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ABSTRACT
In this paper, a zero-and-one-inflated Poisson (ZOIP) model is studied. The maximum likelihood
estimation and the Bayesian estimation of the model parameters are obtained based on data
augmentation method. A simulation study based on proposed sampling algorithm is conducted
to assess the performance of the proposed estimation for various sample sizes. Finally, two real
data-sets are analysed to illustrate the practicability of the proposed method.

1. Introduction

In data analysis and modelling, the problem of excess
zeros has been massively investigated. Neyman (1939)
and Feller (1943) introduced the concept of zero infla-
tion to address the problem of excess zeros. Zero-
inflated models have successfully been used in manu-
facturing defects (Lambert, 1992), medicine (Cheung,
2002), patent applications (Crepon & Duguet, 1997),
species abundance (Faddy, 1998; Welsh, Cunningham,
Donnelly, & Lindenmayer, 1996), Legionellosis infec-
tion (Xu, Xie, & Goh, 2014) and in many other fields.
One of their main interesting features is that they adjust
well to data issued fromaparticularmixture of twopop-
ulations: one in which one has only zero counts and
another in which the counts are the realisations of a
discrete distribution. Variousmethods have been devel-
oped to address this issue, in which the zero-inflated
Possion (ZIP) model proposed by Lambert (1992) plays
an important part. ZIP model with Bayesian tech-
niques has been considered by Ghosh, Mukhopadhyay,
and Lu (2006), Chen (2009), Dagne (2010), and Musio,
Sauleau, and Buemi (2010). For modelling complete
female fertility, Melkersson and Rooth (2000) pro-
posed a zero-and-two-inflated count datamodel, which
accounts for a relative excess of both zero and two chil-
dren. However, in many cases, count data may contain
excess zeros and ones simultaneously. For example, it is
most probable that in a shopping trip one does not buy
anything or just buys one item at a clothing store; and
one may be infected by some virus for at most one time
due to the generation of corresponding antibodies once
after the infection. The Legionellosis infection count
data in Xu et al. (2014) contains many zeros and ones,
and we have noted that the count of one is nearly half
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underestimated by the ZIP model. Motivated by this
example, we studied the zero-and-one-inflated Poisson
(ZOIP) model for count data with both excessive zeros
and ones. Zhang, Tian, and NG (2016) initially studied
the likelihood-based ZOIP model.

A nonnegative integer-valued random variable Y in
a ZOIP model can be represented as Y = V(1 − B1) +
B1(1 − B2), where B1 is a Bernoulli random variable
with success probability p0, B2 is a Bernoulli random
variable with success probability p1,V follows a Poisson
distribution with rate parameter θ , and B1, B2 andV are
mutually independent. The relation between Y and (B1,
B2, V) is⎧⎨
⎩

(Y = 0) ⇔ (V = 0,B1 = 0) ∪ (B1 = 1,B2 = 1),
(Y = 1) ⇔ (V = 1,B1 = 0) ∪ (B1 = 1,B2 = 0),
(Y = k) ⇔ (V = k,B1 = 0), k = 2, 3, . . .

(1)
Then the probability mass function of Y is

Pr (Y = k) =

⎧⎪⎨
⎪⎩

p0p1 + (
1 − p0

)
e−θ , if k = 0,

p0
(
1 − p1

) + (
1 − p0

)
θe−θ , if k = 1,(

1 − p0
)

θk

k! e
−θ , if k ≥ 2,

(2)

with 0 � p0 � 1, 0 � p1 � 1, and θ > 0. We denote
this zero-and-one-inflated Poisson model as ZOIP (p0,
p1, θ). An EM algorithm to get maximum likelihood
estimation (MLE) from incomplete data is proposed by
Dempster, Laird, and Rubin (1977). In this paper, B1, B2
andV are looked upon as latent variables to help get the
MLE via EM algorithm and the Bayesian estimation via
Gibbs sampling for ZOIP (p0, p1, θ).

The rest of the paper is organised as follows. In Sec-
tion 2, themaximum likelihood estimates of the param-
eters (p0, p1, θ) are obtained and shown to be unique
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under a mild condition. We focus our attention on the
Bayesian estimation in Section 3. The latent variable
method is used to get the MLE and Bayesian estimates.
A simulation study is conducted in Section 4 to com-
pare the performance of MLE and Bayesian estimates.
Finally two real data-sets are analysed in Section 5 to
illustrate the practicability of the proposedmethod.Our
conclusions are presented in the final section.

2. Maximum likelihood estimation

2.1. Usualmaximum likelihood estimate

Given a random sample Y = (Y1,Y2, . . . ,Yn) of size
n from ZOIP (p0, p1, θ), the likelihood function of
(p0, p1, θ) is

L
(
p0, p1, θ |Y )
∝ [

p0p1 + (
1 − p0

)
e−θ

]S0
× [

p0
(
1 − p1

) + (
1 − p0

)
θe−θ

]S1
× (

1 − p0
)n−S0−S1

θ Se−(n−S0−S1)θ , (3)

where S0 = S0 (Y ) = �{i : Yi = 0}, S1 = S1 (Y ) = �{i :
Yi = 1}, S = S(Y ) = ∑

Yi≥2Yi. Here, �X is defined to be
the number of elements in the set X.

