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ABSTRACT
In this article, a partially nonlinear model with random effects is proposed and its new estima-
tion procession is provided. In order to estimate the link function, we propose generalised least
square estimate andB-splines estimatemethods. Further, we also use theGauss–Newtonmethod
to construct the estimates of unknown parameters. Finally, we also consider the estimation for
the variance components. The consistency and the asymptotic normality of the estimator will be
proved. Simulated and real examples are given to illustrate our proposed methodology, which
shows that our methods give effective estimation.

1. Introduction

Weconsider a partially nonlinearmixed-effectsmodel:

Yi = g(Ui) + f (Xi, β) + ZT
i bi + εi, i = 1, . . . , n, (1)

where g(·) is a smooth function, f(·, ·) is a pre-specified
function, β is a P-dimensional parameter vector, bi is a
n × 1 random effect vector with mean 0 and var(bi) =
D, hereD is a n× 1 vector. εi is an independent random
variablewithE(εi)= 0 and var(εi) = σ 2

ε > 0.Xi,Ui and
Yi are random variables, which can be observed. Zi is
an n × 1 vector. We will show the estimation progress
of the function g(·), the parameter β , the variance σ 2

ε

and D.
When g(·) = 0 and f (Xi, β) = XT

i β , model (1) is
the linear mixed-effects model. Harville (1977) pro-
posed maximum-likelihood approaches to study the
variance component estimation of linear models with
random effects. Zhong, Fung, and Wei (2002) studied
linear mixed models with errors-in-variables and they
presented a unified method for the estimation. When
f(Xi, β) = 0, model (1) turns into the non-parametric
mixed-effects model; for example, Gu and Ma (2005)
proposed penalised least squares method to estimate
the non-parametric mixed-effects model. When g(·) =
0 and f (Xi, β) = f (XT

i β), model (1) turns into the
single-index model with random effects; for this, Pang
and Xue (2012) studied the single-index models with
random effects. In order to estimate the index coef-
ficients and the link function, they proposed a new
set of estimating equations modified for the boundary
effects and the local linear smoother method. Other
literatures about the random effects are, see, for
example, Jiang (2007); Ke and Wang (2001) and
Lindstrom and Bates (2010). When random variable
bi = 0 and f (Xi, β) = XT

i β , model (1) turns into the
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partially linear model. Müller and Vial (2009) studied
partially linear model selection by the bootstrap, and
they proposed a new approach to the selection of par-
tially linear models based on the conditional expected
prediction squares loss function. When random vari-
able bi = 0, model (1) turns into the partially non-
linear model. Ai and Mcfadden (1997) studied the
estimation of some partially specified nonlinear mod-
els. They presented a procedure for analysing a partially
specified nonlinear regression model is which the nui-
sance parameter in an unrestricted function of a subset
of regressors.

Li and Nie (2008) studied the efficient statistical
inference procedures for partially nonlinearmodels and
their applications. They presented two new estimation
procedures to estimate the parameters in the paramet-
ric component. They further presented an estimation
procedure and a generalised F-test procedure for the
non-parametric component in the partially nonlinear
models. Song, Zhao, andWang (2010) studied the sieve
least squares estimation for partially nonlinear mod-
els and they proposed a sieve least squares method to
estimate the parameters of the parametric part and the
non-parametric part. Li and Mei (2013) studied esti-
mation and inference for varying coefficient partially
nonlinear models. They proposed a profile nonlinear
least squares estimation procedure for the parameter
vector and the coefficient function vector of the varying
coefficient partially nonlinear model, and they further
presented the generalised-likelihood ratio test to verify
whether the varying coefficients are a constant. Xiao,
Tian, and Li (2013) studied empirical likelihood-based
inference for parametric and non-parametric functions
in partially nonlinear models. They obtained the maxi-
mum empirical likelihood estimation of parameter in
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nonlinear function and non-parametric function by
empirical likelihood ratio function.Other relevant liter-
atures are, see, for example, Bates andWatts (1988) and
Fan (1993). However, the method to deal with partially
nonlinear model with random effects is still lacking. In
this article, such a model will be studied.

In addition, our another motivation is mainly
from analysing the famous Boston housing price data
(Harrison & Rubinfeld, 1978), in which the relation-
ship between the variable AGE (the proportion of
owner-occupied units built prior to 1940) and response
variable MEDV (the median value of owner-occupied
home) may be nonlinear and be described by our pro-
posed function f(·, ·). More details can be seen in the
real data example.

