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ABSTRACT
To assess the lifetime distribution of highly reliable or expensive product, one of the most com-
monly used strategies is to construct step-stress accelerated degradation test (SSADT) which can
curtail the test duration and reduce the test cost. In reality, it is not unusual for a unit with a
higher degradation rate which exhibits a more volatile degradation path. Recently, Ye, Chen,
and Shen [(2015). A new class of Wiener process models for degradation analysis. Reliability
Engineering and System Safety, 139, 58–67] proposed a Wiener process to capture the positive
correlation between the drift rate and the volatility. In this paper, an optimal SSADT plan is devel-
oped under the assumption that the underlying degradation path follows the Wiener process
with correlation. Firstly, the stochastic diffusion process is introduced to model a typical SSADT
problem. Then the design variables, including the sample size, the measurement frequency and
the numbers of measurements under each stress level, are optimised by minimising the asymp-
totic variance of the estimated p-percentile of the product’s lifetime distribution subject to the
total experimental cost not exceeding a pre-specified budget. Finally, a numerical example is
presented to illustrate the proposed method.
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1. Introduction

With the rapid development of modern technology,
the reliability of newly designed products has been
greatly improved. Accordingly, reliability assessment
has become a critical and challenging task for such
highly reliable products. The traditional accelerated life
test is a commonly used approach that records only
time-to-failure data under harsher conditions (such as
higher temperature, voltage, pressure and vibration).
For highly reliable products, however, a failure phe-
nomenon is difficult to appear during a short period of
time. In such restraints, if there are some quality char-
acteristics of the product, which can reflect the variety
of product properties and can be easily observed within
the product degradation process. Then collecting these
degradation data at higher stress level is an alternative
approach to predict the product’s lifetime information
under normal operating conditions. Such an experi-
ment is called as an accelerated degradation test (ADT).
In this respect, it is worth mentioning the monographs
by Nelson (1990) and Meeker and Escobar (1998).

Research on statistical inference for data from ADT
or the optimal design of an ADT experiment has
been done by numerous authors. Among these, a
famous degradation model is the Wiener process with
positive drifts, whichmeans the degradation increment

is independent and normally distributed due to the law
of large numbers. Doksum and Normand (1995) used
the Wiener process to describe a biomarker series, and
they assumed that the drifts are the function of stress
levels (also called covariates). Similar assumptions to
incorporate covariates in the Wiener process can be
found in Park and Padgett (2006), Pan and Balakrish-
nan (2010), Lim and Yum (2011), Lim (2012) andGuan
et al. (2015). In addition, it is to be remarked that the
Gamma process and the inverse Gaussian process have
also wide applications in degradation data analysis. See
Ye and Chen (2014), Ye et al. (2014), Guida et al. (2018)
and among others, for some recent references.

According to different stress loadings, ADTs can
be classified into constant-stress ADT (CSADT), step-
stress ADT (SSADT) and progressive-stress ADT .
Here, CSADT is the most popular method in practi-
cal applications. However, it usually needs a number of
products to proceed the experiment. For instance, we
consider a 3-level CSADTwith 25 test units allocated at
each stress level, then 3 accelerated loading devices and
75 test units are needed to complete the experiment. In
general, it may not be possible to obtain so many test
units because of the constraint of the manufacturing
costs. To overcome this problem, Tseng andWen (2000)
proposed the SSADT, which is a special type of stress
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loading in which all units are tested together and the
stress level is increased step by step until the experi-
ment is completed. Clearly, the advantage of the SSADT
is that only a few test units are needed to collect degra-
dation data.

It is well known that a careful choice of design can
improve the quality of statistical analysis substantially,
and therefore, the optimal design problem of an SSADT
experiment received considerable attention in the lit-
erature. For example, Liao and Tseng (2006) designed
an optimal SSADT by minimising the variance of the
estimated p-percentile subject to constraint on the total
cost. Tseng et al. (2009) provided an optimal SSADT
plan by minimising the asymptotic variance of the esti-
mated mean-time-to-failure (MTTF) under the same
cost constraint. A Bayesian methodology for design-
ing SSADT has been presented by Li et al. (2015) using
Kullback–Leibler divergence as the optimality crite-
rion. For more recent developments on this topic, one
may refer to Pan and Sun (2014), Hamada (2015), Hu
et al. (2015), Sung and Yum (2016), Wang et al. (2016)
and Kim and Sung (2017).

