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ABSTRACT
Recently deep learning has successfully achieved state-of-the-art performance onmany difficult
tasks. Deep neural networks allow for model flexibility and process features without the need
of domain knowledge. Advantage learning (A-learning) is a popular method in dynamic treat-
ment regime (DTR). It models the advantage function, which is of direct relevance to optimal
treatment decision. No assumptions on baseline function are made. However, there is a paucity
of literature on deep A-learning. In this paper, we present a deep A-learning approach to esti-
mate optimal DTR. We use an inverse probability weighting method to estimate the difference
between potential outcomes. Parameter sharing of convolutional neural networks (CNN) greatly
reduces the amount of parameters in neural networks, which allows for high scalability. Convexi-
fied convolutional neural networks (CCNN) relax the constraints of CNN for optimisationpurpose.
Different architectures of CNN and CCNN are implemented for contrast function estimation.
Both simulation results and application to the STAR*D (Sequenced Treatment Alternatives to
Relieve Depression) trial indicate that the proposedmethods outperform penalised least square
estimator.
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1. Introduction

Optimal treatment regime aims to tailor medical
treatment by taking into account patients’ hetero-
geneity. Compared to the traditional ‘one-size-fits-all’
approach, optimal treatment regime can individualise
treatment and get optimal outcome for each patient.
Different treatments include differences in treatment
type and dosage level variation. For some diseases,
treatment adjustment is required through the entire
treatment process and multiple treatment selections
are needed. Dynamic treatment regime (DTR) aims
to select a sequence of treatments at multiple time
points for each patient based on patient’s character-
istics. By following these rules, the best (maximal)
response over the entire population can be achieved.
One difficulty in DTR estimation is for each patient
at each decision point, we only observe the response
of one treatment option. The potential outcomes of
other treatments are missing. Many approaches have
been proposed to solve this problem such as Q-
learning (Watkins, 1989; Watkins & Dayan, 1992) and
A-learning (Murphy, 2003). In this paper, we propose
a new method to estimate optimal DTR using deep
A-learning.

Deep learning has been widely used in many fields
such as game playing (Mnih et al., 2013), finance (Ding,
Zhang, Liu, & Duan, 2015), robotics (Lenz, Lee, &
Saxena, 2015), control and operations research (Mnih
et al., 2015), and language processing (Collobert &

Weston, 2008). There are many successful examples
of implementing DNN to solve challenging problems.
Google Deepmind’s AlphaGo, a program using deep
neural networks to play the Go game, won 99.8%
of the games against other computer programs and
won all five games against the European champion
(Silver et al., 2016). NVIDIA have implemented deep
learning technique to achieve self-driving car (Bojarski
et al., 2016). Using convolutional neural networks
(CNN) and end-to-end learning, goals like simultane-
ous localisation and mapping and movement planning
can be achieved. Besides implementations, theoretical
results have been obtained. Pinkus (1999) and Hornik,
Stinchcombe, and White (1989) discussed theoretical
results of multilayer feedforward perceptron (MLP)
approximation. Choromanska,Henaff,Mathieu, Arous,
and LeCun (2015) have shown that as long as the size
of neural network is large enough, the performances
of any local minimum and global minimum are very
similar on testing datasets.

CNN have its own advantages due to parameter
sharing and local connectivity. The parameters of each
filter are shared across patches. It greatly reduces the
number of parameters. LeCun, Bottou, Bengio, and
Haffner (1998) first successfully implemented CNN
in handwritten digit recognition and lowercase words
recognition. Since then many works have been done on
CNN. In ImageNet LSVRC-2012 contest, Krizhevsky,
Sutskever, and Hinton (2012) proposed a deep CNN
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with dropout and GPU implementation. It successfully
classifies more than 1,000,000 images into more than
1000 categories (LeCun, Bengio, & Hinton, 2015). Its
top-5 test error rate is 11% lower than second-place
solution. Zhang, Liang, and Wainwright (2016) used
low rank matrix to represent the filter of CNN in the
reproducing kernelHilbert space (RKHS). They further
proposed convexified convolutional neural network
(CCNN) by relaxing the rank constraint to nuclear
norm constraint. The authors proved that under binary
classification case, its generalisation error has oracle
inequality. The author also compared several variants
of CCNN on image classification.

