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ABSTRACT
In this paper, a generalisation of the exponential distribution, namely, Weibull exponentiated-
exponential (WEE) distribution, is proposed. The shapes of the density function possess great
flexibility. It can accommodate various hazard shapes such as reversed-J, increasing, decreas-
ing, constant and upside-down bathtub. Various properties of the WEE distribution are studied
including shape properties, quantile function, expressions for the moments and incomplete
moments, probability weighted moments and Shannon entropy. We obtain the asymptotic dis-
tributions for the sample minimum and maximum. The model parameters are estimated by
maximum likelihood. The usefulness of the newmodel is illustrated bymeans of two real lifetime
data sets.

ARTICLE HISTORY
Received 2 November 2017
Accepted 14 April 2018

KEYWORDS
Exponentiated-exponential;
moments; order statistic;
Shannon entropy; T-X family;
Weibull-X family

2010MATHEMATICS
SUBJECT
CLASSIFICATIONS
60E05; 62F10; 62N05

1. Introduction

Gupta, Gupta, and Gupta (1998) introduced the
exponentiated-G (‘exp-G’ for short) class of distri-
butions based on Lehmann’s ( 1953) type I and II
alternatives. Gupta and Kundu (1999) studied the
two-parameter exponentiated-exponential (EE) distri-
bution as an extension of the exponential distribu-
tion based on Lehmann type I alternative. The EE
distribution is also known as the generalised expo-
nential (GE) distribution in the literature. Since it
is the most attractive generalisation of the exponen-
tial distribution, the EE model has received increased
attention and many authors have studied its various
properties and also proposed comparisons with other
distributions. Some significant references are Gupta
and Kundu (2001a, 2001b, 2002, 2003, 2004, 2006,
2007, 2008, 2011), Kundu, Gupta, andManglick (2005),
Nadarajah and Kotz (2006a), Dey and Kundu (2009),
Pakyari (2010) and Nadarajah (2011). In fact, the two-
parameter EEmodel has been proven to be a good alter-
native to other two-parameter distributions such as the
gamma, Weibull and log-normal. The EE distribution
can be used quite effectively for analysing lifetime data
which hasmonotonic (increasing or decreasing) hazard
rate function (hrf) but unfortunately it cannot be used
for upside-down bathtub shaped data. Interestingly,
the proposed three-parameter distribution has con-
stant, increasing, decreasing and upside-down bath-
tub shapes and, therefore, it can be used effectively

for analysing lifetime data of various shapes. Also, few
distributions in the literature can be used to model
left-skewed data. However, the proposed distribution
can be left-skewed, right-skewed and about symmet-
ric. Section 7 provides illustrations of how the pro-
posedmodel can be used to fit various shapes including
left-skewed data.

Generalising distributions is always precious for
applied statisticians and recent literature has suggested
several ways of extending well-known distributions.
Recently, Alzaatreh, Lee, and Famoye (2013) defined
the T-X family of distributions as follows: Let r(t) be
the pdf of a continuous random variable T ∈ (a, b)
for −∞ ≤ a < b ≤ ∞ and let W(·) : [0, 1] −→ R be
a link function which satisfies the two conditions:

(i) W(·) is absolutely continuous and monotonically

non-decreasing function, and

(ii) W(0) → a andW(1) → b.
(1)

The cdf of the T-X family of distributions is given by

F(x) =
∫ W[G(x)]

a
r(t) dt, (2)

where W(·) satisfies the conditions described in
Equation (1) and G(x) is a cdf of any random variable
X. The pdf corresponding to Equation (2) is given by

f (x) =
{
d
dx

W[G(x)]
}
r{W[G(x)]}. (3)
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Now, let T be a continuous random variable defined on
(0,∞) andW[G(x)] = − log[1 − G(x)]. Then the link
function,W(x), satisfies the two conditions in Equation
(1). Therefore, the cdf of the T-X family reduces to

F(x) =
∫ − log[1−G(x)]

a
r(t) dt. (4)

The pdf corresponding to Equation (4) is given by

f (x) = g(x)
1 − G(x)

r{− log[1 − G(x)]}. (5)

Note that the pdf in Equation (5) can be writ-
ten as f (x) = hg(x)r(Hg(x)), where hg(x) = g(x)/(1 −
G(x)) andHg(x) = − log(1 − G(x)) are the hazard and
cumulative hazard functions associated with g(x). The
family (5) allows us to extend well-known distributions
and at the same time develop more realistic statistical
models with a great flexibility in terms of applications.

The paper is unfolded as follows. In Section 2, we
define the Weibull exponentiated-exponential (WEE)
distribution. In Section 3, we study some proper-
ties of the WEE distribution. In Section 4, we derive
explicit expressions for the ordinary and incomplete
moments and mgf. The density of the order statistics
as well as the asymptotic distributions of the minimum
and maximum order statistics is studied in Section 5.
In Section 6, the model parameters are estimated by
maximum likelihood. Applications to real life data are
presented in Section 7. Finally, Section 8 offers some
concluding remarks.

2. Model definition

If T follows the Weibull random variable with shape
parameter c>0 and scale parameter of 1, say
Weibull(c), then its cdf and pdf are given by R(t) =
1 − e−tc , t ≥ 0 and r(t) = ctc−1 e−tc , respectively. From
Equation (2), the cdf of theWeibull-X family is defined
by

F(x) = 1 − e−[− log{1−G(x)}]c . (6)

The pdf corresponding to Equation (6) is given by

f (x) = cg(x)
1 − G(x)

{− log[1 − G(x)]}c−1

e−[− log{1−G(x)}]c . (7)

Note again that the pdf in Equation (7) can be written
as f (x) = chg(x)(Hg(x))c−1 e−(Hg(x)).

TheWeibull-X family has a closed-form cdf. Also, it
produces larger skewness ranges (left and right) and its
hrf has flexible shapes.

A random variable Z has the exponentiated-
exponential (‘EE’ for short) distribution with two

parameters α and λ, if its cumulative distribution func-
tion (cdf) is given by

Gα,λ(x) = (1 − e−λx)α , x > 0. (8)

The probability density function (pdf) corresponding
to Equation (8) reduces to

gα,λ(x) = αλ e−λx(1 − e−λx)α−1, x > 0, (9)

where α > 0 and λ > 0 are the shape and scale param-
eters, respectively.