For many products, it is not uncommon to see that
a unit with a higher degradation rate would possess a
larger degradation variation (see, e.g. Ye et al., 2015).
In general, the Gamma process model and the inverse
Gaussian process model can be used to show the posi-
tive correlation between the drift rate and the volatility.
However, the existing Wiener process models fail to
capture such an important relation. In order to fill the
gap, Ye et al. (2015) proposed a new class of Wiener
process to describe the degradation path. The degrada-
tion characteristic Y(t) with Y(0) = 0 at time t can be
expressed as

M0 : Y(t) = ηΛ(t) + σηB(Λ(t)), (1)

where η is the drift parameter reflecting the effect of
stress level in the ADT model, which determines the
degradation rate of the products, Λ(t) is a monotone
increasing function with Λ(0) = 0, σ is an unknown
parameter andB(·) is a standard Brownianmotion. It is
easily seen that model (1) is slightly different from the
typical Wiener process (see Whitmore and Schenkel-
berg, 1997) given by

M1 : Y(t) = ηΛ(t) + σBB(Λ(t)), (2)

and implies the positive correlation by setting the
volatility parameter σB as ση.

To the best of our knowledge, no research focuses
on the modelling and design problems of the SSADT
for the Wiener process with correlation. The purpose
of the present paper is to extend the recent result
of Ye et al. (2015) to model a typical SSADT prob-
lem using the Wiener process model (1), and an opti-
mal SSADT plan for the degradation data based on
Wiener process model (1) is developed. Several design

variables, including the sample size, the measurement
frequency and the numbers of measurements under
each stress level, are to be determined by minimising
the asymptotic variance of the estimated p-percentile of
the product’s lifetime distribution under the total cost
constraints.

The rest of this paper is structured as follows. In
Section 2, the SSADT model based on the Wiener
process with correlation is described and several
assumptions are given. In Section 3, the optimisa-
tion problem for the SSADT is constructed and the
detailed algorithm is developed to solve this problem.
In Section 4, a pilot study is carried out to show the per-
formance of the proposed method. Some concluding
remarks are given in Section 5.

2. The stochastic SSADTmodel

Suppose that the degradation follows Wiener process
model (1), and the time-to-failure is defined as the
moment that the corresponding degradation process
Y(t) first reaches a pre-specified failure threshold ω >

0, say τ , then

τ = inf{t ≥ 0 |Y(t) ≥ ω}.

It is readily shown that �(τ) conforms to the inverse
Gaussian distribution. But the p-quantile of the inverse
Gaussian distribution does not have an analytic form.
By Padgett and Tomlinson (2004) and Ye et al. (2015),
when the lifetime is large enough the approximate form
of the p-quantile of τ can be expressed as

ξp = Λ−1( 14 (zpσ +
√
z2pσ 2 + 4ω/η)2). (3)

To assess the reliability of the product, we want to
design an efficient SSADT experiment under some con-
straints, so that the p-quantile of the lifetime distribu-
tion of the product can be predicted as precisely as pos-
sible. Let S1, S2, . . . , Sm denote m higher accelerating
stress levels such that

S0 < S1 < · · · < Sm,

where S0 denotes the normal usage stress level. Then an
SSADT experiment can be expressed as follows: firstly,
we assume that there are n units available for a degrada-
tion test that uses stress level S1, and the measurement
frequency and the number of measurements under the
stress S1 are f and l1, respectively. Thus, the duration
time under the stress S1 is t1 = l1f . Then we increase
the stress level to S2, and the duration time is up to
t2 = l2f . Continue the process until the stress is up to
Sm, and the experiment is terminated at tm = lmf . Con-
sequently, the testing stress S of an SSADT experiment
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can be described as

S =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S1, 0 ≤ t < t1,
S2, t1 ≤ t < t2,
...

...
Sm, tm−1 ≤ t < tm.

It is well known that the accelerating stress S can affect
the degradation process of the product. Given Si, then
we have

Y(t | Si) = ηiΛ(t) + σηiB(Λ(t)), i = 0, 1, . . . ,m.
(4)

Furthermore, the following assumptionsA1 andA2will
be considered in this paper.

