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ABSTRACT

This paper focuses on the influence of a misspecified covariance structure on false discovery
rate for the large-scale multiple testing problem. Specifically, we evaluate the influence on the
marginal distribution of local false discovery rate statistics, which are used in many multiple test-
ing procedures and related to Bayesian posterior probabilities. Explicit forms of the marginal
distributions under both correctly specified and incorrectly specified models are derived. The
Kullback-Leibler divergence is used to quantify the influence caused by a misspecification. Sev-
eral numerical examples are provided to illustrate the influence. A real spatio-temporal data on

soil humidity is discussed.

1. Introduction

Large-scale multiple testing arises from many practical
problems, from genetic studies to public health surveil-
lance. Benjamini and Hochberg (1995) introduced the
concept of the false discovery rate (FDR) and pro-
posed a powerful testing procedure, usually referred
as the BH procedure. The BH procedure relies on a
positive dependence assumption (Benjamini & Yeku-
tieli, 2001), while adaptive BH procedures (Liang &
Nettleton, 2012; Storey, Taylor, & Siegmund, 2004)
rely on an independence or weak dependence struc-
ture. Efron (2007) noted that correlation may result in
overly liberal or overly conservative testing procedures.
Though the BH procedure is valid under different
dependence assumptions (Farcomeni, 2007; Wu, 2008),
Sun and Cai (2009) showed that failing to model depen-
dence can result in inefficiency. To address that prob-
lem, Sun and Cai (2009) and Sun, Reich, Cai, Guindani,
and Schwartzman (2015) proposed a procedure using
local significance index, which is a Bayesian posterior
probability. Efron, Tibshirani, Storey, and Tusher (2001)
described the connection between the FDR and Bayes
procedures, where a posterior probability is referred
as the local false discovery rate (Lfdr). Sun and Cai
(2009)’s local significance index reduces to the Lfdr
under independence. In fact, there is a rich history of
using Bayesian approaches for multiplicity adjustment.
Scott and Berger (2006) and Scott and Berger (2010)
discussed Bayesian multiplicity adjustment in variable
selections. Muller, Parmigiani, and Rice (2006) had a
comprehensive discussion on the connection between
the FDR, Bayesian multiple testing, and procedures
using posterior probabilities.
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In Sun et al. (2015), the procedure depending on
unknown parameters is called the ‘oracle’ procedure,
in the sense that we know all nuisance parameters as
an oracle. Although the oracle procedure is proved to
control FDR at the nominal level and be optimal in
terms of false non-discovery rate (FNR), a data-driven
‘adaptive’ procedure relies on correctly specifying the
model, including the prior specification, and/or consis-
tent parameter estimation. For large-scale data, depen-
dence or covariance, if in Gaussian models, is often esti-
mated based on a structured model. The model choice
or the structure choice itself may be debatable and
parameter estimation remains challenging. For exam-
ple, in spatial modelling, the estimation of covariance
relies on structured covariance specifications and, in
practice, one may have multiple choices of specifica-
tions. Intuitively, the choice of specification will influ-
ence the data-driven procedure and may eventually lead
to different decisions.

In this paper, we explore the influence of a mis-
specified covariance structure on the testing proce-
dure. Specifically, we study the sampling distributions
of the Lfdr statistics under both correctly and incor-
rectly specified covariance structures. We derive explicit
expressions for those distributions under a general
model setting. We propose to use the Kullback-Leibler
divergence as a quantitative measure for the influence.
We show in both a simulation study and a real appli-
cation that the influence of a misspecification leads
to unappealing results. The paper is organised as fol-
lows. Section 2.1 gives a basic setup of this problem.
Section 2.2 gives sampling distributions of the test
statistics. Section 2.3 provides formulas for computing
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the Kullback-Leibler divergence. Section 2.4 shows sev-
eral numerical examples. Section 3 provides real data
that arose from the Oklahoma soil monitoring network.
Section 4 is a discussion.