Inserting Equation (8) into Equation (6) gives the
WEE cdf as

F(x) = F(x; c,α, λ)

= 1 − e−[− log{1−(1−e−λx)α}]c , x > 0. (10)

The pdf f (x) = f (x; c,α, λ) corresponding to Equation
(10) is given by

f (x) = cαλ e−λx(1 − e−λx)α−1

1 − (1 − e−λx
)α

{− log[1 − (1 − e−λx)α]}c−1

e−[− log{1−(1−e−λx)α}]c . (11)

Henceforth, a random variable having pdf (11) is
denoted by X ∼ WEE(c,α, λ).

The hrf of the WEE model is given by

h(x) = cαλ e−λx[1 − e−λx]α−1

1 − [1 − e−λx]α

{− log[1 − [1 − e−λx]α]}c−1.

Figures 1 and 2 display some plots of the pdf and
hrf of X for some parameter values. Figure 1 reveals
that theWEEpdf has various shapes such as symmetric,
right-skewed, left-skewed and reversed-J. Also, Figure 2
shows that theWEE hrf can produce failure rate shapes
such as constant, increasing, decreasing, upside-down
bathtub and reversed-J.

3. Some properties of theWEE distribution

In this section, we provide several properties of the
WEE distribution. We omit the proof for some imme-
diate results.

The limiting behaviour of the pdf and hrf of X are
given in the following lemma.

Lemma 3.1: The limit of the pdf of X as x → ∞ is 0.
Also, the limits of the pdf and hrf of X as x → 0 are given
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Figure 1. Density function plots of the WEE distribution.

Figure 2. Hazard rate plots of the WEE distribution.

by

lim
x→0

f (x) = lim
x→0

h(x) =

⎧⎪⎨⎪⎩
∞ if αc < 1,
λ if αc = 1,
0 if αc > 1.

Further, the limit of the hrf of X as x → ∞ is given by

lim
x→∞ h(x) =

⎧⎪⎨⎪⎩
0 if c < 1,
λ if c = 1,
∞ if c > 1.

Comment 1: (i) The quantile function of the WEE
distribution is

Q(u) = log[1 − (1 − e−t)1/α]−1/λ, (12)

where t = [log(1 − u)−1]1/c. Therefore, if U is a
uniform variate on the unit interval (0, 1), then the
random variable X = Q(U) has pdf (11).

(ii) One can show immediately from Equation (14)
that the mode of f (x) can be found by first solving
the equation k(w) = 0, where

k(w) = αw
1 − w

{
1 + c[1 − {− log(1 − w)}c] − 1

[− log(1 − w)]

}
+ w1/α − 1. (13)

Then the mode is at x0 = (1/λ) log(1 − w1/α).

Theorem 3.1: TheWEE pdf is an infinite mixture of EE
pdfs, namely:

f (x; c,α, λ) =
∞∑

v,s,k=0

bv,s,kg[s+c(v+1)+k]α,λ(x), (14)
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where

bv,s,k =
k∑

j=0

(−1)v+j+kc[c(v + 1) − 1]
[c(v + 1) − 1 − j][s + c(v + 1) + k]

�(v + 1)

(k
j
)

(k+1−c(v+1)
k

)
pj,k,

pj,k is defined below and g[s+c(v+1)+k]α,λ(x) is the EE
density function with parameters [s + c(v + 1) + k]α
and λ.

Proof: LetA = exp{−[− log{1 − [1 − e−λx]α}]c},B =
{1 − (1 − e−λx)α}−1 and D = [− log{1 −
(1 − e−λx)α}]c(v+1)−1. Then, we can write

A =
∞∑

v=0

(−1)v

v!
[− log{1 − (1 − e−λx)α}]vc, (15)

B =
∞∑
s=0

(1 − e−λx)sα , (16)

D = [c(v + 1) − 1]
∞∑
k=0

(k+1−c(v+1)
k

)

×
k∑

j=0

(−1)j+k(k
j
)
pj,k

[c(v + 1) − 1 − j]
(1 − e−λx)α[c(v+1)+k−1].

(17)

Here, the constants pj,k (for j ≥ 0 and k ≥ 1) can be
determined recursively by

pj,k = k−1
∞∑

m=1
[k − m(j + 1)]cmpj,k−m,

where pj,0 = 1 and ck = (−1)k+1(k + 1)−1 (http://
functions.wolfram.com/Elementary-
Functions/Log/06/01/04/03/).

Expression (14) follows by substituting
Equations (15) –(17) in Equation (11). �

This expression is very useful to obtain several WEE
properties using the properties of the EE model.

Comment 2: The analysis of the variability of the
skewness and kurtosis on the shape parameters α

and c can be investigated based on quantile measures.
The shortcomings of the classical kurtosis measure are
well known. The Bowley skewness (Kenney & Keep-
ing, 1962) based on quartiles is given by

B = Q(3/4) + Q(1/4) − 2Q(2/4)
Q(3/4) − Q(1/4)

.

The Moors (1998) kurtosis based on octiles is given by

M = Q(3/8) − Q(1/8) + Q(7/8) − Q(5/8)
Q(6/8) − Q(2/8)

.

These measures are less sensitive to outliers and
they exist even for distributions without moments. In

Figure 3, we plot the measures B and M of the WEE
distribution. From the figure for fixed λ, the skewness
is a decreasing function of c. The distribution can be left
skewed, right skewed and nearly symmetric (B=0).

The Shannon entropy is a measure of variation
of uncertainty in a random variable and has wide
applications in science, engineering and probabil-
ity theory. The Shannon (1948) entropy is defined
as E{− log[g(X)]}. The following theorem provides
expression for Shannon’s entropy for the WEE.

Theorem 3.2: If X ∼ WEE(c,α, λ), then Shannon’s
entropy of X is given by

ηx = 1 − ξ

(
1 − 1

c

)
− log(cαλ) − �

(
1 + 1

c

)

+ α

∞∑
k=1

k−1
[
v+,k

(
1 − 1

α

)
B
(

α, 1 + k
λ

)]
,

(18)

where v+,k = ∑∞
j=0(−1)j

(k/α
j
)
B(α, 1 + (j/k)).

To prove Theorem 3.2, we need the following result
from Alzaatreh et al. (2013).

