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ABSTRACT
In this article, we consider a semiparametric model for contrast function which is defined as
the conditional expected outcome difference under comparative treatments. The contrast func-
tion can be used to recommend treatment for better average outcomes. Existing approaches
model the contrast function either parametrically or nonparametrically. We believe our approach
improves interpretability over the non-parametric approach while enhancing robustness over
the parametric approach. Without explicit estimation of the nonparametric part of our model,
we show that a kernel-based method can identify the parametric part up to a multiplying con-
stant. Such identification suffices for treatment recommendation. Our method is also extended
to high-dimensional settings. We study the asymptotics of the resulting estimation procedure in
both low- and high-dimensional cases. We also evaluate our method in simulation studies and
real data analyses.

1. Introduction

For most disease conditions, the benefits of some
comparative treatments can differ substantially across
different patient subpopulations. Such heterogeneity
of treatment effects necessitates individualised treat-
ment assignment as an important approach to improve
patient outcomes. Indeed, there have been a recent
growing literature on this particular topic of individu-
alised treatment selection.

Roughly, existing literature adopt two types of
approaches. The outcome modelling approach (Lu,
Zhang, & Zeng, 2013; Taylor, Cheng, & Foster, 2015;
Zhang, Tsiatis, Davidian, Zhang, & Laber, 2012)
assumes an underlying outcome model and then
derives treatment assignment rule from exploring the
fitted outcome model; even though correctly fit, the
outcome model is an overachievement because optimal
treatment assignment only depends on the covariate–
treatment interaction part of the outcome model.
Therefore, this approach has been criticised due to the
need for modelling the main effect of covariates on
the outcome which is not related to optimal treatment
assignment.

An alternative approach, also known as A-learning
(Chen, Tian, Cai, & Yu, in press; Murphy, 2003;
Robins, 2004; Zhao, Zeng, Rush, & Kosorok, 2012),
directly models a contrast function, the conditional
expected outcome difference under comparative treat-
ments. Because the contrast function is directly linked
to the goal of optimal treatment assignment, it can be
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more robust and efficient compared with the outcome
modelling approach because it requires less modelling.
The focus has mostly been on identifying the sign of
the contrast function for subgroup identification. Nev-
ertheless, modelling of the contrast function is neces-
sary and focuses mainly on parametric (Lu et al., 2013;
Murphy, 2003; Robins, 2004; Schulte, Tsiatis, Laber, &
Davidian, 2014; Xu et al., 2015) and nonparametric
(Zhang et al., 2012; Zhao et al., 2012; Zhou, Mayer-
Hamblett, Khan, & Kosorok, 2016). In this article, we
consider a semiparametric model, the so-called single-
index model, for the contrast function. We believe
our approach improves interpretability over the non-
parametric approach. It is also more robust than the
parametric approach due to its more flexible form.

Section 2 introduces notation, our semiparametric
model, and a preliminary result that motivates our
methodology. Without explicit estimation of the non-
parametric part of our model, we show in Section 3
that a kernel-based method can identify the paramet-
ric part of our model up to a multiplying constant.
Such identification suffices for treatment recommenda-
tion. Our method is also considered when the covariate
has a high dimension but the useful part of the covari-
ate is a subvector with a much lower dimension. In
Section 4, we study the asymptotics of the resulting esti-
mation procedure in both low- and high-dimensional
cases. We also evaluate our method in simulation stud-
ies and compare it with two other recently developed
methods. Finally, in Section 5, we apply our method to
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two data sets from the national supported work study
and the mammography screening study.

2. Model and preliminaries

Consider data collected from a randomised trial with a
binary treatment A � {0, 1} being assigned according
to P(A = 1) = π . The clinical outcome is Y and, associ-
ated with Y, there is a p-dimensional covariate vector
Z = (1, Z1, ���, Zp)T including the constant 1 as the
first component, where aT is the transpose of a vector
a. Instead of specifying a model for Y given Z, we con-
sider the following single-index model for the contrast
function:

�(Z) = E(Y |A = 1,Z) − E(Y |A = 0,Z) = g(βTZ),

(1)

where g is increasing and differentiable, g(0) = 0,
but otherwise is completely unknown. We make the
following important remarks regarding our model
specification:

(1) Under model (1), even if g is unknown, βTZ
is still interpretable in the sense of treatment
assignment. In particular, the ranking of �(Z)
is fully captured by βTZ. Thus, we can rank
patients’ benefit, in terms of �(Z), by βTZ. We
can also recommend a subgroup of patients with
βTZ > δ to treatment A = 1 for some constant
δ � 0. In particular, a large δ > 0 may be used
if treatment A = 1 is relatively more expensive,
toxic, or hard to follow.

(2) Without any further assumption, actually we are
able to estimate cβ , instead of β itself, for an
unknown constant c = g′(0). In other words, for
β = (β0, β1,… , βp)T, what we can identify is
(β1/β j, β2/β j,… , βp/β j), where β j is a non-zero
component of β . As long as c> 0, we can still use
cβ for our purpose.

(3) The requirement that g is increasing is not essen-
tial in our model specification. The case of
decreasing g can be similarly treated.

(4) Because an intercept is included in Z, the con-
dition g(0) = 0 is not a restrictive condi-
tion. If g(0) �= 0 but g(α) = 0, then model
(1) can be rewritten as �(Z) = g̃(β̃TZ) with
g̃(·) ≡ g(· + α) and a suitably defined β̃ .