2. Main results

2.1. The setup

In this paper, we consider a general model for m obser-
vations y = (y1, ..., Ym)":

yi=0i+e, i=1,...,m, (1)
where 0; is the latent state and ¢; is the noise term
which independently follows N(0, 0'%). The dependence
of observations is introduced through their latent states
0 = (61, ...,0,)  Forinstance, 9; can be a realised spa-
tial process 9(s), for which a spatial dependence struc-
ture can be specified. Consider a one-sided hypothesis
Hy; : 6; = 6o

versus Hj;: 6; < 0y, (2)

for every i simultaneously. This type of one-sided
hypothesis is often of interest in many practices. In spa-
tial epidemiology, one may want to determine which
regions or locations have disease rates higher than some
given threshold 6. Here, data will be spatially corre-
lated and each hypothesis will be one-sided. Similarly, in
agricultural studies, one may want to determine which
locations or time periods have soil moisture levels lower
than a given threshold 6, indicating a risk of drought,
and the data will be either spatially or temporally cor-
related and each hypothesis will be one-sided. A more
general hypothesis would be Hy; : 6; € ©y; versus Hy; :
0; € ©1;. We do not consider a precise (or two-sided)
hypothesis in this paper, but some comments are given
in Section 4.

The dependence of latent states @ is usually specified
through a prior model. For example, consider a normal-
inverse-gamma prior on (6, o?),

0| 0> ~N,(0,g0°%Y) and o>~ IG(a,B). (3)

For simplicity, we assume that X is a known covariance
structure and g is a known scale parameter. The use of g
here is the same as that in Zellner’s g-prior for Bayesian
variable selection problems. The g value could be fixed,
estimated or have a hyperprior (Liang, Paulo, Molina,
Clyde, & Berger, 2008). The prior specification (3) in
fact induces a marginal probability for each hypothesis:
P(Hy;) = P(9; = 6y;) =0.5.

Sun and Cai (2009) and Sun et al. (2015) showed that,
to control FDR when data are dependent, the poste-
rior probability h; = P(Hy; | y) is useful. The posterior
probability h; is viewed as a test statistic, called local
index of significance in their work. The oracle proce-
dure orders h™ = (hq), ..., hm)) and rejects all H;,

i=1,..., ksuch that
L
k=maxq{i: - hiy <a* i, 4
Z = )

where «* is the nominal level. The procedure mimics
the Benjamini-Hochberg procedure, in which p-value
is the test statistic. Sun and Cai (2009) showed that this
oracle procedure controls FDR at level «* and has the
smallest FNR among all FDR procedures at o* for a hid-
den Markov model. Sun et al. (2015) further showed
that in a spatial random field model, this oracle pro-
cedure controls FDR at level o* and has the smallest
missed discovery rate (MDR). A data-driven procedure,
however, depends on the estimation of other nuisance
parameters. The covariance X is especially important in
this case as it describes the dependence. Our objective
is to determine if the procedure is sensitive when the
covariance is incorrectly specified or estimated, and, if
so, to quantify the sensitivity.

2.2. Sampling distribution of test statistics

2.2.1. Known variance of noise

We now focus on how the distribution of test statistics
(h1, ..., hy) is influenced by a misspecified covariance
structure. Assume that the data are generated from the
true underlying process:

Yi~ N(gi’ 0.02) and 0~ N(aov Z1)9 (5)

fori=1,..., m. Assume known o and consider model
(1) with priors @ ~ N(8y, gX;) and @ ~ N(,, gX,), the
latter of which has a misspecified covariance structure.
The scale g determines the strength of the prior. The
intuition is that both g and X, will influence the test
statistics (h1, ..., h,,) and FDR control.

Lemma 2.1: Under the correct covariance X, h;
marginally has the following CDF:

F(h) =@ [\/g<bl(hi)} ; (6)

where aj; is the ith diagonal element in A = (1/(7021 +
1/gx;")~! and by; is the ith diagonal element in B =
I+ 0/gx ) W+ )T+ 0f/gE )7

Under the misspecified covariance X5, A = (1/031 +
1/gx;)and B= I+ 03/¢gx; ") (odI + )T +
o5 /gzy )"

Lemma 2.1 shows explicitly how the sampling dis-
tribution is altered by a misspecification. Observe that
F(h;) is completely determined by the ratio a;i/b;.
Figure 1 shows different shapes of both cumulative dis-
tribution functions (CDF) and probability density func-
tions (pdf) under different ratio values. Note that when
a;; = by, the sampling distribution is Uniform(0, 1).
Consider g — oo, for which the prior becomes non-

- : 2 /(52 4 o2 2
informative, then a;;/b; — oy /(0§ + oy ;;), where o7 ;
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Figure 1. Marginal CDF and pdf for h;.