In this paper, we combine deep CNN with A-
learning. The value functions estimated by CCNN and
CNN are compared with an A-learning based penalised
least square (PLS) estimator. The rest of the paper is
organised as follows. In Section 2, we briefly discuss
popular DTR techniques in the literature. We formu-
late the A-learning based CCNN andCNN in Section 3.
The detailed CCNN and CNN algorithms are included.
Deep A-learning is extended to DTR estimation using
backward induction. We apply the proposed meth-
ods to a data from the STAR*D (Sequenced Treat-
ment Alternatives to Relieve Depression) clinical trial
in Section 4. Network architecture and model training
details are discussed. Section 5 gives conclusion and
lists of avenues for future research.

2. Literature review

2.1. Notation and assumption

Denote the predictor vector available at the kth time
point by Xk, the treatment at the jth time point as
Ak, k = 1, 2, . . . ,K, the final observed outcome as Y .
The bar notation represents a sequence of past infor-
mation, e.g. Āk = {A1,A2, . . . ,Ak}. A0 is null. Let dk
denote treatment regime at kth time point and the
asterisk notation represents optimal decision rules.
There are several common assumptions needed in esti-
mating optimal DTR, for example, see Basu (1980),
Robins (1997) and Schulte, Tsiatis, Laber, and David-
ian (2014). To be specific, we need

(1) No unmeasured confounder assumption:

Ak ⊥ Y∗k (a) | {X1,A1,X2,A2, . . . ,Xk},
a ∈ ψj(X̄k, Āk−1) ∀ k = 1, 2, . . .K.

Here Y∗k (a) denotes the potential outcome given
treatment a is received.ψk(X̄k, Āk−1) is all possible
treatments given medical and treatment history.
This assumes that Xk contains sufficient informa-
tion thus all predictors that interact with treat-
ment have been observed. No unmeasured con-
founder assumption holds for sequentially ran-
domised experiments.

(2) Positivity assumption: The treatment sequences
following DTR can occur. Positivity assumption
can be summarised as

P(Ak = a | X̄k, Āk−1) > 0,

a ∈ ψk(X̄k, Āk−1) ∀ k = 1, 2, . . .K.

(3) Stable unit treatment assumption (SUTVA): It
assumes that the outcome of a patient is only influ-
enced by the treatment(s) he or she receives. There
is no interference between subjects. It also assumes
that for each treatment there is one unique version.
SUTVA can be summarised as

Yk =
∑

a∈ψk(X̄k,Āk−1)

Y∗k (a)I(Ak = a)

∀ k = 1, 2, . . .K.

When the above assumptions hold, the optimal DTR
can be estimated based on observed data. Next we will
introduce two popular DTR estimation techniques.

2.2. Q-learning

Watkins (1989) proposedQ-learning. It uses incremen-
tal dynamic programming to learn optimal action. Q-
function reflects the expected outcome if at the kth
time point treatment ak is received and at any later
time points the optimal treatments are received. Value
function represents the expected outcome if at the
kth and any later time points the optimal treatments
are received. It can be estimated by solving estimat-
ing equations. The optimal decision rule d∗ can be
estimated as follows:

d∗k(X̄k, Āk−1) = argmax
Ak:pk(Ak|X̄k,Āk−1)>0

Qk(X̄k, Āk),

for k = K,K − 1, . . . , 1.

Multi-stage treatment regime estimation is based
on backward induction proposed by Cowell, Dawid,
Lauritzen, and Spiegelhalter (2006). One drawback of
Q-learning is that it is not consistent if Q-function is
misspecified. In the next section, we will review A-
learning, which is less sensitive to model misspecifica-
tion.

2.3. Advantage learning

Murphy (2003) proposed Advantage learning (A-
learning). A-learning explicitly model the contrast
function/regret function. Regret function is the differ-
ence in potential outcome between actually received
and optimal treatment. Under the A-learning frame-
work, optimal decision rule can be derived directly.
From now on, we only consider the case where binary
treatment choices are available. The two treatments are
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denoted as 0 and 1 respectively. Contract function C
and optimal treatment d∗ are defined as follows:

Ck(X̄k, Āk−1) = Qk(X̄k, Āk−1,Ak = 1)

− Qk(X̄k, Āk−1,Ak = 0),

d∗k(X̄k, Āk−1) = I{Ck(X̄k, Āk−1) > 0}.
The contrast function can be estimated using g-
estimation proposed by Moodie, Richardson, and
Stephens (2007).

A-learning has the double-robustness property
which makes it suffer less from model misspecifica-
tion. A-learning makes it possible to build a complex
model for baseline function and an easy-to-interpret
model of contrast function. It reduces in the influence of
model misspecification and generates a relative simple
decision rule.