Inmany cases, wemaywant to assign each individual
to an appropriate treatment based on Z to optimise the
average clinical outcome. Let D(Z) be an assignment
rule based on Z. The expected outcome ED(Y ) under
the ruleD is given by Qian and Murphy (2011)

ED(Y ) = E
[

I(A = D(Z))

Aπ + (1 − A)(1 − π)
Y
]

,

where I( · ) is the indicator function.We need to find the
optimal rule D∗ that maximises ED(Y ). Under model
(1), the optimal D∗(Z) is sign(βTZ), where sign is the
sign function. Because sign(βTZ) = sign(cβTZ) for
any positive constant c, the solution of

arg max
b∈Rp

E

[
I
{
A = sign(bTZ)

}
Aπ + (1 − A)(1 − π)

Y

]

is the set {cβ : c is a positive constant}. Note that the pre-
vious maximisation problem is equivalent to minimis-
ing

R(b) = E
[

I(A �= sign(bZ))

πA + (1 − A)(1 − π)
Y
]

, (2)

which is hard to solve directly due to the indicator
function.

We now derive the following fundamental result that
facilitates our estimation in Section 3. For the function
g defined in (1), define the risk

Rg(b) = E
[ {Y − (A − 1/2)g(bTZ)}2

Aπ + (1 − A)(1 − π)

]
. (3)

By conditioning, we know that Rg(b) is the expectation
of

WZ(b) = E
[{
Y − 2−1g(bTZ)

}2 |A = 1,Z
]

+ E
[{
Y + 2−1g(bTZ)

}2 |A = 0,Z
]
.

Note that
∂WZ(b)

∂b
= E

[{
g(bTZ) − 2Y

}
g′(bTZ)Z|A = 1,Z

]
+ E

[{
2Y + g(bTZ)

}
g′(bTZ)Z|A = 0,Z

]
= 2g′(bTZ) {−E(Y |A = 1,Z)

+ E(Y |A = 0,Z) + g(bTZ)
}
Z

= 2g′(bTZ)
{−g(βTZ) + g(bTZ)

}
Z,

where g′ is the derivative of g. Therefore,

∂WZ(b)
∂b

∣∣∣∣
b=β

= 0.

Assume that g is second-order differentiable and let g′′

be the second-order derivative of g. Then,

∂2WZ(b)
∂bT∂b

= 2
∂

∂bT
[
g′(bTZ)

{−g(βTZ) + g(bTZ)
}
Z
]

= 2g′′(bTZ)ZZT {−g(βTZ) + g(bTZ)
}

+ 2{g′(bTZ)}2ZZT

and
∂2WZ(b)
∂bT∂b

∣∣∣∣
b=β

= 2{g′(βTZ)}2ZZT .

If g′ is always positive, then from these results, we con-
clude that the minimiser of Rg(b) is unique and equal to
β in (1). Thus, the risk function Rg(b) can be viewed
as an approximation to R(b) in (2) in terms of their
minimisers.
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3. Methodology and theory

Let {(Yi, Xi, Ai), i = 1,… , n} be a random sample of
size n from the distribution of (Y, Z, A). The empirical
version of Rg(b) in (3) is

1
n

n∑
i=1

{Yi − (Ai − 1/2)g(bTZi)}2
Aiπ + (1 − Ai)(1 − π)

From the derivation in the Section 2, if g were known,
then we could estimate β by finding the solution of

1
n

n∑
i=1

{Yi − (Ai − 1/2)g(bTZi)}
Aiπ + (1 − Ai)(1 − π)

(1 − 2Ai)g′(bTZi)Zi = 0,

(4)

where the left-hand side of (4) is the derivative of the
empirical version of Rg(b). However, g is unknown and
we cannot solve (4) directly. Consider the Taylor expan-
sion of g(bTZ) at 0,

g(bTZ) ≈ g(0) + g′(0)(bTZ) = g′(0)(bTZ). (5)

If g′(0)(bTZ) is a good approximation to g(bTZ), thenwe
can estimate g′(0)β , which, fromRemark 2 in Section 2,
is enough for our purpose of recommending treatments
for patients and identifying subgroups of enhanced
treatment effect. But (5) is accurate only when bTZ is
near to 0. To overcome this, we use a kernel-based
method. LetK be a symmetric probability density func-
tion (called a kernel) with support [−1, 1] and

BK =
∫ 1

−1
u2K(u)du < ∞ and

VK =
∫ 1

−1
K2(u)du < ∞,

and let h > 0 be a bandwidth and Kh(t) = K(t/h)/h.
Then, we replace (4) by the following kernel weighted
version:

1
n

n∑
i=1

{Yi − (Ai − 1/2)(bTZi)}
πAi (1 − π)1−Ai

(1 − 2Ai)ZiKh(bTZi) = 0.

(6)

The idea is that, we apply kernel weighting that has the
effect of focusing on small values of �bTZi� when h is
chosen to satisfy h → 0, the kernel forces Equation (6)
involves |bTZi| close to 0 so that approximation (5) is
good, but h should not be too small, e.g., nh → � as
n → �, so that there are enough observations used
in solving (6). Note that the solution to (6) estimates
g′(0)β , g′(0) > 0. Although g′(0) is unknown, it follows
from the previous discussion that estimating g′(0)β is
enough for treatment recommendation and subgroup
identification.

Theorem 3.1: Let b̃ be a solution to (6). Assume that the
kernel K satisfies the previously stated conditions; h → 0
and nh → � as n → �; Z has a density f; β j � 0 for
at least one j � 1 and without loss of generality βp � 0.
Then, as n → �, we have the following conclusions:

(i) b̃ converges in probability to g′(0)β.
(ii) If nh5 → 0, then (nh)1/2{b̃− g′(0)β} converges

in distribution to the p-dimensional normal dis-
tribution with mean 0 and covariance matrix
� = Q−1DQ−1, where

D = VK

|βp|g′(0)

∫
−1≤u≤1

{
E(Y 2|A = 1)

π

+ E(Y 2|A = 0)
1 − π

}
ωωT f (ω)dz−p,

Q = 1
2|βp|g′(0)

∫
ωωT f (ω) dz−p,

ω = (z1,… , zp − 1, −(β0 + β1z1 + ��� +
βp − 1zp − 1)/βp)T and dz−p = dz1���dzp − 1.