is the ith diagonal element in X,. The ratio becomes
irrelevant to the misspecified covariance X,. In other
words, the behaviours of the correct specification and
the incorrect specification will be similar when g is
large, which seems intuitive. Because FDR procedures
based on h; reject Hy; if h; < C for some C, it is impor-
tant to note that P(H; < h;) = F(h;) can be substantially
influenced by covariance misspecification. For example,
in Figure 1, we see F(0.2) ranges from 0.03 to 0.35. It
should be noted that some recommend rejecting H;
if h; < 0.2 (Efron, 2012). In this setting, the rejection
probability ranges from 0.03 to 0.35.

Unlike the independent case, hy,..., h, are now
dependent when the data are dependent. The change
under a misspecified structure is revealed in their joint
distribution.

Theorem 2.1: Using the same definition for A and B in
Lemma 2.1, hy, ..., hy, have a joint CDF

E(hy, ... hy) = <1>g*[ /%cb‘l(hl),...,
11
a
[ 3 =1, |,
b ( )}

where ®}' is the CDF for a multivariate normal
N, (0, Py), and Py, is the correlation matrix of B.

The joint distribution of h;, ... , h,, represents a mul-
tivariate surface in the space [0, 1]”. Notice that jointly
not only the ratio a;;/b;; plays a role but also the corre-
lation structure of B. Under a misspecified covariance
structure, P, will be altered as well. However, still, as
g — 0, B — o2l + X, and there is no misspecifica-
tion effect.
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2.2.2. Unknown variance of noise

Assume the underlying data-generating process (5).
Suppose o is unknown and consider specifying model
(1) with prior (3). As before, a correct covariance struc-
ture is X1 and a misspecified structure is X,.

Theorem 2.2: Under the correct covariance X, the test
statistics hy, ..., hy, jointly have the following CDF:

a
F(hl, e, hm) = E;’fb /i\y;}rm(hl)’ o
bll
amm —
V bmm \pm-l|-2a (hm)i|, (7)
Where A= (I+ l/gzl—l)—l, B = (I+ 1/g21—1)—1

(I + X))+ 1/gE")7Y, W, 4 5y is the CDF for a
univariate t-distribution with degrees of freedom m +
20, and E7', is the CDF for the following random vector

m + 2«
/ zb?
z,Czy + 28

where z, ~ N(0,P,) and C = (diagB)""/*(A~% —
A1) (diag B) /2, where diag here denotes a diagonal
matrix.

Under the misspecified covariance X,, A= I+
1/g%;) 7 and B= (I+1/gx;) oI+ )T +
/g%, )7

The main difference between Theorem 2.2 and
Theorem 2.1 is that ], has a more complicated form
than ®}'. The ratio a;;/b;; still plays a role in the joint
distribution and E', will be affected by a misspecified
structure.
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2.3. Kullback-Leibler divergence

Denote the sampling distribution of h under the correct
covariance specification as f.,,(h) and under the mis-
specified covariance as fu;s(h). We evaluate the influ-
ence of the misspecification by the Kullback-Leibler
(KL) divergence

fcor (h)
fmis(h)

The KL divergence here can be interpreted as the infor-
mation loss when using fi;s to approximate f,. The fol-
lowing two corollaries are useful to approximate the KL
divergence in our cases.

dh.  (8)

DKL(fcor ” fmis) = /fcor(h) 10g

Corollary 2.1: As a consequence of Lemma 2.1, the
marginal density function of h; is

1
fh) = riexp {5(1 - Vi)¢,-2} ,

where r; = a;i/b;; and ¢; = ®~1(h;).

Corollary 2.2: As a consequence of Theorem 2.1, the
joint density function of (hy, ..., hp,)' is

Fhyy s ) = ’R%P;R%

3 1, 111
exp{5¢<1—Rsz1Rz>¢},

where ¢ = (1, ..., ¢0p) = (@ 1(hy), ..., P (hy))
and R = diag(ry, ..., rm).