A1: The degradation Y(t | Si) under each stress Si
follows a normal distribution with mean ηiΛ(t) and
variance σ 2η2i Λ(t). For simplicity, it is assumed that
Λ(t) = tβ , where β > 0 is a constant.

A2: The relationship between ηi and the stress level
Si, i = 0, 1, . . . ,m, is log-linear. Then, after standardis-
ing the stress levels, we have

log(ηi) = a + bsi, i = 0, 1, . . . ,m, (5)

where a and b>0 are unknown parameters to be esti-
mated, and si ∈ [0, 1]. Usually, the typical inverse power
law relation, the Arrhenius relation and the exponential
relation are included in the assumption A2. For more
details, see Xu and Tang (2015) and Ye et al. (2014).

Let Yss(t) be the degradation path of an SSADT
based on Wiener process model (1), and νi, i =
1, 2, . . . ,m, the equivalent starting time of the degra-
dation process under stress level Si with ν1 = 0.
Then, the relationship between Yss(t) and Y(t | Si), i =
1, 2, . . . ,m, can be expressed as

Yss(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Y(t | S1), 0 ≤ t < t1,
Y(ν2 + t − t1|S2), t1 ≤ t < t2,
...

...
Y(νm + t − tm−1 | Sm), tm−1 ≤ t < tm.

It is easy to see that the equivalent degradation time
νi under stress Si contains the accumulated amount of
degradation from t=0 to the end of degradation test
under stress Si−1, which satisfies

Y(νi | Si) = Y(νi−1 + ti−1 − ti−2 | Si−1),

i = 2, 3, . . . ,m.

According to Equations (4) and (5), we have

ea+bsiν
β
i = ea+bsi−1(νi−1 + ti−1 − ti−2)

β ,

i = 2, 3, . . . ,m, (6)

which yields

νi = e−b(si−si−1)/β(νi−1 + ti−1 − ti−2),

i = 2, 3, . . . ,m. (7)

It follows from Equation (7) that

νi = t1 e−b(si−s1)/β + (t2 − t1) e−b(si−s2)/β

+ · · · + (ti−1 − ti−2) e−b(si−si−1)/β

=
i−1∑
κ=1

(tκ − tκ−1) e−b(si−sκ )/β , i = 2, 3, . . . ,m.

(8)

Thus, the distribution of the degradation Yss(t) at time
ti−1 ≤ t < ti can be written in the following unified
form:

Yss(t) = Y(νi + t − ti−1 | Si)
∼ N(ea+bsiρ

β
i , σ

2 e2a+2bsiρ
β
i ), (9)

where

ρi = νi + t − ti−1 = t − ti−1

+
i−1∑
κ=1

(tκ − tκ−1) e−b(si−sκ )/β , i = 1, 2, . . . ,m.

(10)

3. Optimal test plan

Based on the SSADTmodelling above, we now consider
the optimisation problem of determining the sample
size n, the measurement frequency f and the measure-
ment times li within the stress level Si, i = 1, 2, . . . ,m,
by minimising the asymptotic variance of the estimated
ξp under the usage stress S0 subject to a pre-specified
total cost. Therefore, the framework for accomplishing
the optimisation problem includes the following three
main parts: (i) the estimation of the model parame-
ters θ = (a, b, σ 2,β) by using themaximum-likelihood
estimator (MLE) method; (ii) the computation of the
asymptotic variance of ξ̂p under the usage stress S0 and
(iii) the definition of the total cost function.

3.1. Parameters estimation

Let {Y(k)
ss (tj)} be a set of observed SSADT paths

from Wiener process model (1), where 1 ≤ k ≤ n,
ti−1 ≤ tj < ti, 1 ≤ i ≤ m, ζi−1 + 1 ≤ j ≤ ζi and ζi =
l1 + · · · + li with ζ0 = 0. According to Equation (9), we
obtain that

Y(k)
ss (tj) = Y(k)(νi + tj − ti−1 | Si)

∼ N(ea+bsiρ
β
ij , σ

2 e2a+2bsiρ
β
ij ),
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where

ρij = νi + tj − ti−1 = tj − ti−1

+
i−1∑
κ=1

(tκ − tκ−1) e−b(si−sκ )/β . (11)