Let q0 and q1 be the probabilities of Y being zero and
one respectively, i.e.,{

q0 = p0p1 + (1 − p0)e−θ ,

q1 = p0(1 − p1) + (1 − p0)θe−θ .
(4)

Then the likelihood function of (q0, q1, θ) becomes

L
(
q0, q1, θ |Y ) ∝ qS00 q

S1
1

(
1 − q0 − q1

)n−S0−S1

× θ Se−(n−S0−S1)θ(
1 − e−θ − θe−θ

)n−S0−S1
.

(5)

Then it is easy to get the MLEs of q0 and q1

q̂i = Si
n

, i = 0, 1, (6)

and the MLE of θ , θ̂ , is the solution of the following
equation:

S
(
eθ − θ − 1

) − (n − S0 − S1) θ
(
eθ − 1

) = 0, (7)

which can be solved numerically according to the
Newton-Raphson iterative algorithm.

From (4) it is easy to check that the transformation
between (p0, p1, θ) and (q0, q1, θ) is one-to-one. Thus,
based on the invariance property for themaximum like-
lihood estimation, we get the MLEs of p0 and p1 as
follows

p̂0 = q̂0 + q̂1 − (1 + θ̂ )e−θ̂

1 − (1 + θ̂ )e−θ̂
,

p̂1 = q̂0 − (1 − p̂0)e−θ̂

p̂0
.

Furthermore, we have the following property.

Theorem 2.1: If at least one observation is larger than
one, i.e. n − S0 − S1 > 0, then the maximum likelihood
estimation of ZOIP model (2) uniquely exist.

The proof is given in the Appendix A.1.

2.2. MLEwith EM algorithm

Next we provide an EM algorithm to calculate the
MLE of (p0, p1, θ). As mentioned in Section 1,
a ZOIP random variable Y can be represented in
terms of three independent latent variables: two
Bernoulli variables B1 and B2, and a Poisson random
variable V. Thus, if we could observe these latent
variables, then the likelihood would become three
likelihood functions multiplied together. To be more
specific, let Y = (Y1,Y2, . . . ,Yn) be a sample from
ZOIP model (2), with corresponding latent variables
B1 = (B11,B12, . . . ,B1n), B2 = (B21,B22, . . . ,B2n)

and V = (V1,V2, . . . ,Vn). If we could observe B1i, B2i
and thus observe Vi, then according to Yi = Vi(1 −
B1i) + B1i(1 − B2i) and the relation (1), the augmented
likelihood function with the augmented data (B1,B2)

or (B1,B2,V ) would be

Lc(p0, p1, θ |Y,B1,B2)

=
n∏

i=1

pB1i
0 (1 − p0)(1−B1i)

n∏
i=1

pB2i
1 (1 − p1)(1−B2i)

×
n∏

i=1

[
θYi

Yi!
e−θ

](1−B1i)

�= Lc(p0|Y,B1,B2)Lc(p1|Y,B1,B2)Lc(θ |Y,B1,B2).

(8)

The maximisation of Equation (8) is easy,
since Lc(p0|Y,B1,B2), Lc(p1|Y,B1,B2), and
Lc(θ |Y,B1,B2) can be maximised separately.

With the EM algorithm, the MLEs of p1, p2 and θ

can be found iteratively alternating between two steps,
first the E-step by the expectation with respect to (B1i,
B2i) under the current estimates of (p0, p1, θ), and then
the M-step through maximising Lc(p0, p1, θ |Y, B1, B2)
with the (B1i,B2i) fixed at their expected values from the
E step. See more for example, Dempster et al. (1977).
When the estimated values of (p0, p1, θ) converges, the
iteration stops and the final iteration gives the MLEs of
p0, p1 and θ for the full likelihood (8).

In more detail, the (k + 1)-th iteration of the EM
algorithm can be described as follows.

E step: Under the current estimates (p(k)
0 , p(k)

1 , θ (k)),
find
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B(k+1)
1i = P(B1i = 1|Yi, p(k)

0 , p(k)
1 , θ (k) )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(k)
0 p(k)

1

p(k)
0 p(k)

1 + (1 − p(k)
0 )P(V = 0)

, ifYi = 0,

p(k)
0 (1 − p(k)

1 )

p(k)
0 (1 − p(k)

1 ) + (1 − p(k)
0 )P(V = 1)

, ifYi = 1,

0, ifYi = k,
k = 2, 3, . . .

(9)

B(k+1)
2i = P(B2i = 1|Yi, p(k)

0 , p(k)
1 , θ (k) )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(k)
0 p(k)

1 + (1 − p(k)
0 )p(k)

1 P(V = 0)
p(k)
0 p(k)

1 + (1 − p(k)
0 )P(V = 0)

, if Yi = 0,

(1 − p(k)
0 )p(k)

1 P(V = 1)
p(k)
0 (1 − p(k)

1 ) + (1 − p(k)
0 )P(V = 1)

, if Yi = 1,

p(k)
1 , if Yi

= k, k = 2, 3, . . .