In this article, our purpose is to study the estimation
progress in model (1). We use B-spline to estimate the
function g(·) and use Gauss–Newton method to con-
struct the parameter estimation in the part of nonlin-
ear function. We also construct the estimation for σ 2

ε

and σ 2
b . Our algorithm is stable in numerical. Simula-

tion and real data examples will show the performance
of the methodology.

We organise the rest of the paper as follows: In
Section 2, we demonstrate the estimation methodology
and the asymptotic properties of the proposed estima-
tion. In Section 3, we present the result of simulation
study and real data example. The conditions and the
proofs of theorem are shown in the Appendix.

2. Estimationmethodology

In this section, we focus on the estimation of the link
function g(·), the parameter β , the variance σ 2

ε and
σ 2
b in this section. By using B-spline, the function

g(·) can be approximated as g(u) = ∑q
j=1 c jB j(u) =

B(u)c. So the estimation can be expressed as ĝ(u) =∑q
j=1 ĉ jB j(u), where {Bj(u)}qj=1 is a B-spline basis,

B(u) = (B1(u),… , Bq(u)), c = (c1,… , cq)T. For our
method, we need the initial value β0 which can be
obtained by fitting the linear model. Now, we will show
the estimation process of g(·), β , σ 2

ε and σ 2
b .

Step 1. Obtain the estimation of g(·).
First, we let Y = (Y1,… , Yn)T, B = (B(U1),… ,

B(Un))T, f(X, β) = (f(X1, β),… , f(Xn, β))T, b =
(bT1 , . . . , bTn )T , bi = (bi1,… , bin)T, ε = (ε1,… , εn)T

and Z = diag(Z1, . . . ,Zn), Zi = (Zi1,… , Zin)T, where
diag denotes diagonal matrix. Then model (1) can be
expressed in the following form:

Y = Bc + f (X, β) + ZTb+ ε. (2)

For the initial value β0, we let Y∗ = Y − f(X,
β0), then (2) can be turned into Y∗ = Bc + ZTb +
ε. We can obtain ĉ by minimising the follow-
ing problem: (Y∗ − Bc)TV−1(Y∗ − Bc), where
V = var(ZTb+ ε) = ZDZT + σ 2

ε In. Then we will get

the estimation of c: ĉ = (BTV−1B)−1BTV−1Y ∗. Let S =
B(BTV−1B)−1BTV−1; so the estimation of g(·) is
ĝ0(U ) = Bĉ = B(BTV−1B)−1BTV−1Y ∗ = SY ∗. We
will give the estimations of D and σ 2

ε in Step 3, so we
treat V as known when we construct the estimation of
g(·).

Step 2. Obtain the estimation of β .
Next, we discuss the estimation of β . For

convenience, we let η(β) = {f(X1, β),… , f(Xn,
β)}T, Y∗ = Y − ĝ0(U ) , β = (β1,… , βP)T and
β0 = (β0

1 , . . . , β
0
P)

T , so Y∗ = f(X, β) + ϵ = η(β) +
ϵ, where ϵ = (ϵ1,… , ϵn)T, εi = ZT

i bi + εi, E(ϵ) =
0, var(ϵ) = V. In a neighbourhood of β0, we
make the first-order Taylor expansion for f(Xi,
β): f (Xi, β) ≈ f (Xi, β

0) +Vi1(β1 − β0
1 ) +Vi2(β2 −

β0
2 ) + · · · +ViP(βP − β0

P), where Vip = ∂ f (Xi,β)

∂βp
|β0 ,

p = 1,… , P. We merge all the observations and get

η(β) ≈ η(β0) +V0(β − β0). (3)

Here V0 is an n × P order derivative matrix, in
which the element is {Vip}. Or equivalent, the resid-
uals ϵ = Y∗ − η(β) can be approximated as ϵ �
Y∗ − [η(β0) + V0δ] = Z0 − V0δ, where Z0 = Y∗
− η(β0), δ = β − β0. To minimise the following
problem: (Z0 − V0δ)TV−1(Z0 − V0δ), we can get
the estimation of β : β̂∗ = (VT

0 V−1V0)
−1(VT

0 V−1Z0 +
VT
0 V−1V0β

0), where the initial valueβ0 can be obtained
by fitting the linear model. We will give the estimations
of D and σ 2

ε in Step 3, so we treat V as known when we
construct the estimation of β . Let β0 = β̂∗/‖β̂∗‖ and
iterative until convergence, then we can get the final
estimate β̂ of β . With β̂ , we can get the final estimators
of g: ĝ(U ) = B(BTV−1B)−1BTV−1[Y − f (X, β̂ )].