Because the degradation of the product followsWiener
process model (1) under the different stress Si, then
each independent increment yijk = Y(k)

ss (tj) − Y(k)
ss

(tj−1) = Y(k)(ρij | Si) − Y(k)(ρi,j−1 | Si) conforms to the
normal distribution, which is

yijk ∼ N(ea+bsiλij, σ 2 e2a+2bsiλij),

where λij = ρ
β
ij − ρ

β
i,j−1, Moreover, yijk’s are mutually

independent. Thus, the likelihood function of θ is
given by

L(θ) =
n∏

k=1

m∏
i=1

ζi∏
j=ζi−1+1

1√
2πσ 2 e2a+2bsiλij

× exp

{
− (yijk − ea+bsiλij)

2

2σ 2 e2a+2bsiλij

}
. (12)

Then, the MLE θ̂ = (â, b̂, σ̂ 2, β̂) of θ can be obtained
by a numerical optimisation approach after logarithm
transformation. Substituting the MLE into Equations
(3) and (5), we can obtain the estimator ξ̂p of ξp under
the normal operating stress S0.

3.2. Computation of AVar(ξ̂p)

Based on the assumption A2 in Section 2, the approx-
imated p-quantile of the lifetime distribution of the
product under the usage stress S0 can be readily
obtained, i.e.,

ξp =
[
1
2

(
zpσ +

√
z2pσ 2 + 4ω e−a

)]2/β
. (13)

By the delta method, the asymptotic variance of ξ̂p can
be expressed as

AVar(ξ̂p) = (∇ξp)
TI−1(θ)(∇ξp),

where ∇ξp is the gradient vector of ξp with respect to
θ = (a, b, σ 2,β), i.e.,

∇ξp =
(

∂ξp

∂a
,
∂ξp

∂b
,
∂ξp

∂σ 2 ,
∂ξp

∂β

)T
, (14)

and I(θ) is the Fisher information matrix of θ , i.e.,

I(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E
(

−∂2L(θ)

∂a2

)
E
(

−∂2L(θ)

∂a∂b

)
E
(

−∂2L(θ)

∂b∂a

)
E
(

−∂2L(θ)

∂b2

)
E
(

−∂2L(θ)

∂σ 2∂a

)
E
(

−∂2L(θ)

∂σ 2∂b

)
E
(

−∂2L(θ)

∂β∂a

)
E
(

−∂2L(θ)

∂β∂b

)

×

E
(

−∂2L(θ)

∂a∂σ 2

)
E
(

−∂2L(θ)

∂a∂β

)
E
(

−∂2L(θ)

∂b∂σ 2

)
E
(

−∂2L(θ)

∂b∂β

)
E
(

−∂2L(θ)

∂(σ 2)2

)
E
(

−∂2L(θ)

∂σ 2∂β

)
E
(

−∂2L(θ)

∂β∂σ 2

)
E
(

−∂2L(θ)

∂β2

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

whereL(θ) denotes the log-likelihood function of θ , up
to a constant, which is given by

L(θ) =
n∑

k=1

m∑
i=1

ζi∑
j=ζi−1+1

[
−1
2
log(σ 2) − a − bsi

−1
2
log(λij) − (yijk − ea+bsiλij)

2

2σ 2 e2a+2bsiλij

]
.

The detailed expressions for all the elements of∇ξp and
I(θ) are listed in the appendix.

3.3. The cost function

Similar to Liao and Tseng (2006), we define the total
cost of conducting the SSADT experiment as

TC(n, f , l1, . . . , lm) = Copf
m∑
i=1

li

+ Cmean
m∑
i=1

li + Citn, (15)

which includes three principal forms of the experi-
mental cost as follows: (i) the cost of conducting the
experiment Copf

∑m
i=1 li, where Cop denotes the unit

cost of operation per time; (ii) the cost of measure-
ment Cmean

∑m
i=1 li, where Cmea denotes the unit cost

of measurement and (iii) the cost of testing the devices
Citn, whereCit denotes the unit cost for each test device.