(10)

M step: Let B(k+1)
1 = (B(k+1)

11 , . . . ,B(k+1)
1n )

and B(k+1)
2 = (B(k+1)

21 , . . . ,B(k+1)
2n ). Maximising

Lc(p0|Y,B(k+1)
1 ,B(k+1)

2 ), Lc(p1|Y,B(k+1)
1 ,B(k+1)

2 )

and Lc(θ |Y,B(k+1)
1 ,B(k+1)

2 ), respectively, gives imme-
diately

p(k+1)
0 =

∑n
i=1 B

(k+1)
1i

n
, p(k+1)

1 =
∑n

i=1 B
(k+1)
2i

n
,

θ (k+1) =
∑n

i=1(1 − B(k+1)
1i )Yi∑n

i=1(1 − B(k+1)
1i )

.

The proof of Equations (9) and (10) is given in
Appendix A.2.

Theorem 2.2: Let η = (p0, p1, θ ) and {η(k)} be a
sequence generated by this EM algorithm. Then accord-
ing to the Theorem 3 in Wu (1983), all the limit points of
instance {η(k)} are localmaxima of L(η|Y ) andL(η(k)|Y )

converges monotonically to L� = L(η�|Y ) for some local
maximum η�.

The proof is given in Appendix A.3.

3. Bayesian estimation

In this section, the Bayesian analysis is studied. Laplace
noninformative flat prior and conjugate prior are the
usual prior distributions. However, for the two forms
of the ZOIP model, the exact conjugate priors can-
not be derived. The noninformative priors for objective
Bayesian method is very complicated and the posterior
sampling can hardly be realised, which is thoroughly
discussed in another paper (Liu, Tang, & Xu, 2017).
The current paper focuses on the comparison between
the Bayesian approach under the naive flat prior and
maximum likelihood estimation. And we also consider
choosing a seemingly conjugate prior in the first data

analysis to match the MLE. Here the flat prior is used,
then the observed posterior distribution of (p0, p1, θ) is

π
(
p0, p1, θ |Y ) ∝ L(p0, p1, θ |Y )

∝ [
p0p1 + (

1 − p0
)
e−θ

]S0
× [

p0
(
1 − p1

) + (
1 − p0

)
θe−θ

]S1
× (

1 − p0
)n−S0−S1

θ Se−(n−S0−S1)θ .

Expanding the right part of the above equation, we
have

π
(
p0, p1, θ |Y )

∝
∑
i

pl1i0 pl2i1
(
1 − p0

)l3i (1 − p1
)l4i

θ Se−(n−l1i)θ .

(11)

Here 0 � lji � n, j = 1, 2, 3, 4, and the maximum
value of l1i is S0 + S1. It is easy to find that the joint
posterior distribution of (p0, p1, θ) with the flat prior
is proper, when S � 2. This condition is weak since it
will be met if there exist at least one observation larger
than one.

The joint posterior distribution of (p0, p1, θ) is
a nonstandard density. Though the MCMC meth-
ods such as Gibbs sampling can be used directly,
instead, we make use of the data augmentation method
proposed by Tanner and Wong (1987) with the
help of the latent variables mentioned in the EM
algorithm.

Let Y = (Y1,Y2, . . . ,Yn) be a sample from ZOIP
(p0, p1, θ), with corresponding latent variables B1 =
(B11,B12, . . . ,B1n), B2 = (B21,B22, . . . ,B2n) andV =
(V1,V2, . . . ,Vn). Then the joint posterior distribution
of (p0, p1, θ,V,B1,B2) given the observed data Y =
(Y1,Y2, . . . ,Yn) is

π(p0, p1, θ,B1,B2,V |Y )

=
n∏

i=1

pB1i
0 (1 − p0)(1−B1i)pB2i

1 (1 − p1)(1−B2i)

×
[
θVi

Vi!
e−θ

](1−B1i)

. (12)

The posterior samples can be obtained using Gibbs
sampler in blocks of latent variables (B1,B2,V ) and
model parameters (p0, p1, θ).

First, from Y = V(1 − B1) + B1(1 − B2), we can get
the condition predictive distribution of the latent data
(B1,B2,V),π(B1,B2,V|Y= y, p0, p1, θ), given one obser-
vation Y = y.

Lemma3.1: Based on the relation Y=V(1−B1)+B1(1
− B2), we can get

P(B1 = i,B2 = j,V = v|Y = 0, p0, p1, θ )
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − p0)(1 − p1)P(V = 0)
p0p1 + (1 − p0)P(V = 0)

, if v = i = j = 0,

(1 − p0)p1P(V = 0)
p0p1 + (1 − p0)P(V = 0)

, if v = i = 0, j = 1,

p0p1P(V = v )

p0p1 + (1 − p0)P(V = 0)
, if i = j = 1, v = 0,

1, . . . ,
0, otherwise;

(13)

P(B1 = i,B2 = j,V = v|Y = 1, p0, p1, θ )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − p0)(1 − p1)P(V = 1)
p0(1 − p1) + (1 − p0)P(V = 1)

, if v = 1, i = j = 0,

(1 − p0)p1P(V = 1)
p0(1 − p1) + (1 − p0)P(V = 1)

, if v = j = 1, i = 0,

p0(1 − p1)P(V = v )

p0(1 − p1) + (1 − p0)P(V = 1)
, if i = 1, j = 0,

v = 0, 1, . . . ,
0, otherwise;

(14)

and

P(B1 = i,B2 = j,V = v|Y = v, p0, p1, θ )

=

⎧⎪⎨
⎪⎩
1 − p1, if i = j = 0, v = 2, 3, . . . ,
p1, if i = 0, j = 1, v = 2, 3, . . . ,
0, otherwise.