Lemma 3.2: Shannon’s entropy for theWeibull-X family
in Equation (7) can be expressed as

− E{− log[f (F−1(1 − e−T))]} − �

(
1 + 1

c

)
− ξ

(
1 − 1

c

)
− log(c) + 1, (19)

where F(·) and f (·) are the cdf and pdf of the Transformer
family, respectively, and T follows theWeibull model with
shape parameter c and unity scale parameter and ξ is
Euler’s constant.

Proof: From Equations (9) and (8), we get

log[f (F−1(1 − e−T))] = log(αλ)

+
(
1 − 1

α

)
log(1 − e−T) + log

[
1 − (1 − e−T)1/α

]
,

(20)

where T ∼Weibull(c, 1). Next, we consider E[log(1 −
e−T)].

Using the power series for log(1 − e−T), we obtain

E[log(1 − e−T)] = −
∞∑
k=1

k−1E(e−kT)

= −α

∞∑
k=1

k−1B
(

α, 1 + k
λ

)
. (21)

http://functions.wolfram.com/ElementaryFunctions/Log/06/01/04/03/
http://functions.wolfram.com/ElementaryFunctions/Log/06/01/04/03/
http://functions.wolfram.com/ElementaryFunctions/Log/06/01/04/03/
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Figure 3. Skewness (a) and kurtosis (b) of X based on quantiles when λ = 1.

Further,

E[log{1 − (1 − e−T)1/α}]

= −
∞∑
k=1

∞∑
j=0

(−1)j

k
(k/α

j
)
E(e−jT)

= −α

∞∑
k=1

∞∑
j=0

(−1)j

k
(k/α

j
)
B
(

α, 1 + j
λ

)
. (22)

Equation (18) follows from Equations (21) and (22) by
substituting Equation (20) into Equation (19). �

The Shannon entropy in Equation (18) can be used
to discriminate between WEE distribution and any
other member of Weibull-X family where X does not
follow the EE distribution. To see this, let X1 and X2
be two random variables with CDFs, respectively, are
F1(x1) and F2(x2). One can use Shannon entropy to
discriminate betweenWeibull-X1 andWeibull-X2. The
most appropriate model for a given data is the model
with the largest Shannon entropy. Consider D1,2 =
ηX1 − ηX2 , using Equation (19) we have

D1,2 = ET
{
log

f2(F2−1(1 − e−T))

f1(F1−1(1 − e−T))

}
, (23)

where T follows the Weibull distribution with shape
parameter c and scale of 1. The sample D1,2 is
defined as D̂1,2 = (1/n)

∑n
i=1 log(f2(F2

−1(1 − e−ti)))/

(f1(F1−1(1 − e−ti))). Where ti, i = 1, . . . , n, can be
obtained from a given data set x1, . . . , xn. There-
fore, to test the hypotheses H0 : Weibull-X2 vs H1 :
Weibull-X1, reject H0 at level a if D̂1,2 > da, where da
is the upper 100 × a% point of the distribution of D̂1,2
under H0. Of course, if the purpose is to discriminate
between WEE and any other member of Weibull-X
family, f2(·) and F−1

2 (·) will be the PDF and quantile

function for the WEE and f1(·) and F−1
1 (·) are the PDF

and quantile function of the Weibull-X distribution.

4. Moments

In this section, we derive the ordinary, incomplete
moments and mgf of the WEE distribution. This task
can be easily done using the fact that WEE is an infi-
nite linear combination of EE distributions. Therefore,
in order to obtain the moments of WEE, we first obtain
the moments of EE distribution. Let Z follows EE(α, λ)

distribution in Equation (9), then the rth moment of Z
is given by

μ′
r = α�(r + 1)

λr
Ar(α), (24)

where

Ar(α) = 1 +
∞∑

�=1

(−1)�

(� + 1)r+1

(
α − 1

�

)
, r = 1, 2, . . . .

The mean and variance of Z are E(Z) = (α/λ)A1(α)

and Var(Z) = (α/λ2)[2A2(α) − αA2
1(α)], respectively.

The moment generating function (mgf) of the EE
distribution (for t < λ) is given by

MZ(t) = αB
(
1 − t

λ
,α
)
, (25)

where B(p, q) = ∫ 1
0 tp−1(1 − t)q−1 dt = �(p)�(q)/

�(p + q) is the beta function and �(p) = ∫∞
0 wp−1,

e−w dw (for p>0) is the gamma function.
The rth incomplete moment of Y is given by

μ′
(r,y)(z) = α

λr
A∗
r (α), (26)
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where

A∗
r (α) =

∞∑
p=0

(−1)p

(p + 1)r+1

(
α − 1
p

)
γ (r + 1, (p + 1)λy), r = 1, 2, . . . ,

and γ (p, x) = ∫ x
0 wp−1e−w dw (for p>0) is the incom-

plete gamma function.

Theorem 4.1: If X ∼ WEE(c,α, λ), then
(i) the rth moment of X can be expressed as

μ′
r = E(Xr) = α�(r + 1)

λr

∞∑
v,s,k=0

× [s+ c(v + 1)+ k]bv,s,kAr([s+ c(v + 1)+ k]α),
(27)

where

Ar([s + c(v + 1) + k]α) = 1 +
∞∑

�=1

(−1)�

(� + 1)r+1

×
(

α(α(s + c(v + 1) + k) − 1
�

)
r = 1, 2, . . . .

and bv,s,k is defined in Theorem 3.1.
(ii) The mgf of X is

MX(t) = α

∞∑
v,s,k=0

bv,s,k[s + c(v + 1) + k]B

×
(
1 − t

λ
,α(s + c(v + 1) + k)

)
, t < λ.

Proof: For (i), Theorem 3.1 implies that

μ′
r = E(Xr) =

∞∑
v,s,k=0

bv,s,k

∫ ∞

0

× xrg[s+c(v+1)+k]α,λ(x) dx.