3.4. Optimisationmodel and algorithm

Let Cb denotes the total experimental budget, then the
constraint in the SSADT plan is that the total experi-
mental cost TC does not exceed the pre-specified bud-
get Cb. Therefore, the optimisation problem can be
written as
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Minimise: AVar(ξ̂p | n, f , l1, . . . , lm),
Subject to:

Copf
m∑
i=1

li + Cmean
m∑
i=1

li + Citn � Cb,

where n, f , l1, . . . , lm ∈ N = {1, 2, 3, . . .}.
In fact, due to the complexity of the objective func-

tion, the solution of the above optimisation problem
does not have an analytic expression. However, with
the simplicity in the structure of the constraint, and the
integer restriction on the decision variables, the opti-
mal solution (n∗, f ∗, l∗1, . . . , l∗m) can be obtained easily
by using the following algorithm.

Step 1: Set nmax = �(Cb − mCop)/(mCmea + Cit)	,
where �x	 is the largest integer that is not greater than
x, and nmax is the largest possible number for n when
f =1, and li = 1 for 1 � i � m.

Step 2: Let n=1.
Step 3: Set fmax = �(Cb − mnCmea − nCit)/

(mCop)	, where fmax is the largest possible number for
f when li = 1 for 1 � i � m, under fixed n.

Step 4: Let f =1.
Step 5: Find l1, . . . , lm ∈ N such that

m∑
i=1

li � Cb − nCit

fCop + nCmea
.

Step 6: Compute AVar(ξ̂p | n, f , l1, . . . , lm) by (n, f ,
l1, . . . , lm).

Step 7: Set f = f+1, and repeat steps 5 and 6 until
f = fmax.

Step 8: Set n=n+1, and repeat steps 3 and 7 until
n = nmax.

Step 9: The optimal solution (n∗, f ∗, l∗1, . . . , l∗m)

can then be obtained by minimising AVar(ξ̂p | n, f , l1,
. . . , lm).

It should be pointed out that the asymptotic vari-
ance AVar(ξ̂p | n, f , l1, . . . , lm) is the function of the
parameters θ given the design variables (n, f , l1, . . . , lm).
Therefore, it is necessary to give an initial value of the
parameter in order to determine the optimal plan. In
practical applications, initial values could be obtained
from the previous experience or engineering judge-
ment. For illustrative purpose, we adopt a pilot study
to evaluate the performance of the proposed SSADT
optimal plan in the next section.

4. Illustrative examples

In this section, we illustrate the proposed procedure
with the degradation data of light-emitting diodes

(LEDs) in Hamada et al. (2008, p. 290). In the exper-
iment, 25 LEDs were observed at 25◦C, 65◦C and
105◦C, respectively, and the luminosity data of each
LED product were collected at 29 inspection times. It
was assumed that the standard operating temperature
was 20◦C.An LED fails when the LED relative luminos-
ity drops to 0.5, i.e., 50% of initial luminosity. In order
to capture the degradation path of the LED products by
theWiener process with correlation, a logarithm trans-
formation for degradation data is considered, then the
threshold value ω is equivalent to − log(0.5). Further-
more, let Λ(t) = tβ , and the Arrhenius relationship is
assumed between the parameter η and the temperature.

To assess the goodness of fit between the Wiener
process with correlation M0 and the general Wiener
process M1 for the data from the CSADT, the AIC
is employed, where the AIC is defined to be AIC =
2k − 2 log(�) with k the number of parameters and �

the maximised value of the likelihood function of the
model. Then the MLEs of the model parameters and
the corresponding values of the AIC are calculated and
given in Table 1. From Table 1, we can see that the
degradation model based on the Wiener process with
correlation fits the data better.

In the following, we use the MLEs of the parame-
ters in modelM0 as the true values, then a pilot study is
developed, and a corresponding SSADT experiment is
arranged to estimate the model parameters. By apply-
ing the Monte Carlo method, a set of SSADT data are
generated based on two stress levels S1 = 25◦C and
S2 = 65◦C. Also we set n0 = 30, f0 = 10, unit time is
4 (in hours), and the numbers of measurements for S1
and S2 are l01 = 100 and l02 = 100, respectively. Then,
the MLE of θ can be obtained directly from Equation
(12), which is

θ̂ = (â, b̂, σ̂ 2, β̂)

= (−12.9156, 1.3097, 12764.23, 1.4906).