(15)

The proof is given in Appendix A.2.
Then from (13), (14) and (15), we can obtain the

samples of (V,B1,B2) given observations of Y as
follows.

• If Yi = 0 is observed, then according to (13) and
the relation (1), we can assume a coin is flipped
with probability of p0p1

p0p1+(1−p0)P(V=0) getting head.
If it comes up a head, set B1i = 1, B2i = 1 and draw
Vi from the distribution of V with parameter θ . If
it comes up a tail, set B1i = 0, Vi = 0 and a coin
is tossed with probability of a head being p1. Then
if a head occurs, set B2i = 1. If a tail occurs, set
B2i = 0.
• If Yi = 1 is observed, then according to (14)
and the relation (1), a coin with probability

p0(1−p1)
p0(1−p1)+(1−p0)P(V=1) of getting head is flipped. If
it comes up a head, set B1i = 1, B2i = 0 and draw
Vi from the distribution of V with parameter θ . If
it comes up a tail, set B1i = 0, V = 1, and a coin is
tossedwith probability of a head being p1. If a head
occurs, set B2i = 1. And if tail occurs, set B2i = 0.
• If Yi = v (v = 2, 3, …) is observed, then according
to (15) and the relation (1), a coin is flipped with
probability p1 of getting a head. If it comes up a
head, set B1i = 0, B2i = 1 and Vi = v . If it comes
up a tail, set B1i = 0, B2i = 0 and Vi = v .

Second, it is easy to get from (12) the augmented
posterior distribution, π(p0, p1, θ | Y ,B1,B2,V ), from

which to get the posterior samples of (p0, p1, θ) from
their full conditional distributions given below.

p0|p1, θ,B1,B2,V,Y

∼ Beta

( n∑
i=1

B1i + 1, n + 1 −
n∑

i=1

B1i

)
.

p1|p0, θ,B1,B2,V,Y

∼ Beta

( n∑
i=1

B2i + 1, n + 1 −
n∑

i=1

B2i

)
,

and

θ |p0, p1,B1,B2,V,Y

∼ Gamma

( n∑
i=1

(1 − B1i)Vi + 1, n −
n∑

i=1

B1i

)
.

Thus, the Bayesian inference of the ZOIP model (2)
can be performed based on the Gibbs sampling proce-
dure below.

(1) Set initial values for p(0)
0 , p(0)

1 and θ (0).
(2) For t = 1, 2, …, perform the following iterative

update
(a) Use data augmentation steps to get

(B(t )
1i ,B(t )

2i ,V (t )
i ), i = 1, 2, . . . , n with the

parameters p(t−1)
0 , p(t−1)

1 and θ (t − 1).
(b) Sample p(t )

0 from Beta(
∑n

i=1 B
(t )
1i + 1, n +

1 − ∑n
i=1 B

(t )
1i ).

(c) Sample p(t )
1 from Beta(

∑n
i=1 B

(t )
2i + 1, n +

1 − ∑n
i=1 B

(t )
2i ).

(d) Sample θ (t) from Gamma(
∑n

i=1(1 −
B(t )
1i )V (t )

i + 1, n − ∑n
i=1 B

(t )
1i ).

4. Simulation study

In this section, we will assess the performance of the
maximum likelihood and Bayesian estimation meth-
ods proposed for model (2). Two simulations are con-
ducted. The case of p0 and p1 around 0.5 is studied in
the first simulation, in which the sample sizes are set to
n = 20, 50 and 100, the value of p0 is set to 0.3 and 0.4,
the value of p1 is set to 0.4 and 0.5, the value of θ is set
to 3, 5 and 8, the confidence level α is set to 95% and all
simulations are replicated for 10,000 times. The second
simulation studies the case of extreme values of p0 and
p1, in which the sample sizes are set to 50, and 100, the
value of p0 is set to 0.1 and 0.7, the value of p1 is set to
0.4 and 0.8, the value of θ is set to 3 and 8, the confi-
dence level α is also set to 95% and all simulations are
still replicated for 10,000 times. In both cases, the initial
values of p(0)

0 and p(0)
1 are generated from uniform dis-

tribution and the initial value of θ (0) is generated from
gamma distribution. When we do simulation, accord-
ing to ZOIP model (2), the sample of size n is reserved
only when n− S0 − S1 > 0, considering the existence of
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Table . RMSE of parameter estimation for model () of first group simulation.

θ p p n θM θB pM pB pM pB

 . .  . . . . . .
 . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .
 . . . . . .

. .  . . . . . .
 . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .
 . . . . . .

 . .  . . . . . .
 . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .
 . . . . . .

. .  . . . . . .
 . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .
 . . . . . .

 . .  . . . . . .
 . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .
 . . . . . .

. .  . . . . . .
 . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .
 . . . . . .

