 0, where

�̂a(β) = 1
n

n∑
i=1

mi∑
j=0

ŵτ i j I(XA

i ≥ Ai j)Kh(Ai j − a)

×Ui j
{
I
(
XA

i < Ai j + τ
) − g(βTUi j)

}
, (2)

where Uij = Ui(Aij), ŵτ i j = δi I(XA

i ≤ Ai j +
τ
)
/Ĝ(Xi) + I

(
XA

i > Ai j + τ
)
/Ĝ(Ai j − Ai0 + τ )

with Ĝ(·) being the Kaplan–Meier estimator for
the survival function of the censoring time G(c)
= P(Ci > c) of Ci, and Kh(s) = K(s/h)/h is a sym-
metric standard kernel function K(·) with a finite
support and with h the smoothing parameter. Note
that under the independent censoring assumption,
E(ŵτ i j | TA

i ,Ai j,Zi j, j = 0, , . . . ,mi) ≈ 1.
Following similar arguments as given in Cai, Tian,

Uno, Solomon, andWei (2010) and Parast et al. (2012),
one may show that β̂τ (a) converges in probability to
a deterministic vector β̄τ (a) as n → � regardless of
whether (1) is correctly specified or not. In addition,
one may also show that for h = Op(n−v ) with v �
(1/5, 1/2), (nh)

1
2 {̂βτ (a) − βτ (a)} converges in distri-

bution to a zero-mean normal random vector for any
given a. However, it is difficult to directly estimate
the asymptotic variance of (nh)

1
2 {̂βτ (a) − βτ (a)}. To

construct confidence interval (CI) for βτ (a) in prac-
tice, we suggest using a perturbation resampling (some-
times referred to as wild bootstrap) method (Park &
Wei, 2003; Tian, Zucker, & Wei, 2005; Wu, 1986) to
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approximate the distribution of the proposed estima-
tor. Compared to the standard bootstrap, perturba-
tion resampling tends to be more stable especially in
the survival setting since all observations take positive
weights and contribute to the estimation. Let V (b) =
{V (b)

1 , . . . ,V (b)
n }, b = 1,… , B, be B sets of indepen-

dent positive random variables from a known distribu-
tion with mean and variance equal to one. Then, one
may obtain perturbed estimates ofβτ (a), β̂

(b)
τ (a), as the

solution to the equation:

1
n

n∑
i=1

mi∑
j=0

ŵ(b)
τ i j I(X

A

i ≥ Ai j)Kh(Ai j − a)Ui j

× {
I
(
XA

i < Ai j + τ
) − g(βTUi j)

} = 0,

where ŵ(b)
τ i j = V (b)

i {δi I
(
XA

i ≤ Ai j + τ
)
/Ĝ(b)(Xi) +

I
(
XA

i > Ai j + τ
)
/Ĝ(b)(Ai j − Ai0 + τ )} and Ĝ(b)(·) is

the weighted Kaplan–Meier estimator of G(·) with each
subject’s contribution to the estimator weighted by
V (b)
i . The asymptotic variance of β̂τ (a), σ̂ 2

βτ (a), can be

estimated by the empirical variance of {̂β(b)
τ (a), b =

1, . . . ,B}. The 100(1 − α)% simultaneous confidence
bands for {βτ (a), al < a < au} can be obtained as
{̂βτ (a) ± ζασ̂βτ (a)}, where ζ α is the 100(1 − α)th per-
centile of {supal<a<au |̂β(b)

τ (a) − β̂τ (a)|/σ̂βτ (a), b =
1, . . . ,B}. To justify the resampling method, we may
first show that

(nh)
1
2 {̂βτ (a) − βτ (a)} = (nh)−1/2

×
n∑

i=1

mi∑
j=0

Kh(Ai j − a)U (Ai j,Ui j,XA

i ) + Op(h
1
2 )

where U is some deterministic function and
E{U (Ai j,Ui j,XA

i )} = 0. Thus for any fixed a and h
= Op(n−v ) with v � (1/5, 1/2), (nh)