The result in (i) follows by using Equation (24). The
proof of (ii) is similar to (i) from Equation (25). Hence
the proof. �

Remark: On setting r=1 in Equation (27), we obtain
the mean μ′

1 = E(X). The central moments (μn) and
cumulants (κn) of X are obtained from Equation (27)
as

μn =
n∑

k=0

(
n
k

)
(−1)kμ′k

1 μ′
n−k and

κn = μ′
n −

n−1∑
k=1

(
n − 1
k − 1

)
κkμ

′
n−k,

respectively, where κ1 = μ′
1. Thus, κ2 = μ′

2 − μ′2
1 ,

κ3 = μ′
3 − 3μ′

2μ
′
1 + 2μ′3

1 , κ4 = μ′
4 − 4μ′

3μ
′
1 − 3μ′2

2

+ 12μ′
2μ

′2
1 − 6μ′4

1 , etc. The skewness and kurtosis can
be calculated from the third and fourth standardised
cumulants as γ1 = κ3/κ

3/2
2 and γ2 = κ4/κ

2
2 . They are

also important to derive Edgeworth expansions for the
cdf and pdf of the standardised sum and mean of inde-
pendent and identically distributed random variables
having the WEE distribution.

Theorem 4.2: If X ∼ WEE(c,α, λ), then the rth incom-
plete moment of X is given by

mr,y(z) =
∫ y

0
xrf (x) dx = α�(r + 1)

λr

×
∞∑

v,s,k=0

[s + c(v + 1) + k]bv,s,kA∗
r

([s + c(v + 1) + k]α), (28)

where (for r = 1, 2, . . .)

A∗
r ([s + c(v + 1) + k]α)

=
∞∑
p=0

(−1)p

(p + 1)r+1

(
[s + c(v + 1) + k]α − 1

p

)
× γ (r + 1, (p + 1)λz).

Proof: Similar to the proof of Theorem 4.1. �

Remark: (i) The main application of the first incom-
plete moment refers to the Bonferroni and Lorenz
curves. These curves are very useful in several fields.
For a given probability π , they are defined by
B(π) = m1(q)/(πμ′

1) and L(π) = m1(q)/μ′
1, respec-

tively, where m1(q) comes from Equation (28) with
r=1 and q = Q(π) is determined from Equation (12).

(ii) The amount of scatter in a population is mea-
sured to some extent by the totality of deviations
from the mean and median defined by δ1 = ∫∞

0 |x −
μ|f (x) dx and δ2(x) = ∫∞

0 |x − M|f (x) dx, respectively,
where μ′

1 = E(X) is the mean and M = Q(0.5) is the
median. These measures can be expressed as δ1 =
2μ′

1F(μ′
1) − 2m1(μ

′
1) and δ2 = μ′

1 − 2m1(M), where
F(μ′

1) comes from Equation (10).
(iii) Other applications of the first incomplete

moment are related to the mean residual life and mean
waiting time given by m(t; c,α, λ) = [1 − m1(t)]/
S(t) − t and μ(t; c,α, λ) = t − [m1(t)/F(t)], respec-
tively, where F(t) and S(t) = 1 − F(t) are obtained
from Equation (10).

The (r, q)th probabilityweightedmoment (PWM)of
X (for r ≥ 1, q ≥ 0) is formally defined by

ρr,q = E[XrF(X)q] =
∫ ∞

0
xrF(x)qf (x)dx. (29)

Some important features of PWM are that unlike
conventional moments they do not require higher
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moments for consistency, their finite mean can be used
for estimation consistency, they are less sensitive to out-
liers, uniquely determine a distribution and relatively
good at capturing themiddle of a distribution. For some
specific distributions, the relations between the PWMs
and the parameters are of a simpler analytical structure
than those between the conventional moments and the
parameters. The simpler analytical structure suggests
that it may be possible to derive relations between the
parameters and the PWMs even though it may not be
possible to obtain relations between the parameters and
the conventional moments.

Theorem 4.3: If X ∼ WEE(c,α, λ), then the PWMs of
X are given by

ρr,q = α�(r + 1)
λr

∞∑
v,s,k,i=0

[s + c(v + 1) + k]b∗
v,s,k,iAr

([s + c(v + 1) + k]α),

where

b∗
v,s,k,i =

k∑
j=0

(−1)i+v+j+k(i + 1)c[c(v + 1) − 1]
[c(v + 1) − 1 − j][s + c(v + 1) + k]

�(v + 1)

×
(
q
i

)(
s
i

)(
k
j

)(
k + 1 − c(v + 1)

k

)
pj,k

and Ar([s + c(v + 1) + k]α) is defined in Theorem 4.2.

Proof: Consider

F(x)q = {1 − exp[−{− log[1 − (1 − e−λx)α]}c]}q.

Using the generalised binomial expansion, we obtain

F(x)q =
∞∑
i=0

(−1)i
(
q
i

)
× exp[−i{− log[1 − (1 − e−λx)α]}c]. (30)

Inserting Equations (11) and (30) into Equation (29)
and, after some expansion, ρr,q can be expressed as

ρr,q =
∞∑

v,s,k,i=0

bv,s,k,i

∫ ∞

0
xrg[s+c(v+1)+k)]α,λ(x) dx.

The proof ends by using Equation (27). �

5. Order statistics

In this section, we provide the density of the ith-order
statistic Xi:n, fi:n(x), say, in a random sample of size n

from the WEE distribution. By suppressing the param-
eters, we have (for i = 1, . . . , n)

fi:n(x) =
i−1∑
k=0

(−1)kn!
(i − 1)!(n − i)!

(i−1
k
)
f (x)[1 − F(x)]n+k−i.

(31)
On using Equations (10) and (11) in Equation (31), we
obtain

fi:n(x) =
i−1∑
k=0

vk,if (x; c(n + k − i + 1),α, λ), (32)

where

vk,i = (−1)kn!
(n + k − i + 1)(i − 1)!(n − i)!

(i−1
k
)
,

and f (x; c(n + k − i + 1),α, λ) denotes the WEE den-
sity function with parameters c(n + k − i + 1), α and
λ. So, the density function of the WEE order statistics
is a mixture of WEE densities. Based on Equation (32),
we can obtain some structural properties of Xi:n from
those WEE properties.

Let us consider the asymptotic distributions of the
sample maximum Xn:n and sample minimum X1:n.
In order to derive the asymptotic distribution of the
sample minimum X1:n, we consider Theorem 8.3.6 of
Arnold, Balakrishnan, andNagarajah (2008). Note that,
since G−1(0) = 0, the asymptotic distribution of X1:n
is the Weibull distribution with shape parameter δ > 0
and unit scale parameter if

lim
ε→0+

G(εx)
G(ε)

= xδ , ∀ x > 0.