MLE of θ . The method proposed in Section 2.1 is used
to calculate theMLE in our simulation. And the asymp-
totic normality is used to derive the confidence interval.
Here, the two-sided equal tail confidence intervals are
used. The comparison results for the rootmean squared
errors are listed in Tables 1 and 2 and the comparison
results for coverage probabilities are listed in Tables 3
and 4. In these tables, the subscriptsM and B represent
the maximum likelihood estimation and Bayesian esti-
mation, respectively.

For the point estimate of θ , the MLE performs
slightly better than the Bayeisan estimate when θ is
small but they are similar when θ is large. For the point
estimates of p0 and p1, theMLE performs slightly worse
than the Bayesian estimates when n is small and the
MLE and Bayesian estimates perform similarly when
n is large. For the interval estimates of θ , p0 and p1,
the coverage probabilities based on the Bayesian esti-
mates are generally more accurate than that based on
the MLE. As the sample size increases, the accuracy

Table . RMSE of parameter estimation for model () of second group simulation.

θ p p n θM θB pM pB pM pB

 . .  . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .

. .  . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .

 . .  . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .

. .  . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .
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Table . Coverage probabilities of confidence intervals for model () of first group simulation.

θ p p n θM θB pM pB pM pB

 . .  . . . . . .
 . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .
 . . . . . .

. .  . . . . . .
 . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .
 . . . . . .

 . .  . . . . . .
 . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .
 . . . . . .

. .  . . . . . .
 . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .
 . . . . . .

 . .  . . . . . .
 . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .
 . . . . . .

. .  . . . . . .
 . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .
 . . . . . .

Table . Coverage probabilities of confidence intervals for model () of second group simulation.

θ p p n θM θB pM pB pM pB

 . .  . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .

. .  . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .

 . .  . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .

. .  . . . . . .
 . . . . . .

.  . . . . . .
 . . . . . .

Table . Fitted frequencies and parameter estimation for legionellosis data, ZIP model.

Frequency estimation
Count of legionellosis cases

     Estimation of

Observed frequency      θ p

MLE(Poisson)      . (.,.)
MLE(ZIP)      . (.,.) . (.,.)
BayesJ(ZIP)      . (.,.) . (.,.)
BayesR(ZIP)      . (.,.) . (.,.)
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Table . Fitted frequencies and parameter estimation for legionellosis data, ZOIP model.

Frequency estimation
Count of legionellosis cases

     Estimation of

Observed frequency      θ p p

MLE(ZOIP)      . (.,.) . (.,.) . (.,.)
Bayes(ZOIP)      . (.,.) . (.,.) . (.,.)

of all the estimates increases. The result of the second
simulation shows that the larger p0 leads to worse esti-
mation of θ , in that the data has a smaller probability
coming from the Poisson distribution.

5. Real data analysis

5.1. Singapore legionnaires disease data

In this subsection, one example about Legionnaires
disease in Singapore from the healthcare industry is
presented to illustrate our method and this data-set
was analysed by Xu et al. (2014). Legionellosis (Legion-
naires disease and Pontiac fever) is an acute respiratory
infection caused by gram negative, rod-shaped bacte-
ria of the genus Legionella (Lam, Ang, Tan, James, &
Goh, 2011). In Singapore, legionnaires disease has been
recognised as a potential public health threat. In order
to make relevant control polices, it is useful to know
the distribution of the counts of legionellosis cases. For
illustration, here we apply our model in the study of the
weekly legionellosis count data in the year 2005. The
data were reported by the Ministry of Health of Sin-
gapore. Xu et al. (2014) derived the Jeffreys prior and
reference prior for the ZIP model, and then presented
the Bayesian fitted frequencies and compared with like-
lihoodmethod for both the ZIP and pure Poissonmod-
els. See Table 5 for their detailed results. The estima-
tion results of ZOIP model (2) is presented in Table 6.
The 95% confidence or credible intervals are put in
the parentheses. Furthermore, the observed and fitted
frequency distributions for different models based on
MLE and Bayesian estimation are shown in Figure 1.

As is noted byXu et al. (2014), the difference between
the estimation accuracy of the ZIP model and the Pois-
son model is not clear according to the fitted frequency
distributions. According to the fitted frequency dis-
tribution shown in Figure 1, the frequency of one is
underestimated overall in Xu et al. (2014) (the esti-
mated value is nearly half of the observed frequency).
In our result, both the MLEs and Bayes estimates for all
frequencies are closer to the observed values. Besides,
the estimation of parameter θ using the ZOIP model
is nearly twice of the estimation by the ZIP model.
And the results of AIC (Akaike information criterion)
values with MLEs for the ZIP and ZOIP models are
presented in Table 7. The AIC value of the ZOIP model

Table . Model comparison for legionellosis data: AIC, DIC,
WAIC, WAIC.