(iii) The optimal choice of h is h�n−1/5, where a � b
means a = O(b) and b = O(a).

We prove Theorem 3.1 in the Appendix.
In applications, we need to choose a bandwidth h for

a given sample size n. There is a rich literature on band-
width selection in applying a kernel method. A popular
method is the cross-validation, which works by leaving
out q populations at a time, and choosing the value of h
that minimises

CV(h) = 1
n/q�

n/q�∑
i=1

1
q

iq∑
j=(i−1)q+1

× I{(2Aj − 1)b̃T−q,iZ j < 0}
πAj + (1 − Aj)(1 − π)

Yj, (7)

where b̃−q,i is a solution to (6) with the data from units
j = (i − 1)q − 1,… , iq deleted, and n/q� is the integer
part of n/q. Note that each term in (7) is the loss when
we classify unit j by using our constructed rule based
on the data set without those from units with k = (i −
1)q − 1, ..., iq. Thus, CV(h) quantifies the classification
accuracy of our method based on h.

In some modern applications, the dimension of Z in
(1), p, is very high, although the number of non-zero
components ofβ ismuch smaller than p, i.e.,β is sparse.
Hence, we propose to add a LASSO penalty and solve

1
n

n∑
i=1

{Yi − (Ai − 1/2)(bTZi)}
Aiπ + (1 − Ai)(1 − π)

(1 − 2Ai)ZiKh(bTZi)

+ λs(b) = 0, (8)

where λ � 0 is a tuning parameter, s(b) is the sub-
gradient of p(b) = ∑p

j=1 |b j| whose jth component is
sign(b j) if bj � 0 and c if bj = 0, 0 < c < 1, and bj is the
jth component of b, j = 1,… , p.

Let b̂ be a solution to (8). We now show that b̂ pos-
sesses a weak oracle property, namely with probability
tending to 1, and b̂ identifies all zero components of the
true β and gives consistent estimators to non-zero com-
ponents of β multiplied by a positive constant.
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For any vector ζ = (ζ 1,… , ζ p)T, letMζ = { j : ζ j �=
0}, ζ (1) and ζ (0) be the subvectors of ζ with indices in
and not in Mζ , respectively, Z(1) and Z(0) be the sub-
vectors of Zwith indices in and not inMβ , respectively,
and let sp be the number of elements inMβ . The proof
of the following theorem is given in the Appendix.

Theorem 3.2: Assume the conditions in Theorem 3.1
and the following conditions:

(C1) log p � n1−2αp and sp � nαs , where 0 < αs < αp
< 1/2.

(C2) h = o(λ1/2) and λ � n−αλ , where 0 < αλ <

min {2γ − αs, αp} and λbn = o(n−γ ).
(C3) max1≤ j≤p EetZj ≤ ect2/2 for any real number t,

where c is a constant.
(C4) |Y| � M1 and supKh ≤ M2, where M1 and M2

are constants.
(C5) max 1 � j � pλmax {E|ZZTZj|} = O(1), where

λmax (A) is the maximal eigenvalue of A.
(C6) bn = ‖E{g′(βT

(1)Z
(1))Z(1)Z(1)TKh(β

T
(1)Z

(1))}−1‖∞
= o(min{n1/2−γ /

√
log n, nγ−αs}), where αs < γ

< αp.
(C7) ‖E{g′(βT

(1)Z
(1))Z(0)Z(1)TKh(β

T
(1)Z

(1))}E{g′

(βT
(1)Z

(1))Z(1)Z(1)TKh(β
T
(1)Z

(1))}−1‖∞ < 1.

Then, with probability tending to 1,

(a) (sparsity)Mβ = Mb̂.
(b) (L� consistency) ‖g′(0)β(1) − b̂(1)‖∞ ≤ n−γ .

4. Simulations

In this section, we perform some simulation stud-
ies to compare our proposed method with two other
recently developed subgroupingmethods, theModified

Covariate Method (MCM) by Tian et al. (2014) and
the FindIt by Imai and Ratkovic (2013). We consider,
respectively, the low-dimensional case and the high-
dimensional case under the following model:

Y = (βTZ/2)2 + (A − 1/2)g(βTZ) + ε,

where ϵ∼N(0, 0.32), ε, Z and A are independent, and g
has the following three forms:

(1) linear model: g(βTZ) = 7βTZ;
(2) logistic model: g(βTZ) = 7{exp (βTZ)/{1 +

exp (βTZ)} − 1/2};
(3) probitmodel: g(βTZ)= 7{(βTZ)− 1/2}, where

 is the standard normal distribution.

The treatmentA takes 0 and 1 with equal probability.
It can be seen that �(Z) = g(βTZ).

We first consider a low-dimensional case, where p =
3, β = (1, 1, 1, 1)T, Z1, Z2, and Z3 are independently dis-
tributed as the standard normal. For n = 200, 500, and
1000, we calculate the simulation mean and root mean
squared errors (rmse) of the ratio estimators b̃ j/b̃0,
j = 1, 2, 3, and the cover probabilities (cp) of the confi-
dence intervals based on the bootstrap variance estima-
torswith bootstrap size 1000. Since allmethods produce
negligible biases, we report the simulation rmse and cp
in Table 1 based on 1000 simulation runs.

It can be seen fromTable 1 that, in terms of rmse, our
proposedmethod (ours) is much better thanMCM and
FindIt. The cp from our method is close to 95% and is
better than that fromMCMor FindIt, although inmany
cases the cp values are comparable.

Next, we consider a high-dimensional Z with β =
(β0,… , βp)T, where p = 23, β j = 1, j = 0, 1, 2, 3,
and β j = 0 for j � 4. Z1,… , Zp are still independently
distributed as the standard normal. Other setting are

Table . Simulation results for ratio estimation in low-dimensional case.

