
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tstf20

Statistical Theory and Related Fields

ISSN: 2475-4269 (Print) 2475-4277 (Online) Journal homepage: https://www.tandfonline.com/loi/tstf20

Personalised medicine with multiple treatments: a
PhD thesis abstract

Zhilan Lou

To cite this article: Zhilan Lou (2017) Personalised medicine with multiple treatments:
a PhD thesis abstract, Statistical Theory and Related Fields, 1:2, 182-184, DOI:
10.1080/24754269.2017.1396426

To link to this article:  https://doi.org/10.1080/24754269.2017.1396426

Published online: 08 Nov 2017.

Submit your article to this journal 

Article views: 39

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tstf20
https://www.tandfonline.com/loi/tstf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24754269.2017.1396426
https://doi.org/10.1080/24754269.2017.1396426
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2017.1396426
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2017.1396426
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2017.1396426&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2017.1396426&domain=pdf&date_stamp=2017-11-08


STATISTICAL THEORY AND RELATED FIELDS, 
VOL. , NO. , –
https://doi.org/./..

Personalised medicine with multiple treatments: a PhD thesis abstract

Zhilan Lou

School of Statistics, East China Normal University, Shanghai, China

ARTICLE HISTORY
Received  October 
Accepted  October 

KEYWORDS
Heterogeneity of treatment
effectiveness; individualised
treatment rule; risk bound;
RKHS; weighted
multi-category support
vector machine

ABSTRACT
When there is substantial heterogeneity of treatment effectiveness for comparative treatment
selection, it is crucial to identify individualised treatment rules for patients who have heteroge-
neous responses to treatment. Existing approaches include directly modelling clinical outcome
by defining the optimal treatment rule according to the interactions between treatment and
covariates and outcome weighted approach that uses clinical outcome as weights to maximise a
target function whose value directly reflects correct treatment assignment. All existing articles of
estimating individualised treatment rules are all assuming just two treatment assignments. Here
we propose an outcomeweighted learning approach that uses a vector hinge loss to extend esti-
mating individualised treatment rules in multi-category treatments case. The consistency of the
resulting estimator is shown.Wealsodemonstrate theperformanceof our approach in simulation
studies and a real data analysis.

Personalised medicine provides the right treatment
to the right individual patient according to patient
characteristics such as demographics, genomic infor-
mation, treatment and outcome history, and so on;
patients with different characteristics have significant
heterogeneity in their responses to treatments. Thus,
it becomes an increasingly important research topic
among clinical and intervention scientists in establish-
ing an evidence-based personalised treatment assign-
ment rule as a function of patient characteristics to
optimise patient responses. The traditional approach is
finding an optimal treatment assignment rule through
the estimation of the response expectation conditioned
on patient characteristics treated as covariates. How-
ever, the estimation of the main treatment effect (which
does not affect the optimality of treatments) interferes
with the estimation of covariate-treatment interaction
(which affects the optimality), and hence the latter can-
not be estimated accurately. Efforts have been made to
separate the main effect from the covariate-treatment
interaction effect, either throughmultiple testing strate-
gies (Su, Tsai, Wang, Nickerson, & Li, 2009) or through
prediction (Foster, Taylor, & Ruberg, 2011).

A more recent alternative approach is to by-pass
the estimation of the covariate-treatment interaction
and directly search an optimal treatment assignment
rule by maximising the expected clinical outcome
related with different treatments. This approach is
named as outcome weighted learning in Zhang, Tsiatis,
Davidian, Zhang, and Laber (2012) and Zhao, Zeng,
Rush, and Kosorok (2012). However, almost all exist-
ing outcomeweighted learningmethods are for the case
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of two treatments. In the case of multiple treatments,
although some outcome weighted learning methods
can still be applied, they are not optimal and their the-
oretical properties such as the risk-consistency (Zhao
et al., 2012) are unknown. The purpose of this PhD the-
sis is to develop an outcome weighted learning method
for three ormore treatments, and to study its theoretical
and empirical properties.

The expected clinical outcome involves the 0-1 loss,
which is difficult to maximise due to its discontinu-
ity and nonconvexity. In the case of two treatments,
the 0-1 loss is replaced by a convex surrogate loss, the
hinge loss. We utilise a vector hinge loss used by Lee,
Lin, andWahba (2004) in multicategory support vector
machine. We prove that maximising the expected clini-
cal outcome is equivalent to minimising the risk under
the convex vector hinge loss weighted by clinical out-
comes. This is called Fisher consistency and justifies the
validity of using the vector hinge loss.