2.4. DTR estimation with variable selection

One way to improve decision accuracy of DTR is via
variable selection. Qian and Murphy (2011) extended
Q-learning using l1 -pls. However, it still suffers prob-
lems that rise from Q-learning. The estimator derived
from the two-step procedure may not be consistent if
the conditional meanmodel is misspecified. Lu, Zhang,
and Zeng (2013) considered model selection for esti-
mating optimal treatment regime via PLS. Shi, Song,
and Lu (2016) extended Lu’s method to cases where the
propensity score is unknown. They studied the theo-
retical properties of the proposed estimator given the
number of covariates is of the non-polynomial (NP)
order of the sample size. Shi, Fan, Song, and Lu (2017)
studied penalising A-learning estimation equations for
DTR. Besides Q- and A-learning frameworks, Zhao,
Zeng, Rush, and Kosorok (2012) proposed outcome
weighted learning (OWL). The optimal decision rule
is derived by maximising the value function estima-
tor. Song et al. (2015) proposed penalised outcome
weighted learning (POWL)which adds a variable selec-
tion module to OWL. Penalty functions include lasso
(Tibshirani, 1996) and SCAD (Fan & Li, 2001).

3. Method

3.1. Inverse probability weighted estimator

We start with one-stage optimal treatment regime esti-
mation and extend it to multi-stage in later section.
Zhang, Tsiatis, Davidian, Zhang, and Laber (2012)
proposed the inverse probability weighted estimator
(IPWE). The IPWE of EY(d∗) is

Cη,i = Aid∗(Xi, η)+ (1− Ai)[1− d∗(Xi, η)],

IPWE(η) = 1
n

n∑
i=1

Cη,i,Yi

π(Xi)Ai(1− π(Xi))1−Ai
.

η is the parameter in decision function d∗. π(Xi) is
the known propensity score of patient i receives treat-
ment 1. Optimal treatment regime is estimated bymax-
imising IPWE, which is equivalent to estimating the
contrast function:

ĈIPWE(Xi) = Ai

π(Xi)
Yi − 1− Ai

1− π(Xi)
Yi.

We now show that given Xi, ĈIPWE(Xi) is an unbiased
estimator of contrast function. Specifically,

E
{

Ai

π(Xi)
Yi − 1− Ai

1− π(Xi)
Yi | Xi

}

= E
{

Yi[1− π(Xi)]
π(Xi)[1− π(Xi)]

∣∣∣∣Ai = 1,Xi

}
π(Xi)

+ E
{

Yi[−π(Xi)]
π(Xi)[1− π(Xi)]

∣∣∣∣Ai = 0,Xi

}

[1− π(Xi)]

= E[Yi | Ai = 1,Xi]− E[Yi | Ai = 0,Xi].

ĈIPWE is the adjusted observed outcome based on
propensity score. It does not posit any parametric
assumptions on contrast function. A-learning requires
model specification of baseline function. The IPWE
does not make any assumptions on those nuisance
parameters either. Therefore it suffers less from model
misspecification issues. Next we propose a class of algo-
rithms which integrate IPWE with CNN.

3.2. Deep CNN for A-learning

3.2.1. Convolutional neural network
LeCun et al. (1998) proposed CNN. A CNN usually
consists of convolutional layers, pooling layers and fully
connected layers:

(1) Convolutional layer: The convolutional layer takes
in multi-dimensional features. In the convo-
lutional layer, weighted summation over each
region is calculated and a non-linear transfor-
mation (activation function) is operated on top
of the summation. Weight matrices (filters) are
shared across regions so that the number of
parameters is reduced. As a result, CNN is eas-
ier to train compared to fully connected neu-
ral network with similar number of neurons.
Common activation functions include Rectified
Linear Units (ReLUs): f (x) = max(x, 0), polyno-
mial functions and hyperbolic tangent function.
Krizhevsky et al. (2012) showed that ReLU can
reduce the training time than other common acti-
vation functions.

(2) Pooling layer: Pooling layer is usually placed
between convolutional layers. Local pooling can
summarise information within a neighbourhood.
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It reduces the dimension of feature space and
avoids overfitting. Two common pooling opera-
tions are maximum pooling and average pool-
ing. The pooling operation is operated on non-
overlapping or small-proportion-overlapping
regions, which controls the correlation between
hidden neurons. Smaller pooling size can keep
enough information and it is observed that for
maximum pooling, the best pooling stride are 2
and the best patch size are 2 or 3 (Karpathy, 2017).

(3) Fully connected layer: The fully connected layer
maps reshaped previous output to the final output
of neural network. It guarantees that all neurons
are connected to the output. Convolutional layer
and fully connected layer are mutually convertible.
For any convolutional layer, the corresponding
fully connected layer has sparse weight matrices.
Their non-zero blocks share similar patterns.