Linear Probit Logistic

n Quantity Estimate Ours MCM FindIt Ours MCM FindIt Ours MCM FindIt

 rmse b̃1/b̃0 . . . . . . . . .
b̃2/b̃0 . . . . . . . . .

b̃3/b̃0 . . . . . . . . .
cp b̃1/b̃0 . . . . . . . . .

b̃2/b̃0 . . . . . . . . .
b̃3/b̃0 . . . . . . . . .

 rmse b̃1/b̃0 . . . . . . . . .
b̃2/b̃0 . . . . . . . . .
b̃3/b̃0 . . . . . . . . .

cp b̃1/b̃0 . . . . . . . . .
b̃2/b̃0 . . . . . . . . .
b̃3/b̃0 . . . . . . . . .

 rmse b̃1/b̃0 . . . . . . . . .
b̃2/b̃0 . . . . . . . . .
b̃4/b̃0 . . . . . . . . .

cp b̃1/b̃0 . . . . . . . . .
b̃2/b̃0 . . . . . . . . .
b̃3/b̃0 . . . . . . . . .
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Table . Simulation results for ratio estimation and P(Mβ = Mb̂) in high-dimensional case.

Linear Probit Logistic

n Quantity Estimate Ours MCM FindIt Ours MCM FindIt Ours MCM FindIt

 cp b̂1/b̂0 . . . . . . . . .
b̂2/b̂0 . . . . . . . . .
b̂3/b̂0 . . . . . . . . .

P(M
β

= Mb̂) . . . . . . . . .

 cp b̂1/b̂0 . . . . . . . . .
b̂2/b̂0 . . . . . . . . .
b̂3/b̂0 . . . . . . . . .

P(M
β

= Mb̂) . . . . . . . . .

 cp b̂1/b̂0 . . . . . . . . .
b̂2/b̂0 . . . . . . . . .
b̂3/b̂0 . . . . . . . . .

P(M
β

= Mb̂) . . . . . . . . .

the same as that for the low-dimensional case. Table 2
lists the simulated cp and P(Mβ = Mb̂). The simu-
lated rmse is omitted.

It can be seen from Table 2 that, in terms of variable
selection, our proposed method is better than MCM
and FindIt. When variable selection is not accurate, it
affects the performance of the cp.

5. Data analysis

In this section, we apply our proposed method to
two real studies. The first is the national supported
work (NSW) study (LaLonde, 1986) that appeared in
FindIt” package based on Imai and Ratkovic (2013).
The second is the mammography screening study
(Champion et al., 2007). The NSW study corresponds
to the low-dimensional case, whereas the mammog-
raphy screening study involves a high-dimensional
covariate.

5.1. National supportedwork study

In the NSW study, a training programme was admin-
istered to a heterogeneous group of workers. The
treatment is randomly assigned to each subject. It is

of interest to investigate whether the treatment effect
varies as a function of individual characteristics. The
treatment and control groups consist of 297 and 425
individuals, respectively. The original data set has nine
covariates. To compare the methods without variable
selection, we picked five covariates in the analysis: log-
arithm of annual earnings (log.re75), race (white or
hispanic), marriage status (married or not), and high
school degree status (nodegr). The other covariates
were not included in themodel fitting because theywere
not significant in all comparisonmethods. The response
is whether there is an increase on earnings from
the years 1975 to 1978. Based on the bootstrap method,
we calculate the means and stand errors of estimates for
these parameters, and, at the same time, we obtain the
(0.025, 0.975) quantiles of the estimates. All results are
shown in Table 3.

Our method indicated that being married had pos-
itive effects from the programme; being Hispanics and
having no high school degree had negative effects. The
MCM method found that being married and having
higher annual earnings had positive effects from the
programme; but being Hispanics had negative effects.
The FindIt method found that being white had positive
effects from the programme.

Table . Data analysis of NSW.

intercept hisp white married nodegr log.re

Mean Ours . − . − . . − . .
MCM . − . − . . − . .
FindIt − . . . − . − . .

SD Ours . − . − . . − . .
MCM . − . − . . − . .
FindIt − . . . − . − . .

Quantile Ours Lower . − . − . . − . − .
Upper . − . . . − . .

MCM Lower . − . − . . − . .
Upper . − . . . . .

FindIt Lower − . − . . − . − . .
Upper . . . . . .
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Table . Data analysis of mammography screening study.

Ours intercept edu yearmamsum fataltot knowtot

Mean . . . . − .
SD . . . . .

Quantile Lower . . . . − .
Upper . . . . − .

MCM intercept yearmamsum setot sustot knowtot

Mean − . . − . − . .
SD . . . . .

Quantile Lower − . . − . − . .
Upper − . . − . − . .

FindIt intercept age stage sustot feartot

Mean . . . − . .
SD . . . . .

Quantile Lower − . − . . − . − .
Upper . . . . .

To compare the performance of variousmethods, we
randomly used 4/5 of samples (rounded to integers) as
training sets to tune penalty parameters and the rest as
test sets to evaluate the statistics:

R̂(b̃) = Ê

⎡
⎣ I

{
A �= sign(b̃TZ)

}
πA + (1 − A)(1 − π)

Y

⎤
⎦

= 1
n

n∑
i=1

I{(2Ai − 1)b̃TZi < 0}
πAi + (1 − Ai)(1 − π)

Yi.

We repeat this process 1000 times. The corresponding
R̂(b̃)were 0.4561 for ourmethod, 0.5878 forMCM, and
0.4931 for FindIt, indicating the empirical superiority of
our method.