MLE Bayes

Model AIC DIC WAIC WAIC

ZIP . . . .
ZOIP . . . .

is smaller than the value of the ZIP model. The results
of DIC (deviance information criterion) and WAIC
(Watanabe-Akaike information criterion) given by
Gelman et al. (2014) are also presented in Table 7 for
Bayesian model comparison. For the ZIP model, we
only list those values under Jeffreys prior, which is quite
the same as those under the reference prior. For the
ZOIP model, we use the flat priors. Both of them show
that the ZOIP model is more appropriate than the ZIP
model under all the criteria. The fitted frequencies also
show that the Bayes ZOIP underperforms MLE in this
example. This may due to the influence of the prior.
To judge the effect of the prior on the final posterior
inference, we tried some seemingly conjugate priors,
the beta prior for p0 and p1 and gamma prior for θ .
We found that beta(5,2) and beta(2,2) for p0 and p1
and gamma(2.5,2.5) for θ give the similar result as the
ZOIPMLE. To reduce the sensitivity of the prior, objec-
tive Bayesian method can be considered. Please refer to
the detailed derivation and examples given by Liu et al.
(2017). They do give consistent result when the sample
size is moderate.

5.2. US Detroit accidental death data

In this section, one accidental data-set from Detroit,
Michigan, is used to demonstrate the zero-and-one-
inflated Poisson model introduced in the previous sec-
tion. Here, we apply our model in the study of the
daily accidental deaths data in the year 1994 available
from the NMMAPS of air pollution and health in the
United States. The fitted frequency distributions based
on the MLE of a Poisson model and zero-inflated Pois-
son model (Xu et al. 2014) are presented in Table 8 and
the ML and Bayesian estimation results of ZOIP model
(2) are presented in Table 9. The 95% confidence or
credible intervals are put in the parentheses. Further-
more, the observed and fitted frequency distributions
are shown in Figure 2.
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Table . Fitted frequencies and parameter estimation for accidental death data, ZIP model.

Frequency estimation
Count of accidental deaths

        Estimation of

Observed frequency         θ p

MLE(Poisson)         . (,.)
MLE(ZIP)         . (.,.) . (.,.)
BayesJ(ZIP)         . (.,.) . (.,.)
BayesR(ZIP)         . (.,.) . (.,.)

Table . Fitted frequencies and parameter estimation for accidental death data, ZOIP model.

Frequency estimation
Count of accidental deaths

        Estimation of

Observed frequency         θ p p

MLE(ZOIP)         . . .
Bayes(ZOIP)         (.,.) (.,.) (.,.)

. . .
(.,.) (.,.) (.,.)
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Figure . Frequency distributions for legionellosis cases data.
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Figure . Frequency distributions for accidental death data.
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Figure . Illustration of one and only one solution for Equation ().

Table . Model comparison for accidental
death data: AIC, DIC, WAIC, WAIC.

MLE Bayes

Model AIC DIC WAIC WAIC

ZIP . . . .
ZOIP . . . .

According to the fitted frequencies shown in Table 8
and Figure 2, the frequency of one is underestimated
overall while the frequency of two is overestimated by
the ZIPmodel (the estimated value of two is nearly dou-
ble of the true frequency). By our model, both the MLE
and Bayesian estimation of all the frequencies are closer
to the observed ones. And the results of AIC for MLE
model fitting, and DIC and WAIC for Bayesian model
fitting under Jeffreys prior for the ZIP model and flat
prior for the ZOIP model are presented in Table 10 .
The results also show that in this case study the ZOIP
model is more appropriate than the ZIP model.

6. Conclusions

In this paper, we proposed a zero-and-one-inflated
Poisson model. The EM algorithm to get the MLE
and Gibbs sampling to get the samples from the
posterior distribution based on latent variables are
proposed. The Bayesianmethod is compared withMLE

via Monte Carlo simulation. Simulation results show
that the Bayesian estimates perform slightly betterwhen
the sample size is small or moderate. Two real data-sets
are analysed through the new method and compared
with the results given by Xu et al. (2014) in terms of
AIC, DIC and WAIC criteria. Both MLE and Bayesian
estimates have better performance than those given by
Xu et al. (2014). This study also shows that the prior will
influence the posterior inference when the sample size
in not large enough. Better noninformative priors than
the flat prior can be considered in the future study.

Acknowledgments

The research is supported by the Natural Science Foundation
of China (Nos. 11271136, 81530086, 11671303, 11201345),
the 111 Project of China (No. B14019), the Natural Science
Foundation of Zhejiang Province (No. LY15G010006) and the
China Postdoctoral Science Foundation (No. 2015M572598).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

National Natural Science Foundation of China (CN) [grant
number 11671303], [grant number 11201345]: Ministry
of Education of the People’s Republic of China (CN)
[grant number B14019]; China Postdoctoral Science Foun-
dation (CN) [grant number 2015M572598]; National Natural



STATISTICAL THEORY AND RELATED FIELDS 225

Science Foundation of China (CN) [grant number 11271136],
[grant number 81530086]; Natural Science Foundation of
Zhejiang Province (CN) [grant number LY15G010006].

Notes on contributors

YincaiTang is professor of statistics in theCollege of Statistics,
East China Normal University, Shanghai, China. He received
his PhD degree from East China Normal University. His pro-
fessional publications and research interests have focused on
lifetime data analysis, degradation data analysis, big data anal-
ysis and Bayesian inference.

Wenchen Liu is a PhD candidate in the College of Statistics,
East China Normal University, Shanghai, China. His research
interests include Bayesian statistics, reliability statistics and
big data analytics.

Ancha Xu is an associate professor in the Department of
Statistics, Wenzhou University, Zhejiang, China. He received
his PhD degree from East China Normal University, Shang-
hai, China, in 2011. His research interests include Bayesian
statistics, degradation modeling, and accelerated life testing.