Recent research has shown that multilayer stack
architecture enhances both the abilities of capturing
discriminating and ignoring irrelevant aspects. Com-
pared to its shallow counterpart, deep neural network
is more capable of automatic feature representation
and capturing complicated relationships. Parameters
are estimated byminimising the empirical risk. Herewe
assume the loss function is convex and L-Lipschitz in
the output given any value of the target. Backpropaga-
tion is used for parameter update. It uses relationship
of gradient between parameters of consecutive layers to
train a neural network.

3.2.2. A-learning based CNN
In this section, we proposed a new approach, which
integrates CNN with IPWE of contrast function. The
input is all available information of each patient and
the output is an estimate of IPWE of contrast function
(Yi[Ai − π(Xi)])/(π(Xi)[1− π(Xi)]). We use least
square loss to measure the prediction performance of
CNN. The details of CNN are covered in Algorithm 1.

3.3. Deep CCNN for A-learning

3.3.1. Convexified convolutional neural network
Zhang et al. (2016) proposed CCNN. If the activation
function of CNN is smooth enough, the filter can be
represented using RKHS. Some good choices of kernel
functions include Gaussian kernel and inverse polyno-
mial kernel. The parameter sharing properties of CNN
result in low rank constraint, which can be relaxed to
nuclear norm constraint. The network can be learned
using convex optimisation techniques. Compared to
regular CNN, CCNN is computationally efficient and
has ideal theoretical properties.

Denote Xi ∈ Rd0 as input and yi as output of CNN,
i = 1, 2, . . . , n. crop1(Xi), . . . , cropP(Xi) are P func-
tions that create patches of size d1 from input,X is the

Algorithm 1: m-layer advantage learning
based CNN
Input : (Xi,Ai, yi)ni=1
Output: predictor {Hm(Xi)}ni=1 and optimal

treatment regime {I{Hm(Xi) > 0}}ni=1
1 (1)H0(Xi) = Xi, i = 1, . . . , n;
2 (2)for j← 1 tom do
3 if j < m then
4 Apply the convolution filter f convj and

the pooling filter f poolj on
Hj−1(Xi), i = 1, . . . , n to get
Hj(Xi), i = 1, . . . , n:

5 end
6 else
7 Apply the fully connected layer fm on

Hm−1(Xi), i = 1, . . . , n to get Hm(Xi);
8 end
9 end
10 (3) Use backpropagation to estimate all

parameters in (f convj , f poolj ), j=1, 2,. . . ,m− 1
and fm:

argmin
Hm

1
n

n∑
i=1

{
Yi[Ai − π(Xi)]
π(Xi)[1− π(Xi)]

−Hm(Xi)

}2
.

n× p observation matrix with training sample XT
i as

its ith row. {wj ∈ Rd1}rj=1 are weight vectors where r is
number of filters. βr×P is the filter-patch weight matrix.
g(X) is the output of two-layer CNN:

g(Xi) =
r∑

j=1

P∑
p=1

βj,pσ(cropp(Xi)
Twj). (1)

Under proper choices of activation function, there
exists ϕ s.t.

σ(〈wj, z〉) = 〈w̄j,ϕ(z)〉

holds where the RKHS induced by kernel function
κ contains filters z→ σ(〈w, z〉). The correspond-
ing feature map ϕ satisfies κ(z, z′) = 〈ϕ(z),ϕ(z′)〉. 〈〉
stands for inner product. w̄j ∈ l2(N) is a countable-
dimensional vector. Since the parameters are estimated
using only the training dataset, without loss of general-
ity, we assume w̄j ∈ {span(cropp(Xi))}p=1,2,...,Pi=1,2,...,n . Denote
the linear coefficients as γ j. Q(X ) ∈ RnP×s is the fac-
torisation of kernel matrix K of pairwise patches from
training dataset, i.e. K = Q(X )Q(X )T. Here s is the
dimension of random feature approximation, which is
explained in details in the next session. Q(Xi) ∈ RP×s
is the submatrix of Q(X ) corresponding to Xi. It can
be shown that 〈w̄j,ϕ(z)〉 = 〈Q∗(X )v(z),Q(X )Tγ j〉,
whereQ∗(X ) is the pseudo-inverse ofQ(X ), and v(z)
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is a vector with each position as κ(z, cropp(Xi)). Denote

Z(Xi)P×nP =

⎛
⎜⎜⎜⎜⎝
Q∗(X )v(crop1(Xi))

Q∗(X )v(crop2(Xi))

...
Q∗(X )v(cropP(Xi))

⎞
⎟⎟⎟⎟⎠ .