5.2. Mammography screening study

This is a randomised study that included female sub-
jects who were non-adherent tomammography screen-
ing guidelines at baseline (i.e., no mammogram in
the year prior to baseline) (Champion et al., 2007).
The outcome is whether the subject took mammog-
raphy screening during this time period. There are
530 subjects with 259 in the phone intervention group
and 271 in the usual care group. There are 16 binary
variables, including socio-demographics, health belief
variables, and stage of readiness to undertake mam-
mography screening, and one categorical variable,
number of years had a mammogram in the past 2–
5 years. Our method indicated that fdrhistory and
fata1tot6 had positive effects from the programme,
and settot40 and know1tot4 are negatively affected
by the phone intervention. The MCM method found
that stage, yearmamsum, docnursespoken2years and
bar1tot people tended to get benefits, but workpay are
negative. The FindIt found the stage and docursespo-
ken2years were positively affected by the programme,
but bar1tot30 and ben1tot30 are negative. All estima-
tion results are given in Table 4.

Similar to the cross-validation procedure we used for
the NSW study, we report the risk function R̂(b̂) under
these three methods, 0.2773 for our method, 0.3217 for
MCM, and 0.2988 for FindIt. The results again indicate
the empirical superiority of our method.
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Appendix

Proof of Theorem 3.1: For the result in (i), it suffices to
show that

G
(
g′(0)β

) = 1
n

n∑
i=1

{Yi − (Ai − 1/2)g′(0)βTZi}
πAi (1 − π)1−Ai

× (1 − 2Ai)ZiKh
{
g′(0)βTZi

} = op(1).
(A1)

Let U = g′(0){βTZ}/h. Then,

E
[ {Y − (A − 1/2)g′(0)βTZ}

πA(1 − π)1−A

× (1 − 2A)ZKh
{
g′(0)βTZ

}]
= E

[{Y − g′(0)βTZ/2}(−Z)Kh
{
g′(0)βTZ

}]
+ E

[{Y + g′(0)βTZ/2}ZKh
{
g′(0)βTZ

}]
= E

[{−g(βTZ) + g′(0)βTZ
}
ZKh

{
g′(0)βTZ

}]
= E

[{
−g
(

Uh
g′(0)

)
+Uh

}
Z
K(U )

h

]

= E
[{

−g (0) − g′(0)
Uh
g′(0)

− g′′′(0)
U 2h2

2g′2(0)

− g′′(ξ )
U 3h3

6g′3(0)
+Uh

}
Z
K(U )

h

]

= h2E
[{

− g′′(0)
2g′2(0)

− g′′′(ξ )Uh
6g′3(0)

}
U 2Z

K(U )

h

]

= −h2g′′(0)
2g′2(0)

E
[
U 2Z

K(U )

h

]
+ h3c0

6g′3(0)
E
∣∣∣∣U 3Z

K(U )

h

∣∣∣∣ ,
(A2)

where ξ is between 0 and hU/g′(0) and c0 =max t|g′′′(t)|.
Consider the transformation

u = g′(0)
β1 + β2z2 + · · · + βpzp

h
, and

z j = z j, j = 2, . . . , p− 1.

Let dz−p = dz2���dzp − 1. For j = 2,… , p − 1, the jth
component of E

[
U 2ZK(U )

h

]
is the integral

1
h

∫
−1≤u≤1

u2z jK(u) f (z)dz

= 1
h

∫
−1≤u≤1

u2z jK(u) f
(
z2, . . . , zp−1,

2uh
βpg′(0)

− (βTz)−p

βp

)
2h

|βp|g′(0)
dudz−p

h → 0−−−→
∫

−1≤u≤1
u2z jK(u) f

(
z2, . . . , zp−1,

− (βTz)−p

βp

)
2

|βp|g′(0)
dudz−p

= Bk

|βp|g′(0)

∫
z j f

(
z2, . . . , zp−1, −

(βTz)−p

βp

)
dz−p

= Bk

|βp|g′(0)

∫
z j f (ω) dz−p,

where ω = (z2,… , zp − 1,−(βTz)−p/βp)T. Similarly, the
first component of E[U 2ZK(U )

h ] is Bk
|βp|g′(0)

∫
f (ω) dz−p,
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and the pth component of E
[
U 2ZK(U )

h

]
is the integral

1
h

∫
−1≤u≤1

u2zpK(u) f (z)dz

= 1
|βp|g′(0)

∫
−1≤u≤1

u2
(

uh
βpg′(0)

− (βTz)−p

βp

)
K(u)

f
(
z2, . . . , zp−1,

uh
βpg′(0)

− (βTz)−p

βp

)
dudz−p

h → 0−−−→
1

|βp|g′(0)

∫
−1≤u≤1

u2
(

− (βTz)−p

βp

)
K(u)

f
(
z2, . . . , zp−1, −

(βTz)−p

βp

)
dudz−p

= 1
|βp|g′(0)

Bk

∫ (
− (βTz)−p

βp

)
f (ω) dz−p.

Combining these results, we obtain that

E
[
U 2Z

K(U )

h

]
→ Bk

|βp|g′(0)

∫
ω f (ω) dz−p. (A3)

Combining these results, we obtain that the first term
on the right-hand side of (A2)� h21p. Similarly, we can
show that the second term on the right-hand side of
(A2)� h21p. Hence,

E
[ {Y − (A − 1/2)(g′(0)βTZ)}

πA(1 − π)1−A

× (1 − 2A)ZKh
{
g′(0)βTZ

} ] � h21p. (A4)

Then, (A1) follows from the law of large numbers and
(i) is proved. To prove the result in (ii), we can calculate
that

∂G(b)
∂b

∣∣∣∣
g′(0)β

= 1
2n

n∑
i=1

(1 − 2Ai)
2ZiZT

i

πAi (1 − π)1−Ai
Kh(bTZi)

∣∣∣∣
g′(0)β

+ 1
n

n∑
i=1

{Yi − (Ai − 1/2)(bTZi)}
πAi (1 − π)1−Ai

× (1 − 2Ai)ZiZT
i K

′
h(b

TZi)

∣∣∣∣
g′(0)β

.