By using Equation (11), we have

lim
ε→0+

G(εx)
G(ε)

= x lim
ε→0+

g(εx)
g(ε)

= x lim
ε→0+

(1 − e−λεx)α−1{− log(1 − (1 − e−λεx)α)
}c−1

(1 − e−λε)α−1

{− log(1 − (1 − e−λε)α)}c−1

= xαc.

Hence, we conclude that the asymptotic distribution of
the sample minimum X1:n is of the Weibull type with
shape parameter αc and unit scale parameter.

In order to obtain the large sample distribution of
Xn:n, we use the sufficient condition for weak conver-
gence due to (von Mises, 1936), which is stated in the
following theorem:

Theorem5.1: Let G be an absolutely continuous cdf and
suppose hg(x) is a nonzero and differentiable function. If

lim
x→G−1(1)

d
dx

{
1

hg(x)

}
= 0,

then G ∈ D(G1), where G1(x) = ee
−x .
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Proof: In our case, G−1(1) = ∞ and it is easy to prove
that

lim
x→∞

d
dx

{
1

hg(x)

}
= 0.

Hence, the large sample distribution of Xn:n is of the
extreme value type. �

6. Estimation and simulation study

In this section, we consider the estimation of the
unknown parameters of theWEE distribution by using
the maximum likelihood method. Let x1, . . . , xn be
a sample of size n from the WEE distribution in
Equation (11). The log-likelihood function for the vec-
tor of parameters � = (c,α, λ)� can be expressed as

� = nlog(cαλ) − λ

n∑
i=1

xi + (α − 1)
n∑

i=1
log(1− e−λxi)

−
n∑
i=1

log(1 − zi) + (c− 1)
n∑

i=1
log[− log(1− zi)]

−
n∑
i=1

[− log(1 − zi)]c,

where zi = (1 − e−λxi)−α .
The log-likelihood function can be maximised

numerically to obtain the MLEs. The initial values
for the parameters λ and α can be taken by fit-
ting the data to the EE distribution in Equation (2).
The initial value for the parameter c can be taken as
1. There are various routines available for numerical
maximisation. The elements of the observed infor-
mation matrix are given in Appendix. In this paper,
we use the OPTIM routine in the R software. For
interval estimation of the parameters, we require the
3 × 3 observed information matrix J(�) = {Urs} (for
r, s = c,α, λ). Under standard regularity conditions,
the multivariate normalN3(0, J(�̂)−1) distribution can
be used to construct approximate confidence inter-
vals for the model parameters. Here, J(�̂) is the total
observed information matrix evaluated at �̂. Then, the
100(1 − γ )% confidence intervals for c, α and λ are
given by ĉ ± zγ ∗/2 ×

√
var(ĉ), α̂ ± zγ ∗/2 ×

√
var(α̂),

and λ̂ ± zγ ∗/2 ×
√
var(λ̂), respectively, where the var(·)

’s denote the diagonal elements of J(�̂)−1 correspond-
ing to the model parameters, and zγ ∗/2 is the quantile
(1 − γ ∗/2) of the standard normal distribution.

The likelihood ratio (LR) statistic can be used to
check if theWEE distribution is strictly ‘superior’ to the
EE distribution for a given data set. Then, the test of
H0 : c = 1 vs H1 : H0 is not true is equivalent to com-
pare the WEE and EE distributions and the LR statistic
becomes w = 2{�(̂c, α̂, λ̂) − �(1, α̃, λ̃)}, where ĉ, α̂ and
λ̂ are the MLEs underH1 and α̃ and λ̃ are the estimates
under H0.

6.1. Simulation study

In this section, we evaluate the performance of the
MLEs by using Monte Carlo simulation for differ-
ent sample sizes and different parameter values. The
simulation study is repeated N=5000 times each with
sample sizes n = 25, 50, 75, 100, 200. and parameter
combinations I: c=0.5, α = 0.5, λ = 1, II: c=0.5, α =
1.5, λ = 2 and III: c=1.5, α = 1.5, λ = 2. The esti-
mated bias(Bias), mean square error (MSE) and cover-
age probability (CP) can be obtained using the follow-
ing equations:

Bias = 1
N

N∑
i=1

(�̂i − �),

MSE = 1
N

N∑
i=1

(�̂i − �)2,

CP = 1
N

N∑
i=1

I[�̂i − 1.95996S
�̂i
, �̂ + 1.95996S

�̂i
].

Table 1 presents the average bias(Bias), MSE, CP, aver-
age lower bound (LB) and average upper bound (UB)
values of the parameters c, α and λ for different sam-
ple sizes. From the results, we can verify that the Bias
and MSEs decreases as the sample size n increases. The
CP of the confidence intervals are quite close to the
nominal level of 95%. Therefore, the MLEs and their
asymptotic results can be used for estimating and con-
structing confidence intervals even for reasonably small
sample sizes.

7. Applications

In this section, we fit the WEE model to two real
data sets with different highly skewness values (right
and left skewness). We compare its fits with two and
three-parameter distributions, namely, the gamma-
exponentiated exponential (GEE) (Ristić & Balakr-
ishnan, 2012) and beta-exponential (BE) (Nadarajah
& Kotz, 2006b). The density functions for the GEE and
BE are, respectively, given by

GEE : fGEE(x; θ ,α, λ)

= λαθ

�(θ)
e−λx[1 − e−λx]α−1

× {−α log[1 − e−λx]}θ−1, θ ,α, λ > 0,

BE : fBE(x; a, b, λ) = λ

B(a, b)
e−bλx[1 − e−λx]a−1,

a, b, λ > 0,

Themethod of maximum likelihood is used to estimate
the unknown parameters for the models. Tables 2 and 3
list the MLEs and their corresponding standard errors
(in parentheses) for the model parameters.
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Table 1. Monte Carlo simulation results: Bias, MSE, CP, LB and
UB.