1
2 {̂βτ (a) − βτ (a)}

is asymptotically normal. Furthermore, following
similar arguments as given in Tian et al. (2005),
we may show that with proper normalisation,
supa |(nh)

1
2 {̂βτ (a) − βτ (a)}| converges to an extreme

value distribution. In addition,

(nh)
1
2 {̂β(b)

τ (a) − β̂τ (a)} = (nh)−1/2
n∑

i=1

mi∑
j=0

×Kh(Ai j − a)U (Ai j,Ui j,XA

i )(V (b)
i − 1) + Op∗ (h

1
2 ),

where Op∗ is with respect to probability space
generated by both the observed data and V (b).
Then, we may show that conditional on the
data, (nh)−1/2 ∑n

i=1
∑mi

j=0 Kh(Ai j − a)U (Ai j,Ui j,

XA

i )(V (b)
i − 1) converges in distribution to the

same limiting unconditional distribution of
(nh)−1/2 ∑n

i=1
∑mi

j=0 Kh(Ai j − a)U (Ai j,Ui j,XA

i ).

2.2. Accuracymeasure estimation

With βτ (a) estimated as β̂τ (a), one can then use
π̂τ,a{Z(a)} = g{̂βτ (a)TU(a)} to estimate the τ -year sur-
vival probability for event-free subjects with risk fac-
tor profile Z(a) at age a. To assess the accuracy of the
limiting riskmodel π̄τ,a{Z(a)} = g{β̄τ (a)TU(a)} in pre-
dicting the τ -year residual survival status for different
age groups, we extend commonly used time-dependent
accuracy parameters, such as true positive rate (TPR),
false positive rate (FPR) and area under the receiver
operating characteristic curve (AUC), to also incorpo-
rate the age dimension. Since the proposed model eval-
uation method is not limited to a specific prediction
model, we next describe these accuracy parameters for
a genetic τ -year residual life risk function, �τ , A(Z),
derived based on an age A and the risk factor Z(·) col-
lected up to age A. For the proposed model, �τ,A(Z) =
g{βτ (A)TU(A)}.

... Time and age-specific prediction accuracy
When a specific age group a is of interest, we summarise
the prediction performance of risk model �τ , A(Z)
using time and age-specific TPR and FPR functions,
respectively, defined as

TPRτ,a(c) = P
{
�τ,A(Z)>c | 0<TA − a ≤ τ,A = a

}
,

FPRτ,a(c) = P
{
�τ,A(Z) > c | TA − a > τ,A = a

}
.

We may summarise the overall predictiveness of the
model for a given a and τ using

AUCτ,a =
∫

TPRτ,a(c)dFPRτ,a(c)

= P
[
�τ,Ai (Zi) ≥ �τ,Ai′ (Zi′ ) | 0 < TA

i − a

≤ τ,TA

i′ − a ≥ τ,Ai = Ai′ = a
]
,

where i and i′ index two independent individuals. Sim-
ilar to the estimation of βτ (a), these parameters can
be estimated using an IPW kernel smoothing approach.
For example, TPRτ , a(c) can be estimated as

T̂PRτ,a(c)

=
∑

i, j:0<XA

i −a<τ ŵτ i jKh(Ai j − a)I{�̂τ,Ai j (Zi) ≥ c}∑
i, j:0<XA

i −a<τ ŵτ i jKh(Ai j − a)
.

(3)

and AUCτ , a can be estimated as

̂AUCτ,a =
∑

i, j,i′, j′ :0<XA

i −a<τ≤XA

i′ −a ŵτ i j ŵτ i′ j′Kh(Ai j − a)Kh(Ai′ j′ − a)I{�̂τ,Ai j (Zi) ≥ �̂τ,Ai′ j′ (Zi′ )}∑
i, j,i′, j′ :0<XA

i −a<τ≤XA

i′ −a ŵτ i j ŵτ i′ j′Kh(Ai j − a)Kh(Ai′ j′ − a)
. (4)
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where �̂τ,Ai j (Zi) is the estimated risk function plugging
in estimated model parameters. For the proposed vary-
ing coefficient model, �̂τ,Ai j (Zi) = g{̂βτ (Ai j)