Step 3. Obtain the estimation of σ 2
ε and σ 2

b .
Finally, we describe the estimation of variance com-

ponents. This estimation method is similar to Pang and
Xue (2012). We assume the covariance matrix of model
(1) is V = σ 2

b JnJ
T
n + σ 2

ε In, where Jn = (1,… , 1)T is an
n × 1 vector about ones and In is a n × 1 identity
matrix. If the random effects bi ∼N(0,D) and the error
term εi ∼ N(0, σ 2

ε ), then the observationY∼N(f(X, β)
+ g(U), V). We replace β and g(·) with their final esti-
mators β̂ and ĝ(·), respectively. We write the Gaussian
likelihood about σ 2

b and σ 2
ε as

−n(n − 1) log(σ 2
ε ) − n log

(
σ 2

ε + nσ 2
b
)

− n
σ 2

ε + nσ 2
b
(Ȳ − ¯̂f − ¯̂g)2

− 1
σ 2

ε

n∑

i=1

{Yi − f (Xi, β̂ ) − ĝ(Ui) − (Ȳ − ¯̂f − ¯̂g)}2,

where Ȳ = n−1 ∑n
i=1Yi, ¯̂g = n−1 ∑n

i=1 ĝ(Ui),
¯̂f = n−1 ∑n

i=1 f (Xi, β̂ ). When σ̂ 2
ε > 0, we can obtain
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the maximum of the likelihood function in the follow-
ing points: σ̂ 2

ε = 1
n(n−1)

∑n
i=1{Yi − f (Xi, β̂ ) − ĝ(Ui) −

(Ȳ − ¯̂f − ¯̂g)}2, σ̂ 2
b = 1

n (Ȳ − ¯̂f − ¯̂g)2 − 1
n σ̂

2
ε . When

σ̂ 2
b = 0, σ̂ 2

ε = 1
n2

∑n
i=1{Yi − f (Xi, β̂ ) − ĝ(Ui)}2.

Theorem 2.1: We suppose M is a finite and positive def-
inite matrix. Let f ′(X, β) = ∂ f (X,β)

∂β
and β0 is the true

value of β. Under the condition of (C1) ∼ (C5) in the
Appendix and ‖β0 − β0‖ = OP(n− 1

2 ), then we have
√
n(β̂ − β0)

D−→ N(0,VM−1),

where M = E[f′(X, β0) − E{f′(X, β0)|U}][f′(X, β0) −
E{f′(X, β0)|U}]T.

Theorem 2.2: We suppose ‖β̂ − β0‖ =
OP(n− 1

2 ). Under the condition of (C1) ∼(C5) in the
Appendix and for any u0 � 	, we have

√
n{ĝ(u0) − ĝ(u0)} D−→ N(0, γ 2(u0)),

where γ 2(u0) = σ 2{ϕ(u0)}−1, σ 2 = σ 2
b + σ 2

ε > 0 and
ϕ(·) is the density function of U.

Theorem 2.3: Under the condition of (C1) ∼ (C5) in the
Appendix, if the distribution of Xi is compactly supported
set, then σ̂ 2

ε − σ 2
ε = OP(n− 1

2 ) and σ̂ 2
b − σ 2

b = OP(n− 1
2 ).

3. Numerical simulation studies

We will introduce the performance of the estimation
methods for model (1) in this section. In our simula-
tion, the root-mean-squared errors (RMSEs) are used to
assess the precision of β̂ and ĝ(·). We define the RMSE
as RMSE= {n−1

grid
∑ngrid

k=1[ĝ(uk) − g(uk)]2} 1
2 to evaluate

ĝ(·), where {uk, k = 1,… , ngrid} are equidistant grid
points, and ngrid is the number of grid points.

Table . The result of simulation for Example
.. The mean (Bias), standard deviation (SD) and
root-mean-squared error (RMSE) for the estimates of β .

Parameter n Mean (Bias) SD RMSE

 . (.) . .
β  . (.) . .

 . (.) . .

3.1. Simulation

Example 3.1: We consider model (1) as

Yi = 12(Ui − 0.5)3 + Xiβ
2 + bi + εi, i = 1, . . . , n

where β = 1.5 , Ui ∼ U(0, 1), Xi ∼ N(0, 1), bi ∼ N(0,
0.36) and εi ∼ N(0, 0.04). Here g(u) = 12(u − 0.5)3

and f(x, β) = xβ2. The number of subjects n = 50,
100, 150. In our simulation, the initial value β0 can
be obtained by fitting the linear model. We compute
the mean (Bias), standard deviation (SD) and RMSE by
repeating the simulation 500 times. From Table 1, we
can obtain the simulation results.