Parameter n Bias MSE CP LB UB

I
c 25 0.322 0.178 1.00 0.775 2.400

50 0.227 0.098 1.00 0.329 1.699
75 0.180 0.059 1.00 0.218 1.388
100 0.148 0.041 0.98 0.212 1.196
200 0.096 0.018 0.97 0.314 0.887

α 25 −0.141 0.049 0.99 0.402 1.113
50 −0.115 0.031 0.97 0.212 0.955
75 −0.112 0.025 0.97 0.134 0.837
100 −0.101 0.020 0.96 0.122 0.782
200 −0.076 0.012 0.95 0.189 0.670

λ 25 −0.343 0.615 0.88 1.833 3.128
50 −0.323 0.315 0.88 1.119 2.434
75 −0.312 0.221 0.92 0.770 2.077
100 −0.279 0.177 0.94 0.599 1.910
200 −0.215 0.096 0.96 0.308 1.566

II
c 25 0.400 0.498 1.00 0.849 2.503

50 0.200 0.137 1.00 0.343 1.321
75 0.145 0.052 1.00 0.323 1.012
100 0.121 0.029 1.00 0.356 0.891
200 0.082 0.011 0.99 0.427 0.737

α 25 −0.411 0.673 0.88 0.600 2.765
50 −0.354 0.340 0.94 0.214 2.286
75 −0.333 0.243 0.95 0.305 2.072
100 −0.322 0.196 0.96 0.422 1.946
200 −0.264 0.120 0.96 0.708 1.769

λ 25 −0.536 1.333 0.87 1.078 3.967
50 −0.453 0.704 0.89 0.380 3.234
75 −0.403 0.463 0.90 0.383 2.946
100 −0.384 0.358 0.93 0.517 2.763
200 −0.311 0.202 0.95 0.910 2.469

III
c 25 0.346 0.995 0.86 2.827 6.460

50 0.343 0.921 0.87 1.979 5.522
75 0.305 0.790 0.89 1.502 4.879
100 0.305 0.756 0.90 1.357 4.652
200 0.267 0.599 0.88 1.028 4.002

α 25 0.305 1.019 1.00 0.935 2.544
50 0.135 0.279 0.99 0.479 1.737
75 0.090 0.160 0.99 0.338 1.483
100 0.063 0.121 0.97 0.282 1.344
200 0.026 0.071 0.96 0.225 1.109

λ 25 0.439 2.191 0.99 2.105 4.934
50 0.212 1.120 0.96 1.406 3.692
75 0.141 0.774 0.96 1.078 3.198
100 0.091 0.620 0.94 0.937 2.917
200 0.026 0.397 0.94 0.732 2.440

Table 2. MLEs and their standard errors (in parentheses) for the
guinea pigs data.

Distribution â b̂ ĉ θ̂ α̂ λ̂

WEE – – 0.6244 – 7.6518 0.0301
– – (0.0983) – (3.0734) (0.0057)

GEE – – – 0.2177 4.7533 0.0645
– – – (0.1115) (2.4874) (0.0284)

BE 5.1575 0.2159 – – – 0.0649
(2.5306) (0.1085) – – – (0.0280)

Data set 1: guinea pigs data
The first data set corresponds to the survival times

(in days) of 72 guinea pigs infected with virulent tuber-
cle bacilli reported by Bjerkedal (1960). The data are:
12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52,
53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 61, 62,
63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85,
87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143,
146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341,

Table 3. MLEs and their standard errors (in parentheses) for the
glass fibres data.

Distribution â b̂ ĉ θ̂ α̂ λ̂

WEE – – 14.5240 – 0.2564 0.1122
– – (12.9062) – (0.2777) (0.2384)

GEE – – – 18.8149 24.6684 0.4336
– – – (20.3751) (7.0427) (0.3939)

BE 17.5097 59.6132 – – – 0.1721
(3.1108) (103.9638) – – – (0.2683)

Table 4. The statistics AIC, BIC, A∗,W∗, K–S and K–S p-value for
the guinea pigs data.

Distribution AIC BIC A∗ W∗ K–S K–S p-value

WEE 785.1445 791.9745 0.6372 0.1145 0.0966 0.5126
GEE 787.5205 794.3505 1.0316 0.1924 0.1088 0.3617
BE 787.5252 794.3552 1.0309 0.1922 0.1089 0.3600

Table 5. The statistics AIC, BIC, A∗,W∗, K–S and K–S p-value for
the glass fibres data.

Distribution AIC BIC A∗ W∗ K–S K–S p-value

WEE 35.6519 42.0814 1.1974 0.2171 0.1478 0.1277
GEE 55.0189 61.4483 3.2183 0.5870 0.2186 0.0049
BE 53.9716 60.4010 3.1236 0.5695 0.2164 0.0055

376. A summary of these data is: n = 72, x̄ = 99.8200,
s=81.1180, skewness = 1.7590, kurtosis = 5.4596.

Data set 2: glass fibres data
The third data set represents the strength of 1.5 cm

glass fibres measured at National Physical laboratory,
England (Smith & Naylor, 1987). The data are: 0.55,
0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73,
1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61,
1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50,
1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13,
1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84,
0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70,
1.78, 1.89. A summary of these data is: n = 63, x̄ =
1.5070, s=0.3241, skewness = −0.8786, kurtosis =
3.8002.

In order to compare the models, we adopt the fol-
lowing statistics: Akaike information criterion (AIC),
Bayesian information criterion (BIC), Anderson–
Darling (A∗), Cramér–von Mises (W∗) and Kol-
mogorov–Smirnov (K–S) statistic (with p-values ). In
general, the smaller the values of these statistics, the
better the fit to the data. These results are presented in
Tables 4 and 5.

From the figures in Tables 4 and 5, we conclude that
the WEE model provides the best fit with lowest values
of the AIC, BIC, A∗, W∗ and K–S statistics and largest
p-value for the guinea pigs data. For the glass fibres data,
GEE and BE do not provide an adequate fit. The sum-
mary statistics for both data sets reveal that the guinea
pigs data is highly positively skewed data and the glass
fibres data is highly negatively skewed data. This indi-
cates that the WEE distribution can be used to model
data with right-skewness and left-skewness character-
istic. The QQ plots for both data sets are displayed in
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Figure 4. QQ-plot of data set 1.

Figure 5. QQ-plot of data set 2.

Figures 4 and 5. The plots support the results in Tables 4
and 5. Furthermore, to identify the hazard shapes of
data, we consider the graphical method based on total
time on test (TTT) transformed pioneered by Barlow
and Campo (1975). The empirical illustration of the
TTT transform is given by Aarset (1987). This graph
is obtained by plotting G(r/n) = [

∑r
i=1 Ti:n + (n −

r)Tr:n]/[
∑n

i=1 Ti:n] versus r/n(r = 1, 2, . . . , n), where
Ti:n (for i = 1, 2, . . . , n) are the order statistics of the
sample. FromFigure 6(a), the TTT plot for the first data
set shows that the hazard function is first concave and
then convex giving an indication of upside-down bath-
tub shape, while the TTT plot in Figures 6(b) shows
that the hazard function is concave giving an indication
of increased hazard rate. Hence, the WEE distribution
could be in principle an appropriate model for fitting
these data sets.