TUi j} and

using similar arguments as those for the consistency of
β̂τ (a), onemay show that ̂AUCτ,a is a consistent estima-
tor of AUCτ , a. Furthermore, (nh)

1
2 (̂AUCτ,a − AUCτ,a)

converges in distribution to a normal random variable.
The CI for AUCτ , a can be constructed by perturbed
estimates. Specifically, for b= 1, ..., B, the bth perturbed
estimate of ̂AUCτ,a can be obtained as

̂AUC
(b)
τ,a =

∑
i, j,i′, j′ :0<XA

i −a<τ≤XA

i′ −a ŵ(b)
τ i j ŵ

(b)
τ i′ j′Kh(Ai j − a)Kh(Ai′ j′ − a)I{�̂(b)

τ,Ai j
(Zi) ≥ �̂

(b)
τ,Ai′ j′

(Zi′ )}∑
i, j,i′, j′ :0<XA

i −a<τ≤XA

i′ −a ŵ(b)
τ i j ŵ

(b)
τ i′ j′ Kh(Ai j − a)Kh(Ai′ j′ − a)

. (5)

where �̂
(b)
τ,Ai j

(Zi) is the perturbed counterpart of

�̂τ,Ai j (Zi) obtained similar to β̂
(b)
τ (a) using weights

V (b).

... Time-specific prediction accuracy including
age as a predictor
When interest lies in evaluating the accuracy of the pre-
diction model treating age as a risk factor, an overall
summary that is not conditional on age would be pre-
ferred. That is, incorporating age as a predictor, one
may seek to assess the accuracy in predicting τ -year
residual life of the risk estimate �τ , A(Z), constructed
using Z(·) information collected up to a random age A
among those with TA > A. For such settings, one may
consider

TPRτ (c) = P
[
�τ,A(Z) > c | 0 < TA − A ≤ τ

]
=

∫
TPRτ,adF (a) = E(TPRτ,A),

FPRτ (c) = P
[
�τ,A(Z) > c | TA − A > τ

]
=

∫
FPRτ,adF (a) = E(FPRτ,A).

where F is the distribution of the age at measurement.
The overall performance of the risk model �τ , A(Z) for
predicting τ -year residual life can be summarised by

AUCτ = P
[
�τ,Ai (Zi) > �τ,Ai′ (Z j) | 0

≤ TA

i − Ai < τ,TA

i′ − Ai′ ≥ τ
]

=
∫ ∫ ∫

TPRτ,a(c)dFPRτ,a′ (c)dF (a)dF (a′)

= E
{∫

TPRτ,Ai (c)dFPRτ,Ai′ (c)
}

,

where i and i′ index two independent subjects. Plug-
in estimates may be constructed for these parameters

with an estimatedF (·). For example, in the simple case
when only a single measurement is taken at baseline,
then AUCτ may be estimated as

n−2
∑
i,i′

∫
T̂PRτ,Ai0 (c)dF̂PRτ,Ai′0 (c)

≈
∑

i,i′:0<XA

i −Ai0<τ≤XA

i′ −Ai′0
ŵτ i0 ŵτ i′0I[�̂τ,Ai0{Zi(Ai0)} ≥ �̂τ,Ai′0{Zi′ (Ai′0)}]∑

i,i′ :0<XA

i −Ai0<τ≤XA

i′ −Ai′0
ŵτ i0 ŵτ i′0

. (6)

Given the longitudinal data structure, we may also
be interested in estimating these accuracy parameters
when the age at measurement A follows the marginal
distribution of the observed measurement ages in the
study. In which case,

TPRτ (c) = P{�τ,Ai j (Zi j) > c | 0 < TA

i − Ai j ≤ τ },
FPRτ (c) = P{�τ,Ai′ j′ (Zi′ j′ ) > c | TA

i′ − Ai′ j′ > τ },

and AUCτ = P{�τ,Ai j (Zi j) > �τ,Ai′ j′ (Zi′ j′ ) | 0 <

TA

i − Ai j ≤ τ,TA

i′ − Ai′ j′ > τ }.
The accuracy measure AUCτ in this case can be esti-

mated as∑
i, j,i′, j′ :0<XA

i −Ai j≤τ<XA

i′ −Ai′ j′
ŵτ i j ŵτ i′ j′ I{�̂τ,Ai j (Zi) ≥ �̂τ,Ai′ j′ (Zi′ )}∑

i, j,i′, j′ :0<XA
i −Ai j≤τ<XA

i′ −Ai′ j′
ŵτ i j ŵτ i′ j′

.