Using almost the same proof as that for (A4), we obtain
that

E
[ {Y − (A − 1/2)g′(0)βTZ}

πA(1 − π)1−A

× (1 − 2A)ZZTK ′
h
(
βTZg′(0)

) ]

= E
[{−g(βTZ) + g′(0)(βTZ)

}
ZZTK ′

h
(
βTZg′(0)

)]
= E

[{
−g
(

Uh
g′(0)

)
+Uh

}
ZZT K

′(U )

h

]

= h2E
[{

− g′′(0)
2g′2(0)

− g′′′(ξ )Uh
6g′3(0)

}
U 2ZZT K

′(U )

h

]
→ 0

and, similar to the proof (A3),

E
[
ZZTKh

{
g′(0)βTZ

}]
= 1

h
E
[
ZZTK(U )

]
= 1

h

∫
−1≤u≤1

(
1 zT

z zzT

)
K(u) f (z)dz

→ 1
|βp|g′(0)

∫
−1≤u≤1

(
1 ωT

ω ωωT

)
K(u)

× f
(
z2, . . . , zp−1, −

(βTz)−p

βp

)
dudz−p

= 1
|βp|g′(0)

∫ (
1 ωT

ω ωωT

)
f (ω) dz−p.

By the law of large numbers,

∂G(β)

∂β

∣∣∣∣
g′(0)β

→ 1
|βp|g′(0)

∫ (
1 ωT

ω ωωT

)
f (ω) dz−p

in probability. Let Q be the matrix on the right-hand
side of the previous expression. By using the Tay-
lor expansion of G(β) at β = g′(0)β and a standard
argument, we can show that the asymptotic distribu-
tion of (nh)1/2{b̃− g′(0)β} is the same as the asymp-
totic distribution of (nh)1/2Q−1G(g′(0)β), provided
that this asymptotic distribution is not degenerated. To
find the asymptotic distribution of G(g′(0)β), we calcu-
late the covariance matrix of G(g′(0)β). From the result
in the proof of (i), E{G(g′(0)β)} � h21p+1. Let E21 =
E[Y2|A = 1], E20 = E[Y2|A = 0], and E11 = E[Y|A = 1]
and E10 = E[Y|A = 0]. Then,

Cov{G(g′(0)β)}

= 1
nh2

E
{[

1
π
E21 + 1

1 − π
E20 −

(
1
π
E11 − 1

1 − π
E10
)

× {
g′(0)βTZ

}+ 1
π(1 − π)

{
g′(0)βTZ

}2 ]

ZZTK2
{
g′(0)
h

βTZ
}}

− 1
n
E
{
G(g′(0)β)G(g′(0)β)

}T
= 1

nh2
E
{[

1
π
E21 + 1

1 − π
E20 −

(
1
π
E11 − 1

1 − π
E10
)
Uh

+ 1
π(1 − π)

(Uh)
2
]
ZZTK2(U )

}

− 1
n
E
{
G(g′(0)β)G(g′(0)β)

}T
.
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Also,

1
h
E
{[

1
π
E21 + 1

1 − π
E20 −

(
1
π
E11 − 1

1 − π
E10
)
Uh

+ 1
π(1 − π)

(Uh)
2
]
ZZTK2(U )

}

→
∫

−1≤u≤1

(
1
π
E21 + 1

1 − π
E20
)

ωωTK2(u)

f (ω)
1

|βp|g′(0)
dudz−p

= VK

|βp|g′(0)

∫
−1≤u≤1

(
1
π
E21 + 1

1 − π
E20
)

ωωT

f (ω)dz−p. (A5)

As a result, the covariance matrix depends on E[Y2|A].
Let D be the quantity in (A5). Then, the asymp-
totic covariance matrix � for (nh)1/2{b̃− g′(0)β} is
(nh)1/2Q−1DQ−1. This shows that each component
of the matrix Cov{G(g′(0)β)} has the order 1/(nh),
because E{G(g′(0)β)}{G(g′(0)β)}T has the order h4. By
the central limit theorem,

√
nh[G(g′(0)β) − E{G(g′(0)β)}] → Np(0,D)

in distribution. Since E{G(g′(0)β)} � h21p+1,
√
nhG(g′(0)β) → Np(0,D)

in distribution, under the assumed condition on h.
Therefore,

√
nh{b̃− g′(0)β} → Np

(
0,Q−1DQ−1)

in distribution. This proves the result in (ii). From the
proofs of (i)–(ii), the bias of b̃ as an estimator of g′(0)β
is of the order h2 and the covariance matrix of b̃ is of
the order (nh)−1. Hence, the asymptotic mean squared
error of b̃ is of the order nh−1 + h4. Therefore, the
best rate of convergence to 0 in mean squared error is
achieved when h � n−1/5. This proves (iii). �
Proof of Theorem 3.2 By the classical optimisation the-
ory, any vector b̂ ∈ Rp satisfying the following KKT
conditions is a solution to (8):

1
n

n∑
i=1

yi − (Ai − 1/2)b̂T(1)ẑ
(1)
i

πA
i (1 − π)(1−Ai)

× (1 − 2Ai)ẑ(1)
i Kh(b̂T(1)ẑ

(1)
i ) + λ1nsign(b̂(1)) = 0,

(A6)

∥∥∥∥1n
n∑

i=1

yi − (Ai − 1/2)b̂T(1)ẑ
(1)
i

πA
i (1 − π)(1−Ai)

× (1 − 2Ai)ẑ(0)
i Kh(b̂T(1)ẑ

(1)
i )

∥∥∥∥
∞

< λ1n. (A7)

In the following, we show that within a neighbourhood
of g′(0)β , such a vector exists and satisfies (a) and (b).