It can be observed that the estimation θ̂ and the true
values are nearly the same. Now, we use the estima-
tion θ̂ to compute the asymptotic variance of ξ̂p in the
optimisation problem accordingly.

For illustrative purposes, we assume that the cost
configurations of Cop, Cmea and Cit are

Cop = 1.6 dollars/unit time,

Cmea = 0.8 dollars/measurement

and Cit = 85 dollars/unit,

respectively. Under a pre-specified budget Cb, an opti-
mal SSADT plan with m higher stress levels can be

Table 1. MLEs and AIC of two different Wiener process models for the LEDs’ data.

a b σ 2 σ 2
B β log(�) AIC

M0 −12.9173 1.3035 12,819.21 – 1.4916 1594.93 −3181.87
M1 −13.3374 2.3262 – 7.9463 × 10−7 1.4445 1502.81 −2997.64
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Table 2. Optimal two-level SSADT plans under different Cb.

Cb n∗ f∗ l∗1 l∗2 std(ξ̂0.1) Total cost

1000 4 10 19 15 699.49 992.8
1500 6 11 25 19 435.58 1495.6
2000 8 11 31 24 324.72 2000.0
2500 10 13 32 25 261.53 2491.6
3000 12 13 36 29 219.20 2996.0

Table 3. Optimal three-level SSADT plans under different Cb.

Cb n∗ f∗ l∗1 l∗2 l∗3 std(ξ̂0.1) Total cost

1000 4 10 21 1 12 648.63 992.8
1500 6 12 26 1 14 417.92 1494
2000 8 11 34 1 14 310.55 2000
2500 10 16 30 1 18 246.76 2496.4
3000 11 16 37 1 22 205.86 2999

determined by using the algorithm given in Section 3.
In the following, we will mainly discuss the optimal
design for the cases ofm=2 andm=3.

4.1. Optimal SSADT plan form=2

Suppose that two higher stress levels are set as S1 =
25◦C and S2 = 65◦C. Then the design variables are
(n, f , l1, l2), which can be determined under differ-
ent budget constraint Cb. The results are summa-
rized in Table 2. For instance, the optimal test plan is
(n∗, f ∗, l∗1, l

∗
2) = (6, 11, 25, 19) when Cb = 1500, which

means that the optimal sample size is 6, and the opti-
mal measurement frequency is 11 × 4 = 44 hours. The
corresponding optimal numbers of measurements for
25◦C and 65◦C are 25 and 19, respectively. Under such
a test plan, the total cost is $1495.6, and the correspond-
ing approximate standard deviation of ξ̂0.1 is 435.58.

According to Table 2, it can be seen that the
optimal sample size, the optimal measurement fre-
quency and the total measurement times are increasing
when the budget Cb increases. However, the approxi-
mate standard deviation of ξ̂0.1 is gradually decreasing
with the budget Cb. The results indicate that the pre-
cision of the estimated ξ̂0.1 becomes higher with the
increase of the total budget Cb.

4.2. Optimal SSADT plan form=3

In this subsection, we consider a three-level SSADT
plan and set the three levels as S1 = 25, S2 = 65, S3 =
105, where S3 is the highest allowable stress condition.
Also suppose that the true value of the model param-
eters is θ̂ , and (Cop,Cmea,Cit) = (1.6, 0.8, 85). Then,
the optimal design variables (n, f , l1, l2, l3), under var-
ious constraints of pre-fixed budget Cb, can be deter-
mined by solving the optimisation problem addressed
in Section 3. The optimal test plans are shown in
Table 3.

In this case, we also find that the optimal sample size,
the optimal measurement frequency and the total mea-
surement times increase with the budget Cb, and the

approximate standard deviation of ξ̂0.1 decreases with
Cb. However, it should be noted that only one mea-
surement time is assigned to the second stress level for
each budget constraint. That is, the optimal experiment
is mainly determined by the lowest and highest stress
level. Comparing the results in Tables 2 and 3, we can
see that the test plans with m=2 and m=3 are nearly
the same in terms of the sample size, the measurement
frequency and the total experiment cost, while the stan-
dard deviation of ξ̂0.1 in the test plans with m=2 is
slightly larger than the case ofm=3. Under the allowed
loss of the estimated precision of the parameters, we
recommend using the SSADT plans withm=2 in prac-
tical application, since it is convenient and effective
compared with the three-stress SSADT plans.