References

Cheung, Y. B. (2002). Zero-inflated models for regression
analysis of count data: A study of growth and develop-
ment. Statistics in Medicine, 21, 1462–1469.

Crepon, B., & Duguet, E. (1997). Research and develop-
ment, competition and innovation pseudo-maximum
likelihood and simulated maximum likelihood methods
applied to count data models with heterogeneity. Journal
of Econometrics, 79, 355–378.

Dagne, G. A. (2010). Bayesian semiparametric zero-inflated
Poisson model for longitudinal count data.Mathematical
Biosciences, 224, 126–130.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maxi-
mum likelihood estimation from incomplete data via the
EM algorithm (with discussion). Journal of the Royal Sta-
tistical Society, Series B, 39, 1–38.

Faddy, M. (1998). Stochastic models for analysis of species
abundance data. In D.J. Fletcher, L. Kavalieris, & B. F. J.
Manly (Eds.), Statistics in Ecology and Environmental
Monitoring 2: Decision Making and Risk Assessment in
Biology (pp. 33–40). University of Otago Press.

Feller, W. (1943). On a general class of contagious distribu-
tions. Annals of Mathematical Statistics, 16, 319–329.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, B. D., Vehtari,
A., & Rubin D. B. (2014). Bayesian data analysis (3rd ed.).
Boca Raton, FL: CRC Press.

Ghosh, S. K., Mukhopadhyay, P., & Lu, J. C. (2006). Bayesian
analysis of zero-inflated regressionmodels. Journal of Sta-
tistical Planning and Inference, 136, 1360–1375.

Lambert, D. (1992). Zero-infated Poisson regression with
application to defects in manufacturing. Technometrics,
34, 1–14.

Lam, M. C., Ang, L. W., Tan, A. L., James, L., & Goh, K. T.
(2011). Epidemiology and control of legionellosis, Singa-
pore. Emerging Infectious Diseases, 17, 1209–1215.

Liu, W. C., Tang, Y. C., & Xu, A. C. (2017). A zero-and-one
inflated Poisson model and its application. Statistics and
Its Interface, Accepted.

Melkersson,M., &Rooth, D. (2000).Modeling female fertility
using inflated count data models. Journal of Population
Economics, 13, 189–203.

Musio, M., Sauleau, E. A., & Buemi A. (2010). Bayesian
semiparametric ZIPmodels with space-time interactions:

An application to cancer registry data. Mathematical
Medicine and Biology, 27, 181–194.

Neyman, J. (1939). On a new class of contagious distribu-
tions applicable in entomology and bacteriology. Annals
of Mathematical Statistics, 10, 35–57.

Tanner, M., & Wong, W. (1987). The calculation of pos-
terior distributions by data augmentation (with discus-
sion). Journal of the American Statistical Association, 82,
528–550.

Wu, C. F. J. (1983). On the convergence properties of the EM
algorithm. The Annals of Statistics, 11, 95–103.

Welsh, A., Cunningham, R., Donnelly, C., & Lindenmayer, D.
(1996). Modeling the abundance of rare species: Statisti-
cal models for counts with extra zeros. Ecological Mod-
elling, 88, 297–308.

Xu, H. Y., Xie, M., & Goh, T. N. (2014). Objective bayes
analysis of zero-inflated poisson distribution with
application to healthcare data. IIE Transactions, 46,
843–852.

Zhang, C., Tian, G.-L., & Ng, K.-W. (2016). Properties
of the zero-and-one inflated Poisson distribution and
likelihood-based inference methods. Statistics and Its
Interface, 9, 11–32.

Appendix

A.

Proof of Theorem 2.1: Let v(θ) = (n − S0 − S1)θeθ −
Seθ − (n − S − S0 − S1)θ + S. Then,

v ′ (θ ) = (n − S0 − S1) θeθ + (n − S − S0 − S1) eθ

− (n − S − S0 − S1) ,

v ′′ (θ ) = (n − S0 − S1) θeθ

+ (2n − S − 2S1 − 2S0) eθ .

According to the definition of S and the condition that
n− S0 − S1 > 0, we have (2n− S− 2S1 − 2S0)< 0. Let

θ0 = S + 2S1 + 2S0 − 2n
n − S0 − S1

.

It immediately follows that v ′′(θ) > 0 when θ > θ0 and
v ′′(θ)< 0 when θ < θ0. That is, θ0 is an inflection point
of v(θ). So v ′(θ) is decreasing on (0, θ0) and increasing
on (θ0, +�). Additionally, it can be easily verified that
v ′(0)= 0 and v ′(+ �)> 0. Therefore, there exists θ1 >

0 such that v ′(θ) < 0 when θ � (0, θ1), and v ′(θ) > 0,
when θ � (θ1, +�). So v(θ) is decreasing on (0, θ1)
and increasing on (θ1,+�), and it can be further shown
that v(0) = 0 and v( + �) > 0. Thus, v(θ1) < 0. With
v(θ) being continuous and increasing on (θ1, +�), so
there is one and only one solution for θ to Equation (7).
The illustration of the proof is shown in Figure 3.