With Corollary 2.2, the term log{ feor (h)/ fmis(h)} in
expression (8) is analytically available. Thus, the KL
divergence Dgj, can be easily evaluated using Monte-
Carlo approximation. Notice that we can draw from
feor exactly given the underlying model because h; =
P(Hy; | ) is analytically available. To draw a sample of
h from f,,, draw y from the underlying model and then
calculate h. Suppose we obtain a sample hy, ..., hy, the
approximation is

fcor (hl)
fmis (hl) ’

L
1
DKL(fcor ” fmis) ~ Z Zlog

I=1

A misspecified covariance will change the defined
matrices A and B, and consequently change matri-
ces R and P;. Notice the relationship R'/2P,'R'/? =
(diagl/ 2A)B! (diagl/ 2 A). Since the KL divergence will
generally increase as the dimension m increases (in
the independent case, it is simply a sum of individual
dimensions), we may also consider a relative measure
of influence Dgy./m.

The KL divergence is computable under the gen-
eral model (1) with X, and X, provided. This easy-to-
compute measure can be used to quantify the influence
of a misspecification. In practice, when there are multi-
ple candidate covariances, we may assess the KL diver-
gence between those candidates.

2.4. Numerical examples

We now consider two examples of misspecified covari-
ance. In each example, without loss of generality, we set
m = 900 and o = 0.25. We will numerically evaluate
the KL divergence and perform a simulation study, in
which we estimate FDR and FNR with Monte-Carlo
replications of 1000.

Example 2.1: Positive spatial covariance vs. Indepen-
dence.

Consider a regular spatial grid with unit distance one
for generating the latent states 6. The true covariance
Y = {aﬁij} has a positive decaying structure deter-
mined by an exponential covariance function o7; =
exp{—I|ls; — s;ll/p} with p = 5, where s represents a
location. A misspecified covariance is £, = I. To get a
rough idea of ; = a;;/b;;, let g = 1 and compute A and
B. Under the correct specification, r; ranges from 0.12
to 0.16, and under the misspecification, r; = 0.25.

Note that this misspecification is essentially to ignore
the dependence and treat data as independent observa-
tions. This is quite common in practice, where domain
scientists are hesitant to model complex covariance
structures, though evidences suggest that data may be
correlated.

Example 2.2: Negative AR(2) covariance vs. Positive
AR(2) covariance.

Consider a time series for generating the latent states
0. The true covariance X; is determined by an AR(2)
process: 9,‘ = 019,‘ 1+ p29i 2+ €& & N(O, 1), and
p1=1.5and p, = —0.9. The autocorrelation function of
this specification has an oscillating pattern (mixed pos-
itive and negative values in X,). A misspecified covari-
ance X, is chosen to be the covariance for an AR(2) pro-
cess with p; = 0.6 and p, = 0.3, whose autocorrelation
is always positive. To get a rough idea of r; = a;;/b;;, let
g = 1 and compute A and B. Under the correct specifi-
cation, r; ranges from 0.088 to 0.14, and under the mis-
specification, r; ranges from 0.20 to 0.25.

Note that this example shows a scenario where model
is correctly specified but parameter estimates are wrong.
This example also compares a covariance matrix con-
taining negative values with a covariance matrix con-
taining all positive values.

Results of Examples 2.1 and 2.2 are shown in
Figures 2 and Figure 3. We choose different g values
representing different strengths of information brought
in by the prior dependence. Four plots are shown in
each result: the estimated FDR, the estimated FNR,
the difference between the rejection rate of the cor-
rect specification and that of the misspecification, i.e.,
(# discovery, . — #discovery,;.)/m, and Dgr/m. We can
reach the following conclusions from these plots. First,
as gincreases, both the KL divergence and the difference
between rejection rates decrease, and also both the FDR
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Figure 2. Results for Example 2.1. FDR, FNR, difference of rejection rate (rate_,, — rate

500. The nominal level is 0.05.

and the FNR become closer, all of which are as expected,
indicating a decreasing misspecification influence. Sec-
ond, the FNR under the misspecification is universally
higher than under the correct specification. Hence, mis-
specification results in an inefficient procedure. Also
notice that the procedure tends to give less discover-
ies under the misspecification than under the correct
specification. Last but not least, the FDR change is not
monotonic and the comparison between the two spec-
ifications is profound. Notice that the nominal level is
0.05 and g = 1 (or log;og = 0) represents a ‘true’ scale.
When both the structure X; and the scale g are correct,
from the top left plot in both results, we can see that the
FDR is controlled at the nominal level. This seems to
suggest that a correctly estimated scale of prior depen-
dence is desired, which should be neither too strong
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mis) and Dy, /m. The sequence of g is from 0.2 to

nor too weak. And this correct scale will only work as
expected if the covariance structure is correct as well.