4.3. Sensitive analysis for the parameters and
stress levels

In practice, the unknown parameters (a, b, σ 2,β) could
not be estimated precisely in the pilot study. Thus,
it is of great importance to investigate the effect of
the estimated error on the optimal test plan. Let
ε1, ε2, ε3 and ε4 denote the predicted errors of the
parameters a, b, σ 2 and β , respectively. Then, by set-
ting the same cost configuration (Cop,Cmea,Cit ,Cb) =
(1.6, 0.8, 85, 1500), the optimal plan, the correspond-
ing approximate standard deviation and the estimated
ξ̂0.1 can be obtained under various combinations
of ((1 + ε1)a, (1 + ε2)b, (1 + ε3)σ

2, (1 + ε4)β), which
are listed in Table 4. From these results, it is easy to see

Table 4. Optimal plans under various combination of ((1 +
ε1)a, (1 + ε2)b, (1 + ε3)σ

2, (1 + ε4)β).

ε1 ε2 ε3 ε4 n∗ f∗ l∗1 l∗2 std(ξ̂0.1) ξ̂0.1

4% 2% 8% 2% 6 11 26 18 510.42 4674.32
4% 0 0 0 6 11 26 18 653.51 5565.53
4% −2% −8% −2% 6 12 24 17 842.74 6675.59
0 2% 0 −2% 6 11 24 20 568.85 4467.13
0 0 −8% 2% 6 11 25 19 331.53 3236.26
0 −2% 8% 0 6 11 24 20 442.69 3749.21

−4% 2% −8% 0 6 8 29 27 282.59 2555.69
−4% 0 8% −2% 6 11 22 22 372.93 2942.87
−4% −2% 0 2% 6 8 30 26 224.02 2170.88
0 0 0 0 6 11 25 19 435.58 3775.96

Table 5. Optimal plans under various combination of S1 and S2
with Cb = 1500.

S1 S2 n∗ f∗ l∗1 l∗2 std(ξ̂0.1) × 102

25◦C 65◦C 6 11 25 19 435.58
35◦C 65◦C 4 1 16 225 1302.41
45◦C 65◦C 5 1 8 183 2976.79
55◦C 65◦C 14 1 3 21 5649.51
25◦C 55◦C 6 11 23 21 450.32
35◦C 55◦C 4 1 13 228 1618.30
45◦C 55◦C 7 1 5 120 4464.34
25◦C 45◦C 6 8 24 32 482.67
35◦C 45◦C 5 1 9 182 2530.13
25◦C 35◦C 5 6 27 52 692.90
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Figure 1. Plots of the trends revealed by Tabel 5.

that the optimal test plan (n∗, f ∗, l∗1 l
∗
2) tends to be robust

when the bias is not too large.
On the other hand, we find that the optimal design

problem is also dependent on the choice of the stress
levels. Hence, it is equally vital to investigate the sensi-
tivity of the stress level selection for the test plan. Taking
the same constraint settings above, the results of the
optimal test plans under various combinations of stress
levels can be obtained by solving the optimisation prob-
lem in Section 3. Then, some of the points are quite
clear from Table 5:

• For the fixed S2, the estimated precision of ξ̂0.1
becomes lower when the stress level S1 increases,
since the approximate standard deviation of ξ̂0.1 gets
the maximal value at S1 = 55◦C. Instead, the esti-
mated precision of ξ̂0.1 increases with S2 when the
stress level S1 is pre-fixed, since the approximate
standard deviation of ξ̂0.1 is decreasing.

• The approximate standard deviation of ξ̂0.1 is larger
in the case of increasing S1 when the range of S2–S1 is
fixed. But if the range of S2–S1 is flexible, the approx-
imate standard deviation of ξ̂0.1 decreases with the
various cases of S2 − S1.

Note that these two findings can also be displayed
clearly in Figure 1. Based on the sensitivity analysis for
the stress levels S1 and S2, it can be seen that the rea-
sonable choice of stress level is of critical importance
for the optimal test plan. Since the stress level selection
has substantial effect on the estimated precision of ξ̂0.1.
So in order to make the test more effective, we recom-
mend extending the difference between the stress levels
S1 and S2 in practice.