Standard error (SE) and CIs can be constructed simi-
larly to those given above for ̂AUCτ,a.

2.3. Selection of smoothing parameter

It is known that the choice of the smoothing parameter
h is critical as in any nonparametric estimation prob-
lem. We employ a K-fold cross validation to select the
smoothing parameter. Specifically, the study subjects
are divided into K folds of approximately equal sizes.
The optimal bandwidth hopt minimises the weighted
mean squared prediction error:
K∑

k=1

∑
i∈Sk

mi∑
j=0

ŵτ i j

[
I
(
XA

i < Ai j + τ
) − g

{
UT

i jβ̂
(−k)
τ (Ai j)

}]2
,

where Sk is the set of subjects that are in fold
k and β̂

(−k)
τ (Ai j) is the estimate of βτ (Ai j) using

data excluding those from fold k. To obtain an esti-
mator whose variance dominates bias, we follow the
common practice to undersmooth (Cai et al., 2010;
Neumann & Polzehl, 1998; Tian et al., 2005) using the
final bandwidth h = hopt n−0.1

1 , where n1 is the number
of observed events by τ years.
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Figure . Average of estimates, average of the standard error estimates (ASE), empirical standard errors (ESE) and empirical coverage
probabilities (CovP) of the % CI. One measurement at baseline. Each entry is based on  simulated samples.The x-axis in all the
plots is age.

3. Simulations

In this section,we report results from simulation studies
that examine the finite-sample performance of the pro-
posedmethods and compare ourmethods with existing
methods. Although the proposed methods are catered
for survival data with longitudinally measured risk fac-
tors, it can be applied to traditional survival data with
one single measurement of the risk factor at baseline to

flexibly capture the age effect. For the single measure-
ment setting, we compare the proposed procedure to
the standard PH model which includes age as a covari-
ate. In the longitudinal setting, wewill compare the pro-
posed methods to the commonly used joint modelling
(JM) approach. For both settings, we considered n =
2000 and 5000, let K(·) be the Gaussian kernel, and B=
1000 for perturbations. For each configuration, results
are summarised based on 1000 simulated data-sets.
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3.1. Simulations with a singlemeasurement

For this setting, we simulate Ai0 from Uniform (15, 75)
and two independent baseline covariates Zi1(Ai0) and
Zi2(Ai0) from NN (0, 4) and N N (1, 4), respectively.
The survival time from entry, Ti, is generated from
log (Ti) = 2.5 + β1(Ai0)Zi1(Ai0) + β2(Ai0)Zi2(Ai0) +
0.5 ε, where β1(a) = a2/7500, β2(a) = {(a − 45)2 −
100}/2000 and ε follows a standard logistic distribution.
The censoring time Ci is generated from exp(C̃i) where
C̃i ∼ N N (1.6, 0.36), resulting in about 80% of censor-
ing. For illustration,we choose τ to be 5 years. Through-
out, we choose g(·) to be the logistic link function.Using
the proposed bandwidth selection procedure with five-
fold cross-validation, h is about 6.4 and 5.4 for n= 2000
and 5000, respectively.We obtain the estimates of βτ (a)
and AUCτ , a for ages from 20 to 70. Throughout the
simulation studies, we let Uij = Zij = Zi(Aij).