Example 2.3: Positive spatial covariance revisit.

Revisit Example 2.1. Consider to fix ¢ = 1. The cor-
rect specification is exactly the same as the underlying
model with p = 5. For the misspecification, let the spa-
tial range parameter p change from 0.1 to 20, represent-
ing the strength of dependence.

Results of Example 2.3 are shown in Figure 4. The
FDR is maintained at 0.05 only when p has the correct
value. The pattern of change in FDR is also reflected in
the KL divergence plot. In this example, using Dxy/m
as a measure of influence seems to be reasonable. The
FNR, on the other hand, monotonically decreases as
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Figure 5. Rejected sites for the year of 2014 in Oklahoma, from January to December. The dots (-) are the observations, the crosses (+)
are rejections using Model 1, and the triangles (A) are rejections using Model 2.

the dependence goes stronger. We shall note here that,
when g is large, the KL divergence becomes sensitive
to detect a misspecification as the measure approaches
zero. However, in that case, the prior is vague and the
influence on FDR is negligible.

3. Real data: soil relative humidity

Oklahoma Mesonet (Illston et al., 2008) is a compre-
hensive observatory network monitoring environmen-
tal variables across the state. One of the focuses of the
network is soil moisture. Extreme weather conditions,
especially drought, severely impact Oklahoma’s agricul-
ture, which is a leading economy of the state. Soil mois-
ture is fundamentally important to many hydrological,
biological and biogeochemical processes. The informa-
tion is valuable to a wide range of government agencies
and private companies. We take a small dataset from
their data warehouse as an example of real application.
Consider only one variable here: the relative humid-
ity, ranging from 0% to 100%. The dataset consists of

monthly averages in 2014 for 108 monitoring stations,
which is in total 1296 measurements. Consider each
hypothesis being Hy; : 6; = 50 versus Hy, : 0; < 50 for
detecting low humidity times and locations.

We consider two different specifications for the
dependence structure. Consider a spatio-temporal pro-
cess, for a spatial location s and a time point ¢, y(s; t) =
O(s;t) + €(s; t), where €(s; t) is pure error process
with N(0, 0%), and 6 (s; ¢) is a stationary Gaussian pro-
cess with a constant mean p and a separable covariance
function:

C(h; ) = 8C® (h)CP (1),

where h = ||s — §/|| and T = |t — #| are both Euclidean
distances. Specify C®)(h) = exp {—h/p} and CO(7) =
. Specify priors for parameters: 02 ~ IG(1, 1), § ~
IG(1, 1), p ~ Uni(0, +00) and & ~ Uni(0, 1). Posterior
distributions are obtained through standard Markov
chain Monte-Carlo (MCMC). We ensure that the chain
is long enough to converge and take 10,000 MCMC
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Table 1. Soil data: disagreed decisions under Models 1and
2, for hypothesis Hy; : 8; = 50 versus Hy; : 6; < 50.

Time and Observed Upper C.I. Upper C.I.
location value under Model1  under Model 2
January, Site 6 49.49 50.42° 51.03
January, Site 70 49.55 50.522 5130
January, Site 72 49.62 50.372 50.89
January, Site 87 49.70 50.67° 51.07
January, Site 101 49.62 50.702 51.21
March, Site 8 49.94 50.78? 5110
March, Site 47 49.58 50.36° 51.22
April, Site 38 49.53 50.19° 50.90
June, Site 53 49.63 50.852 51.83

3A rejection under the model. The nominal level is 0.05.

samples. Posterior probabilities P(H; | y) are approx-
imated with posterior samples.

The second model is specified that the process is
independent over time but the variance is not stationary
over time:

§;C(h), ift=t;

C(h;t, t") = _
0, otherwise.

This is a different specification from Model 1 and nei-
ther model is a reduced case of the other. We use the
same specification for CY(h) as in Model 1 and also the
same prior distributions for 02,8,and p. We take 10,000
MCMC samples and posterior probabilities are approx-
imated with MCMC samples.