4.4. Stability of the SSADT plan

To assess the stability of the optimal test plan (such
as, (n∗, f ∗, l∗1, l

∗
2) = (12, 13, 36, 29)) under the cost con-

figuration (Cop,Cmea,Cit ,Cb) = (1.6, 0.8, 85, 3000), a
simulation experiment is constructed to compare the
case of varying (l1, l2) in terms of the average of the
MLEs and the root-mean-squared errors (RMSE). Set
θ̂ as the true parameters of the SSADT model. By pre-
fixing (n, f ) = (12, 13), 1000 sets of SSADT degrada-
tion data are generated for each combination under the
restriction l1 + l2 = 65. The simulated results are listed
in Table 6. From Table 6, it is seen that the proposed
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Table 6. A stability analysis for the optimal SSADT plan with Cb = 3000.

(n, f , l1, l2) â b̂ σ̂ β̂ ξ̂0.1 TSa

(12, 13, 30, 35) −12.9266 1.3080 123.04 1.4915 3804.08
(0.5194)b (0.1208) (37.19) (0.0697) (300.66) 224.28

(12, 13, 33, 32) −12.9571 1.3073 120.40 1.4958 3793.05
(0.5237) (0.1187) (38.20) (0.0702) (295.78) 220.58

(12, 13, 36, 29) −12.9367 1.3065 118.57 1.4916 3795.13
(0.4810) (0.1125) (33.34) (0.0637) (263.50) 219.20

(12, 13, 40, 25) −12.9507 1.3103 118.67 1.4951 3793.89
(0.4617) (0.1079) (32.24) (0.0605) (259.48) 222.90

(12, 13, 42, 23) −12.9534 1.3089 120.20 1.4953 3800.73
(0.4668) (0.1112) (36.43) (0.0601) (259.36) 223.39

True value −12.9156 1.3097 112.98 1.4906 3775.96

aTS denotes the theoretical standard deviation of ξ̂0.1.
bThe value in parentheses is the corresponding RMSE of the estimated parameter.

optimal test plan yields the smallest RMSE of ξ̂0.1 that
is near to the theoretical result by altering the test plan.

5. Concluding remarks

In this paper, we propose an optimal SSADT plan
for the Wiener degradation process with correlation.
By using the criterion of minimising the asymptotic
variance of the estimated p-quantile of the product’s
lifetime distribution under the usage stress S0 sub-
ject to the total cost not exceeding a pre-specified
budget, several decision variables, including the sam-
ple size, the measurement frequency and the numbers
of measurements under each stress level, are deter-
mined.Anoptimisation algorithm is proposed to derive
the optimal test plan. Finally, a pilot study is con-
ducted to evaluate the performance of the proposed
SSADT optimal plan. Optimal two-level SSADT plans
and optimal three-level SSADT plans are discussed
under the same cost configuration. Two sensitivity anal-
yses for the estimated parameters and stress levels are
also considered respectively. And a Monte Carlo sim-
ulation method is employed to study the stability of
the proposed optimal test plan. From the numeri-
cal results, some concluding remarks are addressed as
follows:

• A two-level SSADT plan is recommended in prac-
tical applications, since it is easy to implement and
has similar efficiency compared with the three-level
SSADT plan.

• The sensitivity analysis for the parameters reveals
that the optimal test plan is quite robust to moderate
departures of the real values of the model parame-
ters.

• The sensitivity analysis for the stress levels shows
that extending the difference between the low stress
and the high stress in the allowable range can
improve the effectiveness of the test.

• The simulation study indicates that the optimal test
plan is stable, sincemost of the simulation results are
close to the theoretical results.

This study has considered taking the asymptotic
variance of the estimated p-percentile of the product’s
lifetime distribution as the objective function of the
optimisation problem. In fact, other objective func-
tions, such as minimising the approximate variance
of the estimated MTTF, can also be considered. And
similar results can be obtained by using the same opti-
misation algorithm.
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Appendix

The elements of the Fisher information matrix I(θ) are
given by
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and ρij is defined in Equation (11). Furthermore, the detailed
expressions of ∇ξp in Equation (14) are derived as follows.
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