The result follows since the original problem (8) has a
unique solution. Let

ε0 = 1
n

n∑
i=1

yi(1/2 − Ai)

πAi (1 − π)1−Ai
ẑ(0)
i Kh(b̂T(1)ẑ

(1)
i )

− E
[

Y (1/2 − A)

πA(1 − π)1−A Ẑ
(0)Kh(b̂T(1)Ẑ

(1))

]
,

ε1 = 1
n

n∑
i=1

yi(1/2 − Ai)

πAi (1 − π)1−Ai
ẑ(1)
i Kh(b̂T(1)ẑ

(1)
i )

− E
[

Y (1/2 − A)

πA(1 − π)1−A Ẑ
(1)Kh(b̂T(1)Ẑ

(1))

]
,

ξ0 = 1
n

n∑
i=1

b̂T(1)ẑ
(1)
i

πAi (1 − π)1−Ai
ẑ(0)
i Kh(b̂T(1)ẑ

(1)
i )

− E

[
b̂T(1)Ẑ

(1)

πA(1 − π)1−A Ẑ
(0)Kh(b̂T(1)Ẑ

(1))

]
,

ξ1 = 1
n

n∑
i=1

b̂T(1)ẑ
(1)
i

πAi (1 − π)1−Ai
ẑ(1)
i Kh(b̂T(1)ẑ

(1)
i )

− E

[
b̂T(1)Ẑ

(1)

πA(1 − π)1−A Ẑ
(1)Kh(b̂T(1)Ẑ

(1))

]
.

E1 = {‖ε1‖∞ ≤ C1
√
log n/n}, E2 = {‖ε0‖∞ ≤

C1n−αp
√
log n}, E3 = {‖ξ1‖∞ ≤ C2

√
log n/n} and

E4 = {‖ξ0‖∞ ≤ C2n−αp
√
log n}, where C1 and C2 are

constants depending on c,M1 andM2. Condition (C3)
ensures that Zj is a sub-Gaussian random variable. It
then follows from (C4) that Y (1/2−A)

πA(1−π)1−A Z jKh(β
TZ) and

βTZ
πA(1−π)1−A Z jKh(β

TZ) are also sub-Gaussian, i.e., there
exist constants c1 and c2 depending on c, M1 and M2
that

max
1≤ j≤p

E exp
{
t
Y (1/2 − A)

πA(1 − π)1−A ZjKh(b̂T(1)Ẑ
(1))

}
≤ ec1t

2/2

and

max
1≤ j≤p

E exp

{
t

b̂T(1)Ẑ
(1)

πA(1 − π)1−A ZjKh(b̂T(1)Ẑ
(1))

}
≤ ec2t

2/2

By the Hoeffding’s bound for sub-Gaussian random
variables, it holds that

max
1≤ j≤sp

P
[∣∣∣∣1n

n∑
i=1

yi(1/2 − Ai)

πAi (1 − π)1−Ai
zi jKh(b̂T(1)ẑ

(1)
i )

− E
{

Y (1/2 − A)

πA(1 − π)1−A ZjKh(b̂T(1)Ẑ
(1))
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>
√
2c1 log n/n

]
≤ 2 exp(− log n) = 2/n.
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Let C1 = √
2c1, it follows from Bonferroni inequality

that

P
(
‖ε1‖∞ > C1

√
log n/n

)

≤ sp max
1≤ j≤sp

P
[∣∣∣∣1n

n∑
i=1

yi(1/2 − Ai)

πAi (1 − π)1−Ai
zi jKh(b̂T(1)ẑ

(1)
i )

− E
{

Y (1/2 − A)

πA(1 − π)1−A ZjKh(b̂T(1)Ẑ
(1))

} ∣∣∣∣
≥ 2C1

√
log n/n

]
≤ 2sp/n.

Similarly, we can show that

P
(
‖ε0‖∞ ≤ C1n−αp

√
log n

)
≤ 2(p− sp)e−n1−2αp log n.

Following the same technique as in the above, we can
show that

P
(
‖ξ1‖∞ > C2

√
log n/n

)
≤ 2sp/n

P
(
‖ξ0‖∞ ≤ C2n−αp

√
log n

)
≤ 2(p− sp)e−n1−2αp log n.

Therefore,

P(E1 ∩ E2 ∩ E3 ∩ E4)
≥ 1 − 4{sp/n + (p− sp)e−n1−2αp log n}.

Next, we show that within event E1	E2	E3	E4, there
exists a solution to (A6) and satisfies (a) and (b).

Step 1:wewill prove that, when n is sufficiently large,
there exists a solution to (A6) in the hypercube

N = {
δ ∈ Rsp :

∥∥δ − g′(0)β(1)
∥∥

∞ = n−γ
}
.

Based on (A6), we know that

E
[
Y − (A − 1/2)δTZ(1)

πA(1 − π)(1−A)

× (1 − 2A)Z(1)Kh(δ
TZ(1))

]
= −ε1 − ξ1 − λ1nsign(δ),

the left on is equal to

E
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,

where δ̃ lies on the line segment connecting δ and
g′(0)β(1). Let
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where τ = (τ1, . . . , τsp )
T and ω = (ω1, . . . , ωsp )

T ,
then we can have
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= τ + ω + ε1 + ξ1 + λ1nsign(δ).

Based on the proof of Theorem 3.1, we know that
τ j = O(h2) for j = 1,… , sp, so ‖τ‖� = O(h2). For ω,
since g′′(δTZ(1)/g′(0))=O(1) for all δ ∈ N , based on the
proof of Theorem 3.1, we can have
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Then, by (C5), ‖ω‖� = O(‖δ − g′(0)β(1)‖2) =
O(spn−2γ ). Let

�(δ) = β(1) − δ

g′(0)

−E
{
g′
(

δTZ(1)

g′(0)

)
Z(1)Z(1)TKh(δ

TZ(1))

}−1

× (τ + ω + ε1 + ξ1 + λ1nsign(δ)).