In Figure 2, we present the average of the point
estimates, the average of the SE estimates compared
with the empirical SEs and the coverage probabilities
(CovPs) of the 95% CIs for βτ (a) and AUCτ , a across
a range of a. The results suggest that the proposed esti-
mators produce negligible biases, and the estimated SEs
are close to the empirical SEs. The empirical CovPs of
the 95% CIs are close to their nominal level for βτ (a)
coefficients. For AUC, the CovPs of the CIs are close to
the nominal level but slightly below 95% for younger
ages when n = 2000, possibly due to the fact the curva-
ture of the AUC function is high in that range leading
to a slight bias. The results are much improved when n
increases to 5000.

For comparison, we obtain an alternative τ -year risk
estimate, �̂cox

τ,Ai0
(Zi0) = gcox(log �̂τ + γ̂AAi0 + γ̂ T

ZZi0),
from fitting a cox model including Ai0 and Zi0 =
(Zi1(Ai0),Zi2(Ai0))

T as covariates, where �̂τ is the
estimated baseline cumulative hazard function at τ ,
gcox(x) = 1 − e−ex , and (γ̂A, γ̂ T

Z)T are the estimated log-
hazard ratio for (Ai0,ZT

i0). For both of the risk estimates
from our proposedmethod and the coxmodel, we eval-
uate their age-specific prediction performance as well
as the overall prediction performance based on AUCτ .
As shown in Figure 3, the age-specific AUC, AUCτ , a,
of our proposed approach was generally higher than
those from the coxmodel. The overall AUC, AUCτ , was
about 0.817 for the proposedmodel and 0.77 for the cox
model. The average difference between the two overall
AUCτ ’s was 0.047 (SE = 0.007). These results highlight
the improved prediction performance for using the pro-
posed age-specific model.

3.2. Simulations with longitudinal measurements

We also conducted simulation studies to examine the
performance of the proposed procedures in longitudi-
nal settings. To simulate the age at the occurrence of
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Figure . Age-specific AUCs for the proposed method (age-
specific) and coxmodel (Cox). Values are averagedover  rep-
etitions with sample size n= .

event TA and longitudinal measurements of a risk fac-
tor Z(a), we generate two random effects α0, α1 from
N(0, 1). The age of event TA is obtained from

log(TA) = 0.5 log(− log ε + 2)/{
(α1) + 0.5} + 3

where ε is generated from an uniform distribution over
(0, 1) and 
(·) is the cumulative distribution function
of a standard normal distribution. We simulate age of
entry to the study A0 from Uniform (10, 70). Among
the subjects who survive by the entry to the study, i.e.,
TA > A0, we randomly sample n subjects as our cohort.
For the ith subject in this cohort, the survival time since
entry is Ti = TA

i − Ai0, and Ci is generated from a Uni-
form (10, 40), which leads to about 25% of censoring.
The risk factor is measured at the entry ageAi0 and ages
Aij = Ai0 + �ij after entering the study until event or
censored, whichever comes first, where�ij is generated
from a N(4, 1) distribution. And the observed marker
value at age Aij is Zi(Aij) = α0i + α1ilog (Aij) + ei(Aij)
where ei(Aij) ∼ N(0, 1.52). We choose τ to be 10 years.
The selected smoothing parameter h is around 5.0 and
1.3 for n = 2000 and 5000, respectively, using fivefold
cross-validation scheme described in Section 2.3. We
obtain βτ (a) and AUCτ , a estimates for ages from 20 to
60.

The average of the point estimates, average of the SE
estimators, the empirical SEs and the coverage probabil-
ities of the 95%CIs for the βτ (a) and AUCτ , a at a series
of ages are shown in Figure 4. The proposed procedures
yield estimators with negligible biases. The estimated
SEs obtained through perturbation resampling are close
to the empirical SEs.