8. Concluding remarks

In this paper, a new generalisation of the exponen-
tial distribution is proposed. The density and hazard
functions show a great flexibility. Some of the general
properties for the proposed distribution are studied
such asmixture representation for the density function,
ordinary and incomplete moments, quantile function,
probability weighed moments and order statistics. The
maximum likelihood method is employed for estimat-
ing the model parameters. The proposed model is fit-
ted to highly skewed data sets and the results indicate
that the new model is a suitable model to fit data with
right-skewed and left-skewed characteristics.

Acknowledgements

The authors would like to thank the Editor-in-Chief and the
referee for constructive comments that helped in improving
the earlier version of the article.

Disclosure statement

No potential conflict of interest was reported by the authors.

Figure 6. TTT plots (a) and (b) data sets 1 and 2.



78 M. ZUBAIR ET AL.

Funding

Manat Mustafa is grateful to the Nazarbayev Univer-
sity for providing the financial support through Faculty
Development Competitive Research Grants [grant number
N090118FD5342].

Notes on contributors

Muhammad Zubair is currently Lecturer in Statistics at Gov-
ernment S.E. College Bahawalpur, Pakistan. He receivedMSc
andMPhil degrees in Statistics from the Islamia University of
Bahawalpur (IUB) in 2004 and 2013. Mr. Zubair is PhD can-
didate in the subject of Statistics at IUB and working under
the supervision of Dr. M.H. Tahir. He has 20 publications to
his credit.

Dr. Ayman Alzaatreh is currently an Associate Professor at
the American University of Sharjah, UAE. Previously, he held
an Associate Professor position at the Department of Mathe-
matics atNazarbayevUniversity. He also served as an Instruc-
tor of Mathematics at the University of Jordan and Assistant
Professor in the Department of Mathematics and Statistics at
Austin Peay State University in Tennessee, USA. His current
research focuses on generalising statistical distributions aris-
ing from the hazard function. Other research areas include
statistical inference of probability models, characterisation of
distributions, bivariate and multivariate weighted distribu-
tions and Data Mining.

M. H. Tahir is currently Professor of Statistics and Chair,
Department of Statistics at the Islamia University of
Bahawalpur (IUB), Pakistan. He received MSc and PhD
in Statistics in 1990 and 2010, respectively, from IUB. He
has been teaching in the Department of Statistics (IUB)
since 1992. His current research interests include gener-
alised classes of distributions and their special models, com-
pounded and cure rate models. Dr. Tahir has produced 50
MPhil and 03 PhDs. He is currently supervising 07 PhD stu-
dents and has more than 60 international publications to his
credit.

Dr. Muhammad Mansoor is currently Assistant Professor of
Statistics at Government Degree College Liaquatpur, Pak-
istan. He received MSc and MPhil degrees in Statistics from
the Islamia University of Bahawalpur (IUB) in 2005 and
2013. Mr. Mansoor has earned PhD in Statistics in 2017 from
IUB under the supervision of Dr. M.H. Tahir and has 23
publications to his credit.

Dr. Manat Mustafa received PhD in mathematics from Al-
Farabi Kazakh National University in 2012 in Almaty. He is
currently an assistant professor at the Department of Mathe-
matics at Nazarbayev University. Prior to joining Nazarbayev
University, he served in the School of Physics and Mathe-
matics at Nanyang Technological University in Singapore as
a research fellow in 2003–2009, he was a high school math
teacher at Republican Specialised Physics-Mathematics Sec-
ondary Boarding School for Gifted Students named after O.
Zhautykov in Almaty. His research interests include Mathe-
matical logic, computability theory, set theory, and Algebra
and operator theory.

ORCID

M. H. Tahir http://orcid.org/0000-0002-2157-3997
Manat Mustafa http://orcid.org/0000-0002-2967-9008

References

Aarset, M. V. (1987). How to identify bathtub hazard rate.
IEEE Transactions on Reliability, 36, 106–108.

Alzaatreh, A., Lee, C., & Famoye, F. (2013). A newmethod for
generating families of continuous distributions. Metron,
71, 63–79.

Arnold, B. C., Balakrishnan, N., & Nagarajah, H. N. (2008).
A first course in order statistics. New York: Wiley.

Barlow, R. E., & Campo, R. A. (1975). Total time on test pro-
cesses and applications to failure data analysis. In: R. E.
Barlow, J. B. Fussel, &N. D. Singpurwalla (Eds.), Reliability
and fault tree analysis (pp. 451–481). Philadelphia: Society
for Industrial and Applied Mathematics.

Bjerkedal, T. (1960). Acquisition of resistance in guinea pigs
infected with different doses of virulent tubercle bacilli.
American Journal of Hygiene, 72, 130–148.

Dey, A. K., & Kundu, D. (2009). Discriminating among the
log-normal,Weibull and generalized exponential distribu-
tions. IEEE Transactions on Reliability, 58, 416–424.

Gupta, R. C., Gupta, P. I., & Gupta, R. D. (1998). Modeling
failure time data by Lehmann alternatives. Communica-
tions in Statistics – Theory and Methods, 27, 887–904.

Gupta, R. D., & Kundu, D. (1999). Generalized exponential
distribution. Australian & New Zealand Journal of Statis-
tics, 41, 173–188.

Gupta, R. D., & Kundu, D. (2001a). Generalized exponen-
tial distribution: An alternative to Gamma and Weibull
distributions. Biometrical Journal, 43, 117–130.

Gupta, R. D., & Kundu, D. (2001b). Generalized exponential
distribution: Different methods of estimations. Journal of
Statistical Computation and Simulation, 69, 315–337.

Gupta, R. D., & Kundu, D. (2002). Discriminating between
the Weibull and the GE distributions. Computational
Statistics and Data Analysis, 43, 179–196.

Gupta, R. D., & Kundu, D. (2003). Closeness of gamma and
generalized exponential distributions. Communications in
Statistics– Theory and Methods, 32, 705–721.

Gupta, R. D., & Kundu, D. (2004). Discriminating between
the gamma and generalized exponential distributions.
Journal of Statistical Computation and Simulation, 74,
107–121.