For both models, we follow the FDR control pro-
cedure (4) at a nominal level 0.05. Results of both are
shown in Figure 5. Note that drought impacts Okla-
homa mostly in the western areas. Both results seem
reasonable and meaningful for practitioners and they
overlap on most decisions. However, we do observe
that, at nine time/location points, they do not agree with
each other. Those nine points are all rejected in Model 1
but neither in Model 2. Table 1 shows the observed val-
ues for the nine disagreed sites, along with their upper
credible intervals inferred from each model. We can see
that all nine points are boundary cases and Model 2
results in higher upper bounds than Model 1, causing
the disagreed decisions. Such disagreed decisions will
likely cause confusions in practice. As one must assume
normality in the first place before performing a small
sample ¢ test, we believe that, in a good practice, it is nec-
essary to clearly assume and carefully check the model
specification before using posterior probabilities from
the model for testing.

4. Discussion

In this paper, we explore the influence of a misspeci-
fied covariance structure on the multiple testing proce-
dure using Bayesian posterior probabilities. We explic-
itly show the influence on the test statistics and discuss
the KL divergence as a measure of that influence. We see
from a simulation study that both the correct strength of

dependence and structure of dependence are necessary
to ensure control of the FDR at the nominal level. We
also see that misspecified covariance can significantly
impact efficiency, in terms of FNR. From a real applica-
tion, we see that different covariance specifications can
result in different decisions.

This paper does not cover any discussion on a pre-
cise (or two-sided) hypothesis: Hy; : 6; = 0 versus
Hj; : 8; # 0. In that scenario, a mixture model is often
assumed: f(y) = pofo(y) + pifi(y). The Lfdr by Efron
et al. (2001) is pofo(y)/f(y) under independence. When
data are dependent, it is unclear how to properly incor-
porate the dependence into the mixture model. One
practical example given by Brown, Lazar, Datta, Jang,
and McDowell (2014) specifies: y; ~ N(y i, 02), yi ~
Bern(1 — p) and u ~ CAR(p, t2), which mimics the
independent model in Scott and Berger (2006). In the
Bayesian framework, to compute P(Hy; | y), we would
need P(Hy;), P(Hy;) and priors 7 (0;) under Hy; and
71(0;) under Hy;. Moreover, 7 ;(0;) and 7 (0;) should
have a dependence structure for i = 1,..., m, in some
way. A misspecified covariance (or model) would be
worth further investigation in this setting.
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Appendix

A.1 Proofoflemma 2.1

Proof: First, given the underlying true model (5), it is
straightforward to derive the true marginal distribution
for y:

p(y) = /01?(}’ | 6)p(0)d6 = N(8o, 051 + Z1). (Al)
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If we estimate the posterior using the correct covari-
ance structure, we will have the following posterior dis-
tribution: 0 | y ~ N(0Y), £0)), where 8 = (1/01 +
1/gX7) 7 (1 /oy +1/g%7'60) and TV = (1/031 +
1/g=7H) 1. Marginally, 6; | y ~ N6, ). Then,

9(}’) _ GOi
H; =P(Hyi | y) =P(6; = 6pi | y) = @ | -—

2()’)

i

Using (A1), we have the marginal distribution:
6" ~ N(8,, B), where B = (I +02/gx;") (21 +
1)U +02/gZx; ). Note that TV is free of y, so let
A=3X0, Marginally, Hi(y )~ N (6o, b;;) which leads to

Qi(}’) _ 901'

o)
Jxy

Now, under the true covariance, the CDF for H; is given

~ N(0, bi/a;;).

F(h)=P|® |- <h;
(62
i =7 il
=P| +— <o '(hy)
R
L 11 -
=0 [ %cp—l(h,)}
11

If a misspecified covariance X, is used to estimate
the posterior, then in the posterior distribution 6 |
y~N@Y, D), we will have X,, instead of X, in
both #% and £U). As a consequence, A = (1/0ZI +
1/g¥;)tand B= (I +0/gx; ) o2l + )T +
02/g%; ")~ The rest remains the same. O

A.2 Proof of Theorem 2.1

Proof: According to the proof in Lemma 2.1, ) ~
N(6y, B). Hence, diag™"/*(B)(8) — 6,) ~ N(0, P}),
where Py, is the correlation matrix of B. Equivalently,

I
(Ql(y) — 61 o) — 90m> ~N(0. Py)

Vbll T bmm
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Then, the joint CDF of (Hj, ..., H

m) 1s
F(hlv"'7hm):P(Hlfhls"'7Hm§hm)

0(}’)_001
=P|d|Et— | <hy,...,
[ < 4/ a11 !