For comparison, we also fit the data with a JM
approach (Rizopoulos, 2010; Tsiatis & Davidian, 2004)
for longitudinal and survival data. In particular, we fol-
low the setup in Rizopoulos (2010) to specify a linear
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Figure . Average of estimates, average of the standard error estimates (ASE), empirical standard errors (ESE) and empirical coverage
probabilities of the % CI. Longitudinal measurements. Each entry is based on  simulated samples. The x-axis in all the plots is
age.

mixed effects model with random intercept and slope
for the longitudinal measurements Zij and a PH model
relating the hazard function to the random slope, in
which the log baseline hazard is approximated using
B-splines. With the parameter estimates from the joint
model, for subject i with measurement at Aij, one can
use a Monte Carlo approach to predict τ -year residual
life risk given that the person has survived Aij and we
let �̂

JM
τ,Ai j

(Zi) denote the resulting estimate of the risk
function. We can estimate its corresponding AUCτ , a as
discussed in Section 2.2. We present the average of the
estimated AUCτ , a for the two modelling approaches at
n = 5000 in Figure 5. The results suggest that the pro-
posed approach improved prediction accuracy over a
wide range of ages compared to the JM approach.

4. Application

In this section, we apply the proposed methods to the
Framingham Heart Study to develop and evaluate age-
specific CVDor death risk predictionmodels. The orig-
inal goal of the study was to identify the common
factors that contribute to CVD by following its devel-
opment over a long period of time in a large group of
participants who had not yet developed CVD. Started
in 1948 with 5209 adult subjects, the study is now on its
third generation of participants. Information on a wide
spectrum of risk factors and disease outcomes is col-
lected on each of the many follow-up visits during par-
ticipants’ lifetime. The data-set consists of 3982 subjects
(2108 females and 1874 males) with complete informa-
tion on the risk factors at least one measurement time.
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Figure . Age-specific AUC for the proposedmethod (age-specific) and JMwith longitudinalmeasurements. Values are averaged over
 repetitions with sample size n= .

Several traditional Framingham risk factors were col-
lected on these subjects on each of their visits, including
age, diastolic blood pressure, cholesterol, high-density
lipoprotein (HDL), diabetes and smoking. In addition,
an inflammationmarker, C-reactive protein (CRP), was
also measured at various visits. The median number
of measurement times is 3. We use both Framingham
risk factors and CRP to estimate age-specific 10-year
risk of CVD or death for females and males separately.
Thus, we only include visits where all these risk fac-
tors are measured based on the study design. The out-
come of interest is time to the onset of first major CVD
event or death. Such a composite outcome avoids the
issues of having to account for the competing risks from
other causes of death. Nevertheless, we note that our
calculation of the probability of experiencing CVD or
death within 10-years in this data-set can be regarded
approximately as 10-year CVD risk sincemajority of the
observed events are CVD events, especially at younger
age. In the study, there are 54 subjects who had CVD
prior to death within 10 years. The cumulative inci-
dence rate for CVD prior to death within 10 year is esti-
mated to be about 1.4%. Themedian follow-up timewas
32 years and the entry ages range from 5 to 70 with a
median of 35.

We fit the proposed age-specific 10-year risk model
(1) with a logistic link. Predictors include original scale

of diastolic blood pressure, diabetes, smoking, the log
scale of cholesterol, HDL and CRP. We use a Gaus-
sian kernel for K(·), with the smoothing parameter h
selected as 5.2 for males and 3.8 for females using the
fivefold cross-validation scheme described in Section
2.3. In Figure 6(a,b), we demonstrate how the effects of
major risk factors may vary by age for women andmen,
respectively. Formen, blood pressure does not show any
significant association with risk of outcome for all the
ages, whereas for women, higher blood pressure signif-
icantly increases the risk, especially for younger ages
and older ages. For men, as expected, high cholesterol
increases risk, and our analysis further reveals that for
men, the effects decrease with ages. In other words, hav-
ing high cholesterol for a younger man exposes them to
higher risk compared with older men. For women, dia-
betes status also shows an age-varying pattern: the effect
increases with age initially, reaches a peak at 50 and goes
down afterward. Smoking shows significant effect at age
45 for women, but the effect diminishes as age increases.
However, for men, neither diabetes status nor smoking
shows significant association with the risk at almost all
ages. HDL shows no significant association with out-
come for women, but is inversely associated with the
risk between age 40 and 60 and no significant associ-
ation at other ages for men. Finally, CRP also exhibits
different age-varying effects between women and men.
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(a) Effects of major risk factors: Female.
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(b) Effects of major risk factors: Male.