Table 1 tells us the small sample sizewill lead to larger
SD and RMSE. It also tells us the Bias, SD and RMSE
decrease as n increases, thus the improvement is signif-
icant.When n= 100, the histogram of the 500 estimates
of β is shown in Figure 1(a). The Q–Q plot of the 500
estimates of β is shown in Figure 1(b).

As for the estimation of g(u), we also consid-
ered. When n = 100, the real link function curve
and the estimated link function curve are shown in
Figure 2(a); it shows the estimated curve is close to the
real link function curve, so it tells us that the estimation
methods for data fitting is ideal.When n= 100, the box-
plots of the 500 RMSEs for link function are shown in
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Figure . When n = , the results of simulation for Example .: (a) shows the histogram of the  estimates of β . The dash curve
shows the estimated curve of density and the solid curve shows the curve of normal density. (b) shows the Q–Q plot of the 
estimates of β .
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Figure . When n= , the result of simulation for Example .. (a) solid curve shows the real curve of g(·) and dashed curve shows
the estimated curve of g(·); (b) shows the boxplots of the  RMSEs of the estimates ĝ(·).
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Figure . When n = , the result of simulation for Example .: (a) and (b) shows the histogram of the  estimates of β  and
β, respectively. The dash curve shows the estimated curve of density and the solid curve shows the curve of normal density. The
Q–Q plot of the  estimates of β  and β are shown in (c) and (d), respectively.
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Table . The result of simulation for Example
.. The mean (Biases), standard deviations (SD)
and root-mean-squared error (RMSE) for the
estimates of β  and β.

β n Mean (Bias) SD RMSE

 . (.) . .
β  . (.) . .

 . (.) . .

 . (.) . .
β  . (.) . .

 . (.) . .

Figure 2(b), it shows the RMSEs of the estimates for link
function are small.

Example 3.2: We consider model (1) as

Yi = cos(2πUi)

+Xiβ1 + exp(Xiβ2) + bi + εi, i = 1, . . . , n

whereβ1 = 0.5 ,β2 = 1 ,Ui ∼U(0, 1) ,Xi ∼N(0, 1) , bi ∼
N(0, 1) and εi ∼ N(0, 0.36). Here g(u) = cos (2πu) and
f(x; β1, β2) = xβ1 + exp (xβ2). The number of subjects
n = 50, 100, 150. In our simulation, the initial value β0

can be obtained by fitting the linearmodel.We compute
the mean (Biases), standard deviation (SD) and RMSE
by repeating the simulation 500 times. FromTable 2, we
can obtain the simulation results.

Table 2 tells us the small sample size will lead to
larger SD and RMSE. It also tells us the Bias, SD
and RMSE decrease as n increases.When n=100, the
histograms of the 500 estimates of β1 and β2 are
shown in Figure 3(a,b), respectively. The Q–Q plots
of the 500 estimates of β1 and β2 are shown in
Figure 3(c,d), respectively.

As for the estimation of g(u), we also consid-
ered. When n = 100, the real link function curve
and the estimated link function curve are shown in
Figure 4(a); it shows the estimated curve is close to the
real link function curve, so it tells us that the estima-
tionmethods for data fitting is ideal.When n= 100, the
boxplot of the 500 RMSEs for link function is shown in
Figure 4(b), it shows the RMSEs of the estimates for link
function are small.

3.2. A real data example

Now, we use a Boston data-set to illustrate the proposed
methodology. The number of observations in this data-
set is 506. The interesting variables include the median
value of owner-occupied home (MEDV), lower status
of the population (LSTAT) and proportion of owner-
occupied units built prior to 1940 (AGE). Here we use
model (1) to fit the data-set. Among them,MEDV is the
response variable Y,

√
LSTAT is the covariate U, AGE

is the covariate X, where the time is random selec-
tion. We will use kernel regression estimate to deter-
mine the function f(·, ·). From Figure 5(a), it tells
us that the function f(·, ·) may be a quadratic func-
tion, so we assume that the form of function f(·, ·)
is f(X, β1, β2, β3) = β1X2 + β2X + β3. Then we
use the proposed method to estimate β1, β2, β3 and
σ 2
b , where the initial value β0 = (β0

1 , β
0
2 , β

0
3 ) can be

obtained by fitting the linear model. By using the pro-
posedmethodology, we get the estimators of the param-
eter β and variance component σ 2

b are (− 0.00052,
0.02220, 1.94410)T and 0.39412, respectively. We also
consider the estimated curve of g(·), which is shown in
Figure 5(b).
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Figure . When n= , the result of simulation for Example .: (a) solid curve shows the real curve of g(·) and dashed curve shows
the estimated curve of g(·); (b) shows the boxplots of the  RMSEs of the estimates ĝ(·).
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Figure . Applied to the Boston data, (a) shows the relationship between AGE and MEDV and (b) shows the estimated curve of g(·).
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Appendix

The following regular conditions will be used in the
proofs of theorems.