» _
q,(u) Shm}
amm
0(}’)_9
=p[1—°1 [z ().
11

\Y% bll
o -
2t =1 ()

m _OOm

Y% bmm N bmm :|

=) [—P (h
[,/ b (), .
Amm - 1
,/—bmmfb (hm)i|- -

A.3 Proof of Theorem 2.2

Proof: First, given the underlying true process (5),
marginally, y ~ N(8y, o¢1 + X;).

If the correct covariance is used, we have the poste-
rior distribution

261y / Py 6)p(@ | 62)p(c?)do
0

«[(y—0)(y—0)+1/g(0 —0)T7 (0 —6) +28] "

o [(0—09YT+1/g27) (0 —6)
+(—00)T+gZ) (y—00)+28] "

1
o« |14+
m+ 2«

which is t,,(m + 2, 09, V), with location 8% =
I+1/gZH Y (y+1/gX7'0y) and scale VO =
(m+20)"'28+ (y —00) T+ gX) "' (y — )1 +
1/¢gx~")~!. Similarly as Lemma 2.1, define A =
I+1/gZ7H)™' and B= T+ 1/gX;H) (oI +
T+ 1/g85H) 7"

Marginally, 6; |y ~ t;(m + 2a, Qi(y ), Vif}' )), then
each test statistic is

_ m+(m+2a)

© -8y (Vo) - 0(”)}

0(}’) _ 0i0
H; = P(Hyi | y) =P(6; = 6o | ¥) = Wpyoo | — .
V_(}’)
1

In order to find the joint CDF, we need the joint

distribution  of  ((6)) —610)/\/ V..., (6 —

Omo)/ V,z,i)’, which can be re-written as

(diagV(y))_% (0()/) —0y)
m + 2a

B \/(y —00) I+ %) (y — 0y) + 2
x (diag A)~7 (8 — ).

(A2)

Given the marginal distribution of y, we have
O(y) —00 =A(y—0()) ~ N(OO,B), or, 0()/) —00 =

(diag B)'/?z;,. The quadratic term in (A2) is

(y—00) I+ gZ) " (y —6o)
=(y—00)I—A)(y— 6
= z},(diag B)"/*(A™* — A™")(diag B) %z,

Equation (A2) is then

_1 + 2« 1
diag V)Y 2 (9 —9,) = m diag A) "2
(diag V) 2 ( 0) z;Czb+zﬁ( iagA)

x (diag B) %zb.

Or, equivalently,
@910’) _ 910 amm ()’)
Vb / /
11 V1(f/) bmm rﬁl)’/n

_ m—+ 2« .
B z,Czy + 2 b

The joint CDF of Hy, ..., Hy, is given by
F(hy, ..., hy) =P(H, < hy,...,Hy < hyp)
)
6, —0
=P|:‘pm+2a 1—()10 <h,...,
Vit
(2]
0, —06
\Ijm+2a m—mO S hm]
Vi
»
0, —06
= [1—10 <w i (h),...,
/Vl(f’)
er(vf’) - 9m0

[ Amm
b \Ijm—lﬁ—Zoz (hm )] .

If the misspecified covariance is used, follow the same
argument in Lemma 2.1. O

A.4 Proof of Corollary 2.1

Proof: Notice that d®~!(x)/dx = 1/p(®
@(x) = 1/4/2me /2. Then,

~1(x)), where

ﬁ
@ (@~ (hi)

= Jriexp {%(1 — ri)[d>1(h,-)]2} .

f(h) =@ (Vri®~ ' (h))



A.5 Proof of Corollary 2.2
Proof: Let u; = \/TI-CIJ’1 (h;). Using the chain rule,

™F amapr o Ju;

By ... hy) = = b —

Js s ) 3hy --- dh,, aul.--aumgahi
. = SR

= (uv"'7um) T 11 N

wt Eso(cb—l(hi»

1 | -
= |Pb| 2 exp {—zuphlu} ll:!\/r,
X exp {l[CDI(h,-)]Z}
2
= {H ﬁ} Py 2
i=1

1 1 1 1
X exp {—E¢’R2P;1R2¢ + 5¢’¢}

2

- ‘R%P;R%

1 1 1
X exp {54)/(1 — RZPblRZ)qS} .
O
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