30 40 50 60 70 80

0.
6

0.
7

0.
8

0.
9

female

age

A
U

C

Est
95% CI

30 40 50 60 70 80

0.
6

0.
7

0.
8

0.
9

male

age

A
U

C

Est
95% CI

(c) Age specific accuracy for 10-year residual life CVD or death risk.

Figure . Data analysis: Framingham Heart Study. The panels (a) and (b) show the point and interval estimates of the age-specific
effects of the major risk factors for male and female, respectively. The panel (c) shows the point and interval estimates of the age-
specific AUC for male and female, respectively.

For men, the effect of CRP is monotonically decreasing
as age increases while for women, higher CRP increases
risk before 60 years old and peaks at around 45 years
old. In Figure 6(c), we show the age-specific AUC of the
proposed age-specific risk scores for men and women.
For women, the AUC10, a does not vary substantially
over age a with values fluctuating around 0.7. On the
contrary, for men, AUC10, a is substantially higher for
younger ages with value as high as 0.9 and decreases
to 0.6 at older ages. Thus, the age-specific risk model
is highly accurate in predicting 10-year risk of CVD or
death for younger males but only moderately accurate
for middle aged or older males.

5. Discussion

When subjects are monitored over time for a clin-
ical condition, it is highly desirable to dynamically
recalculate risk estimates according to the updated
risk factor information. Age is an important risk fac-
tor for many diseases such as CVD and the effects
of other predictors on the disease risk may vary
over age. Current risk prediction models used in
clinical practice such as the FRS often incorporate
age as an additive risk factor, which may limit the
model prediction performance. Our proposed method
estimates the age-specific absolute risk directly via a
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flexible varying-coefficient model that allows the pre-
dictor effects to vary over age and allows for easy incor-
poration of longitudinally collected risk factor informa-
tion.We also provide procedures for nonparametrically
assessing the prediction performance of such age-
specific models, extending existing time-specific accu-
racy parameters to also incorporate the additional age
domain.

Unlike the cox model with time-varying covariates,
our proposed model can easily provide age-specific
absolute risk estimates without having to specify the
full longitudinal marker processes. Compared to the
JM approach, our method has the major advantage of
allowing for non-linear effects and non-trivial number
of time-varying continuous or discrete risk markers.
Additionally, our kernel-based procedure allows bor-
rowing information across individuals of similar ages
therefore provides a practical solution for situations
where the longitudinal information is only measured
sparsely and irregularly.

Our method allows for internal covariates in that
it aims to make prediction for the residual life among
event-free subjects at age a, although it does require the
availability of the marker information at age a for those
with TA > a. When the outcome is a non-terminal
event that is subject to death as a competing risk, then
one may easily modify the proposed procedures to
instead make prediction of the disease risk for those
who are still alive and have not yet developed the disease
at age a. The age-specific accuracy parameters can also
bemodified to accommodate competing risks similar to
those considered in Blanche, Dartigues, and Jacqmin-
Gadda (2013).

The proposed method employs a working model
that requires the specification of g and ψ , both of
which could potentially impact the model prediction
performance. In general, the prediction performance
is less sensitive to the choice of g due to the robust-
ness properties such as the logistic likelihood as noted
in Li and Duan (1989) and Eguchi and Copas (2002).
One may choose appropriate ψ based on existing lit-
erature on the functional form of known risk factors
or exploratory analyses. On the other hand, regard-
less of the choice of ψ or g, the fitted model may be
mis-specified yet our proposed method could derive
a risk model with good prediction performance. The
flexible varying coefficient model is expected to per-
form well under mis-specification and the proposed
inference procedures are always valid regardless of
the potential mis-specification in the fitted model.
In addition, while the proposed simple IPW method
has the advantage of enabling robustness in infer-
ence under model mis-specification, it may come at
a cost in efficiency loss. If there are auxiliary vari-
ables available at baseline, efficiency augmentation
methods leveraging such information warrant further
research.
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