Using parameter transformation, it is easy to obtain
p0 and p1 as follows:⎧⎪⎪⎨

⎪⎪⎩
p0 = q0 + q1 − (1 + θ )e−θ

1 − (1 + θ )e−θ

p1 = q0 − (1 − p0)e−θ

p0
.

(A1)

Based on the invariance property for the maximum
likelihood estimation and the one-to-one transforma-
tion (4,A1), the maximum likelihood estimation of
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ZOIP model (2) is sole, when at least one observation
is larger than one. �

A.

Proof of Equations (9), (10), (13), (14) and (15): Using
the representation Y = V(1 − B1) + B1(1 − B2), we
have

P(Y = 0) = P(Y = 0,B1 = 0) + P(Y = 0,B1 = 1)
= P(V = 0,B1 = 0) + P(B2 = 1,B1 = 1)
= p0p1 + (1 − p0)P(V = 0).

Then we can calculate the conditional probabilities as
follows:

P(V = 0,B1 = 0,B2 = 0|Y = 0, p0, p1, θ )

= P(V = 0,B1 = 0,B2 = 0,Y = 0)
P(Y = 0)

= (1 − p0)(1 − p1)P(V = 0)
p0p1 + (1 − p0)P(V = 0)

,

P(V = 0,B1 = 0,B2 = 1|Y = 0, p0, p1, θ )

= P(V = 0,B1 = 0,B2 = 1,Y = 0)
P(Y = 0)

= (1 − p0)p1P(V = 0)
p0p1 + (1 − p0)P(V = 0)

,

P(V = v,B1 = 1,B2 = 1|Y = 0, p0, p1, θ )

= P(V = v,B1 = 1,B2 = 1,Y = 0)
P(Y = 0)

= p0p1P(V = v )

p0p1 + (1 − p0)P(V = 0)
.

It is easy to see that the sum of these conditional prob-
abilities equals 1. So Equation (13) is proved.

Equations (14) and (15) can be proved similarly.
Using Equations (13), (14) and (15), we have

P(B1i = 1|Yi = 0, p(k)
0 , p(k)

1 , θ (k))

=
+∞∑
v=0

P(V = v,B1i = 1,B2i = 1|Y = 0)

=
+∞∑
v=0

p(k)
0 p(k)

1 P(V = v )

p(k)
0 p(k)

1 + (1 − p(k)
0 )P(V = 0)

= p(k)
0 p(k)

1

p(k)
0 p(k)

1 + (1 − p(k)
0 )P(V = 0)

,

P(B1i = 1|Yi = 1, p(k)
0 , p(k)

1 , θ (k))

=
+∞∑
v=0

P(V = v,B1i = 1,B2i = 0|Y = 1)

=
+∞∑
v=0

p(k)
0 (1 − p(k)

1 )P(V = v )

p(k)
0 (1 − p(k)

1 ) + (1 − p(k)
0 )P(V = 1)

= p(k)
0 (1 − p(k)

1 )

p(k)
0 (1 − p(k)

1 ) + (1 − p(k)
0 )P(V = 1)

,

and when Yi � 2,

P(B1i = 1|Yi = y, p(k)
0 , p(k)

1 , θ (k)) = 0, y = 2, 3, . . .

Equation (10) can be proved similarly. �

A.

Proof of Theorem 2.2: Let �c(η|Y,B1,B2) =
log(Lc(η|Y,B1,B2)). The proof depends on the
smoothness of Q(η∗, η) = E[�c(η∗|Y,B1,B2)|Y, η].
We rewrite

Q(η∗, η) = Q1(η
∗, η) + Q2(η

∗, η) + Q3(η
∗, η),

where

Q1(η
∗, η)

=
n∑

i=1

E[B1i ln p∗
0 + (1 − B1i) ln(1 − p∗

0)|Y, η]

−
n∑

i=1

E[(1 − B1i) ln(Yi!)|Y, η],

Q2(η
∗, η)

=
n∑

i=1

E[B2i ln p∗
1 + (1 − B2i) ln(1 − p∗

1)|Y, η],

and

Q3(η
∗, η) =

n∑
i=1

E[(1 − B1i)(Yi ln θ∗ − θ∗)|Y, η].

Simple calculation yields

Q1(η
∗, η)

=
n∑

i=1

I{Yi = 0}
[

p0p1 ln p∗
0

p0p1 + (1 − p0)P(V = 0)

+ (1 − p0)P(V = 0) ln(1 − p∗
0)

p0p1 + (1 − p0)P(V = 0)

]

+
n∑

i=1

I{Yi = 1}
[

p0(1 − p1) ln p∗
0

p0(1 − p1) + (1 − p0)P(V = 1)

+ (1 − p0)P(V = 1) ln(1 − p∗
0)

p0(1 − p1) + (1 − p0)P(V = 1)

]

+
n∑

i=1

I{Yi ≥ 2} ln(1 − p∗
0)

−
n∑

i=1

I{Yi ≥ 2} ln(Yi!),

which is continuous in η∗ and η. A similar conclusion
can be applied to Q2(η

∗, η) and Q3(η
∗, η). It is easy to

find that Equation (11) in Wu (1983) for Q(η(k), η) is
correct. So according to Theorem 3 in Wu (1983), the
conclusion is obvious. �
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