All existing approaches so far are limited to equal
losses, i.e. the misclassification costs are equal. The case
of unequal losses may be encountered in real world
problems, especially in medical applications. For exam-
ple, if treatment A is more expensive, toxic, or laborious
than treatment B, then we may only prefer treatment
A when the benefit under treatment A is larger than
that under treatment B to a certain factor. We develop a
framework to extend the outcome weighted learning to
unequal loss case, and establish the Fisher consistency
when a vector hinge unequal-loss function is used.

Although the vector hinge loss is continuous and
convex, the minimisation of the corresponding risk
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function is still quite hard in application because the
loss is not smooth enough and we do not make any
parametric assumption. We then adopt the idea in Lee
et al. (2004), i.e. we add a penalty term in the objective
risk function and restrict our solution to the Reproduc-
ing Kernel Hilbert Space (RKHS). Using a representer
theorem, the original minimisation problem turns into
a quadratic programming problem with some equal-
ity and inequality constraints. In practice, the quadratic
programming problem can be easily carried out via
available software packages.

Naturally, an important theoretical question is, as the
sample size of the training data increases to infinity,
whether the solution in RKHS converges to the optimal
solution of the original problem that is hard to com-
pute, or whether the risk evaluated at the solution in
RKHS converges to the risk of the unknown optimal
rule, which is called risk-consistency. We first establish
a relationship between the excess risk under the vec-
tor hinge loss and the excess risk under the expected
clinical outcome. Using this result, we prove the risk-
consistency of our proposed solution for both equal
and unequal losses, under some minor conditions. Our
proof ismore rigorous than some existing similar proofs
in the following aspects. The first one is the technical
requirement that the range of covariate values is com-
pact. We show that this requirement can be relaxed by
applying a one-to-one bounded transformation and our
solution is invariant with this transformation. The sec-
ondone is that theRKHSweuse needs to be dense in the
space of continuous functions, which can be achieved
by using the so-called universal kernel in RKHS.

With technology advances, the number of measured
covariates nowadays is often very large, even compa-
rable with the sample size. However, the number of
covariate actually related with the response is usually
small. This suggests the necessity of covariate selection
or screening, or dimension reduction in the process
of constructing the optimal rule. Note that the set
of covariates having effects on the response may be
different under different treatments. Hence, it is better
to perform covariate screening or dimension reduction
separately in different treatments. Our method can
actually handle the situation where the covariate sets in
different treatments are different, and it remains to be
risk-consistent if the covariate screening or the dimen-
sion reduction is consistent. Since our approach does
not make any assumption on the expected response
conditioned on covariates and treatment, we apply
some model free feature screening procedure for both
categorical and continuous covariates.

Besides the theoretical derivation, we carry outmany
simulation studies to evaluate the fixed sample perfor-
mance of the proposed method in both low dimen-
sional covariate and high dimensional covariate cases.
Our proposed method is compared to two other meth-
ods. One method compares two treatments at a time by

applying themethod of Zhao et al. (2012) and then finds
thewinner in all paired comparisons. The othermethod
is the weighted tree method in Zhang et al. (2012),
which is proposed for two treatments but can be applied
to multiple treatments. We consider two comparison
criteria. One is the misclassification error rate and the
other is the magnitude of the excess risk, both approx-
imated by an independent validation data set in the
simulation. We consider many scenarios in low dimen-
sional case, including linear or nonlinear boundary,
complex main effect structure, different kind of covari-
ates, Bayes error, three or four treatments and so on. The
performance of our proposed method is better and the
improvement can be tremendous in some cases. Our
results also show that the weighted tree method does
not obtain the optimal solution. In high dimensional
case, we study the performance of the proposedmethod
after covariate screening and compare it with the oracle
method assuming that we know exactly which covari-
ates should be included or excluded. The performance
of the proposed method with screening is close to the
oraclemethodwhen the sample size is large. Our results
also show the necessity of covariate screening. In addi-
tion, our results show that covariate screening sepa-
rately under different treatments is more beneficial in
our framework.

For the choice of the kernel function, we suggest a
convex linear combination of a Gaussian kernel and a
spline kernel. The goal is to adaptively choose a better
kernel function for better empirical performance.

Finally, we apply the proposed method to a real data
set from a cancer behavioural study with four treat-
ment arms. We define a comparative treatment effect to
measure the increase of average outcome when assign-
ing patients according to the proposed rule. The m-
out-of-n bootstrap method is used to construct a con-
fidence interval for the quantity. The results show that
the estimated treatment assignment rule by using our
proposedmethod seems to be able to enhance the treat-
ment effect.
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