(C1) (τ 1,… , τ J are the internal nodes of spline func-
tion, namely, we assume z0 = 0, zk + 1 = 1,
hi = zi − zi − 1, h = max1≤i≤k+1 hi and
exist a constant M0, making h

mini
≤ M0 and

maxi |hi+1 − hi| = o( 1k ), so h = o( 1k ).
(C2) The design point sequence {Ui, i = 1,… , n} has

bounded support set	, and the density function
ϕ(u) satisfies Lipschitz continuous and bounded
from 0.

(C3) There is a constant c0, making E(ϵ2) � c0 <

�, where ϵ= ZTb + ε.
(C4) For �X, f(X, β) is a continuous function about

β and the second derivatives of f(X, β) about β

are continuous. Let
 is compactly supported set
and β � 
.

(C5) Let f′(Xi, β) = [�f(Xi, β)/�β]P × 1, then E{‖f′(X,
β)‖4} < �.

Proof of Theorem 2.1. Let η(β) = {f(X1, β),… , f(Xn,
β)}T and η′(β) = {f′(X1, β),… , f′(Xn, β)}T. From
(3), we get f(X, β) = f(X, β0) + f′(X, β0)T(β
− β0), so Yi ≈ g(Ui) + f (Xi, β

0) + f ′(Xi, β
0)T (β −

β0) + ZT
i bi + εi. Let

z∗
i = Yi − f (Xi, β

0) + f ′(Xi, β
0)Tβ0, (A.1)

we have z∗
i = g(Ui) + f ′(Xi, β

0)Tβ + ZT
i bi + εi. Now,

we note that

β̂ − β0 = {η′(β0)Tη′(β0)}−1η′(β0)T {z∗ − η′(β0)β0},

where z∗ = (z∗
1, . . . , z∗

n)
T . Under the condition of (C1)

∼ (C5) and using (A.5) in Li and Nie (2008), we can get

1
nη

′(β0)Tη′(β0) = M{1 + op(1)}. Now, we have
1√
n
η′(β0)T [z∗ − η′(β0)β0] = √

nξn + oP(1), (A.2)

where ξn = n−1 ∑n
i=1[ f

′(Xi, β0) − E{ f ′(X, β0)|U =
Ui}]εi. From (A.1), we get z∗ − η′(β0)β0 = Y− η(β0)+
η′(β0)(β0 − β0). Similar to (A.2) in Li and Nie (2008),
we get 1√

nη
′(β0)

T {Y − η(β0)} = √
nξn + oP(1). To get

(A.1), we show that
1√
n
η′(β0)

T

{η(β0) − η(β0) + η′(β0)(β0 − β0)} = op(1),
(A.3)

and
1√
n
{η′(β0) − η′(β0)}T {z∗ − η′(β0)β0} = op(1).

(A.4)

Through calculation and ‖β0 − β0‖ = OP(n− 1
2 ), we

can get the left of (A.3) is of the order OP(
√
n‖β0 −

β0‖2) = OP(
1√
n ). We also can get the left of (A.4)

is of the order OP(cn‖β0 − β0‖ = OP(cn/
√
n), where

cn = 1√
n . So, we prove (A.2). Now, we have

√
n(β̂ −

β0) = M{1 + oP(1)}−1{√nξn + oP(1)}. Using the cen-
tral limit Theorem and the Slutsky Theorem, we
get

√
n(β̂ − β0)

D−→ N(0,VM−1), then the proof of
Theorem 2.1 is completed. �
Proof of Theorem 2.2: Using (A.6) in Pang and
Xue (2012) and conditions (C1) ∼ (C5), we can
get ĝ(u0, β̂ ) − ĝ(u0) = [ϕ(u0)]−1ξn,0(u0, β̂ ) +
oP(n− 1

2 ). Through ‖β̂ − β0‖ = OP(n− 1
2 ), we can

prove that ξ ∗
n,0(u0, β̂ ) = 1

n
∑n

i=1[ f (Xi, β0) + ZT
i bi +

εi](Ui − u0) + OP(n− 1
2 ). Through the Theorem

4.4 in Masry and Tjøstheim (1995), we can get√
nξ ∗

n,0(u0, β̂ )
D−→ N(0, γ 2(u0)). Thus, we complete

the proof of the Theorem 2.2. �
Proof of Theorem2.3: The proof of Theorem 2.3 is sim-
ilar to Theorem 4 in Pang and Xue (2012), here we omit
the proof process. �
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