Then, if δ solves �(δ) = 0, it also solves (A6). It follows
from (C2), (C6) and the choice of λ1n that∥∥∥∥E

{
g′
(

δTZ(1)

g′(0)

)
Z(1)Z(1)TKh(δ

TZ(1))

}−1

× (τ + ω + ε1 + ξ1 + λ1nsign(δ))

∥∥∥∥
∞

≤
∥∥∥∥E
{
g′
(

δTZ(1)

g′(0)

)
Z(1)Z(1)TKh(δ

TZ(1))

}−1 ∥∥∥∥
× (‖τ‖∞ + ‖ω‖∞ + ‖ε1‖∞ + ‖ξ1‖∞ + λ1n)

= o(n−γ ).

Then, for sufficiently large n, if β(1) − δ/g′(0) = n−γ ,
�(δ)> 0; if β(1) − δ/g′(0)= −n−γ ,�(δ)< 0. By conti-
nuity of�(δ), an application ofMiranda’s existence the-
orem shows that�(δ)= 0 has a solution inN , which is
also the solution to (A6).

Step 2: Let b̂ = (b̂(1), 0)T , where b̂(1) is the solution
to (A6) as shown above, then b̂ will be the solution to
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(A7).

1
n

n∑
i=1

yi − (Ai − 1/2)b̂T(1)z
(1)
i

πA
i (1 − π)(1−Ai )

(1 − 2Ai)z(0)
i Kh(b̂T(1)z

(1)
i )

= E

[
Y − (A − 1/2)b̂T(1)Z

(1)

πA(1 − π)(1−A)
(1 − 2A)Z(0)Kh(b̂T(1)Z

(1))

]

− ε0 − ξ0.

By Taylor expansion,

E

[
Y − (A − 1/2)b̂T(1)Z

(1)

πA(1 − π)(1−A)
(1 − 2A)Z(0)Kh(b̂T(1)Z

(1))

]

= E
[{

−g(βT
(1)Z

(1)) + b̂T(1)Z
(1)
}
Z(0)Kh(b̂T(1)Z

(1))
]

= −E
{
g′
(
b̂T(1)Z

(1)
)
Z(0)Z(1)TKh(b̂T(1)Z

(1))
}

×
(

β(1) − b̂(1)

g′(0)

)
+ ς + �,

where

ς = E
[{

− g

(
b̂T(1)Z

(1)

g′(0)

)
+ b̂T(1)Z

(1)
}
Z(0)Kh(b̂T(1)Z

(1))

]

� = E
[{

− 1
2
g′′
(

δ̃TZ(1)

g′(0)

)(
β(1) − b̂(1)

g′(0)

)T

× Z(1)Z(1)T

(
β(1) − b̂(1)

g′(0)

)}
Z(0)Kh(b̂T(1)Z

(1))

]

and δ̃ lies on the line segment connecting b̂(1) and
g′(0)β(1), ς = (ς1, . . . , ςsp )

T , � = (�1, . . . , �sp )
T .

Based on the proof above, it is not difficult to prove that
‖ς‖� =O(h2) and ‖ϖ‖� =O(spn−2γ ). Since b̂(1) is the
solution to �(δ) = 0, it holds that

β(1) − b̂(1)

g′(0)
= E

{
g′
(
b̂T(1)Z

(1)

g′(0)

)
Z(1)Z(1)TKh(b̂T(1)Z

(1))

}−1

× (τ + ω + ε1 + ξ1 + λ1nsign(b̂(1)))

Then, we have

1
nλ1n

n∑
i=1

yi − (Ai − 1/2)b̂T(1)z
(1)
i

πA
i (1 − π)(1−Ai )

(1 − 2Ai)z(0)
i Kh(b̂T(1)z

(1)
i )

= − 1
λ1n

E
{
g′
(
b̂T(1)Z

(1)
)
Z(0)Z(1)TKh(b̂T(1)Z

(1))
}

E

{
g′
(
b̂T(1)Z

(1)

g′(0)

)
Z(1)Z(1)TKh(b̂T(1)Z

(1))

}−1

∗(τ + ω + ε1 + ξ1 + λ1nsign(b̂(1)))

+ 1
λ1n

(ς + � − ε0 − ξ0).

In the event E1	E2	E3	E4, by the choice of λ1n,

‖λ−1
1n ε1‖∞ = o(1), ‖λ−1

1n ξ1‖∞ = o(1),
‖λ−1

1n ς1‖∞ = o(1), ‖λ−1
1n �1‖∞ = o(1).

By (C7),

1
λ1n

∥∥∥∥E {g′
(
b̂T(1)Z

(1)
)
Z(0)Z(1)TKh(b̂T(1)Z

(1))
}

× E

{
g′
(
b̂T(1)Z

(1)

g′(0)

)
Z(1)Z(1)TKh(b̂T(1)Z

(1))

}−1

∗(τ + ω + ε1 + ξ1)

∥∥∥∥
∞

<
1

λ1n
‖τ + ω + ε1 + ξ1‖∞

= o(1).

Finally, by (C7),

1
λ1n

∥∥∥∥E {g′
(
b̂T(1)Z

(1)
)
Z(0)Z(1)TKh(b̂T(1)Z

(1))
}

E

{
g′
(
b̂T(1)Z

(1)

g′(0)

)
Z(1)Z(1)TKh(b̂T(1)Z

(1))

}−1

∗λ1nsign(b̂(1))

∥∥∥∥
∞

< 1.

Therefore, b̂ satisfies (A7). This completes the proof. �
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