Gupta, R. D., & Kundu, D. (2006). On comparison of the
Fisher information of the Weibull and GE distributions.
Journal of Statistical Planning and Inference, 136, 3130–
3144.

Gupta, R. D., & Kundu, D. (2007). Generalized exponential
distribution: Existing results and some recent develop-
ments. Journal of Statistical Planning and Inference, 137,
3537–3547.

Gupta, R. D., & Kundu, D. (2008). Generalized exponential
distribution: Bayesian Inference. Computational Statistics
and Data Analysis, 52, 1873–1883.

Gupta, R. D., & Kundu, D. (2011). An extension of gener-
alized exponential distribution. Statistical Methodology, 8,
485–496.

Kenney, J., & Keeping, E. (1962). Mathematics of statistics
(Vol. 1, 3rd ed.). Princeton, NJ: Van Nostrand.

Kundu, D., Gupta, R. D., & Manglick, A. (2005). Discrimi-
nating between the log-normal and the generalized expo-
nential distributions. Journal of Statistical Planning and
Inference, 127, 213–227.

Lehmann, E. L. (1953). The power of rank tests. Annals of
Mathematical Statistics, 24, 23–43.

Moors, J. J. A. (1998). A quantile alternative for kurtosis. The
Statistician, 37, 25–32.

http://orcid.org/0000-0002-2157-3997
http://orcid.org/0000-0002-2967-9008


STATISTICAL THEORY AND RELATED FIELDS 79

Nadarajah, S. (2011). The exponentiated exponential distri-
bution: A survey. AStA Advances in Statistical Analysis, 95,
219–251.

Nadarajah, S., & Kotz, S. (2006a). The exponentiated-type
distributions. Acta Applicandae Mathematica, 92, 97–111.

Nadarajah, S., & Kotz, S. (2006b). The beta exponential dis-
tribution. Reliability and Engineering System Safety, 91,
689–697.

Pakyari, R. (2010). Discriminating between generalized
exponential, geometric extreme exponential and Weibull
distribution. Journal of Statistical Computation and Simu-
lation, 80, 1403–1412.

Ristić, M. M., & Balakrishnan, N. (2012). The gamma-
exponentiated exponential distribution. Journal of Statis-
tical Computation and Simulation, 82, 1191–1206.

Shannon, C. E. (1948). A mathematical theory of communi-
cation. Bell System Technical Journal, 27, 379–432.

Smith, R. L., & Naylor, J. C. (1987). A comparison of
maximum likelihood and Bayesian estimators for the
three-parameter Weibull distribution. Applied Statistics,
36, 358–369.

von Mises, R. (1936). La distribution de la plus grande de n
valeurs. Revue Mathematique de lUnion Interbalcanique, 1,
141–160.

Appendix

The elements of the 3 × 3 observed information matrix
J(�) = {Urs} (for r, s = c,α, λ) are given by

Ucc = − n
c2

+
n∑
i=1

[− log(1 − zi)]c{log[− log(1 − zi)]}2,

Ucα =
n∑

i=1

[
z′iα

(1 − zi) log(1 − zi)−1

]

−
n∑
i=1

[
[log(1 − zi)−1]cz′iα

(1 − zi) log(1 − zi)−1

+ c[log(1 − zi)−1]c−1z′iα{log[log(1 − zi)−1]}
(1 − zi)

]
,

Ucλ =
n∑

i=1

[
z′iλ

(1 − zi) log(1 − zi)−1

]

−
n∑
i=1

[ [
log(1 − zi)−1]c z′iλ

(1 − zi) log(1 − zi)−1

+ c[log(1 − zi)−1]c−1z′iλ{log[log(1 − zi)−1]}
(1 − zi)

]
,

Uαα = − n
α2 +

n∑
i=1

[
(1 − zi)z′′iα + (z′iα)2

(1 − zi)2

]

+ (c − 1)
n∑

i=1

⎡⎢⎢⎣
(1 − zi) log(1 − zi)−1z′′iα − (z′iα)2

[1 + log(1 − zi)]
[(1 − zi) log(1 − zi)−1]2

⎤⎥⎥⎦
− c

n∑
i=1

[
[log(1 − zi)−1]c−1z′′iα

(1 − zi)

+(c − 1)(z′
iα)2[log(1 − zi)−1]c−2

+ [log(1 − zi)−1]c−1(z′iα)2

(1 − zi)2

]
,

Uαλ = 1
α

n∑
i=1

(
z′iλ
zi

)
+

n∑
i=1

[
(1 − zi)z′′iαλ + z′iαz′iλ

(1 − zi)2

]

+ (c − 1)
n∑
i=1

⎡⎢⎢⎣
(1 − zi) log(1 − zi)−1z′′iαλ−z′iαz′iλ[1 + log(1 − zi)]
[(1 − zi) log(1 − zi)−1]2

⎤⎥⎥⎦
− c

n∑
i=1

[
[log(1 − zi)−1]c−1z′′αλ

(1 − zi)

+(c − 1)z′
iαz

′
iλ[log(1 − zi)−1]c−2

+ [log(1 − zi)−1]c−1z′′iαλ

(1 − zi)2

]
,

Uλλ = − n
λ2

− (α − 1)
n∑

i=1

[
x2i e

−λxi

(1 − e−λxi)2

]

+
n∑
i=1

[
(1 − zi)z′′iλ + (z′iλ)

2

(1 − zi)2

]

+ (c − 1)
n∑
i=1

⎡⎢⎢⎣
(1 − zi) log(1 − zi)−1z′′iλ − (z′iλ)

2

[1 + log(1 − zi)]
[(1 − zi) log(1 − zi)−1]2

⎤⎥⎥⎦ ,

where

z′iα = ∂zi
∂α

= (1 − e−λxi)α log(1 − e−λxi),

z′iλ = ∂zi
∂λ

= αxie−λxi(1 − e−λxi)α−1,

z′′iα = ∂2zi
(∂α)2

= (1 − e−λxi)α[log(1 − e−λxi)]2,

z′′iλ = ∂2zi
(∂λ)2

= αx2i e
−λxi(1 − e−λxi)α(α e−λ xi − 1),

z′′iαλ = ∂2zi
∂α∂λ

= xi e−λxi(1 − e−λxi)α−1

× [1 + log(1 − e−λxi)α].
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