We have

g(Xi) =
r∑

j=1
β j

TZ(Xi)Q(X )Tγ j

= tr

⎛
⎝Z(Xi)

⎛
⎝ r∑

j=1
Q(X )Tγ jβ j

T

⎞
⎠

⎞
⎠ :

= tr(Z(Xi)B).

Two-layer CNN can be summarised as

ĝ = argmin
g∈G

n∑
i=1

L(g(Xi); yi)

G =
{
g : max

j∈[r]
‖wj‖2 ≤ Cσ (B1) and max

j∈[r]
||β j||2

≤ B2 and rank(B) = r} ,

(2)

where Cσ is a monotonically increasing function that
depends on the activation function, L represents the
loss function. To relax the non-convex constraints
in (2), Zhang et al. (2016) considered the following class
with the nuclear norm constraint:

ĝB = argmin
gB∈GB

n∑
i=1

L(gB(Xi); yi)

GB = {gB : ‖B‖∗ ≤ Cσ (B1)B2r}.
Since the optimisation problem is transferred to a con-
vex version, it is easier to compute and the resulting
estimator has better theoretical properties.

3.3.2. A-learning based CCNN
We proposed a new approach which integrates CCNN
with A-learning. The contrast function is estimated
by CCNN. For multi-layer CCNN, each layer is esti-
mated in the bottom-up order. The low rank out-
put of previous layer is fed to the next layer as
input. For the current layer, a two-layer network with
output Yi[Ai − π(Xi)]/π(Xi)[1− π(Xi)] is trained. If
the number of channel is greater than 1, the pro-
cessed patches are concatenated into one vector. This
multi-channel extension technique makes it possible
for extending two-layer CCNN to multi-layer CCNN.
Denote number of layers as m, nuclear norm regular-

isation parameters as R. The algorithm is summarised
in Algorithm 2.1

Q(X ) can be calculated using Random Fourier
Transformation proposed by Rahimi and Recht (2007):
fRFT : Rs0 → Rs

fRFT(Xi) =

⎛
⎜⎜⎜⎝

√
2
s cos(w1

TXi + b1)
...√

2
s cos(ws

TXi + bs)

⎞
⎟⎟⎟⎠ .

We choose Gaussian kernel with parameter γ , then
w1, . . . ,ws ∈ Rs0 are i.i.d. samples from N(0, 2γ Is0×s0)
and b1, . . . , bs are i.i.d. samples from Uniform[0, 2π].
Before training all weights and biases are randomly
initialised. During the training process, we use least-
square loss function to measure the difference between
IPWE and output of neural network. The optimisa-
tion with constraints in step 3 is achieved by projected
gradient descent proposed by Duchi, Shalev-Shwartz,
Singer, and Chandra (2008). Parameters are updated
using stochastic gradient descent followed by a projec-
tion onto the nuclear norm ball.

Algorithm 2: m-layer advantage learning
based CCNN
Input : (Xi,Ai, yi)ni=1
Output: predictor {tr(Z(Hm−1(Xi))B̂)}ni=1 and

optimal treatment regime{
I{tr(Z(Hm−1(Xi))B̂) > 0}

}n
i=1

1 H1(X ) =X ;
2 for j← 2 tom do
3 (1) Generate P(Hj−1(X )), patches of

Hj−1(X ).
4 (2) Use the random feature approximation

to get Q(Hj−1(X )), which corresponds to
the decomposition of kernel matrix of
P(Hj−1(X )) and Z(Hj−1(Xi)).

5 (3) Use projected gradient descent to
iteratively update B̂:

B̂ = argmin
||B||∗≤R

1
n

n∑
i=1

{
Yi[Ai − π(Xi)]
π(Xi)[1− π(Xi)]

−tr(Z(Hj−1(Xi))B)
}2 .
(3)6

(4) Use singular value decomposition
B̂ = U
VT to get the output Hj(Xi) with r
filters. Here Û is the first r columns of U,

Hj(Xi) = ÛT(Z(Hj−1(Xi)))
T.

7 end

1 The codes used in our paper are adapted from the source codes of Zhang et al. (2016) for CCNN.
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3.4. Multi-stage CCNN and CNN

This algorithm can be extended to DTR using back-
ward induction. The framework is identical for CNN
and CCNN: when estimating the decision rule for one
stage, the outcome is adjusted as if during any later
stages the optimal treatments have been received. The
potential outcome is shifted based on contrast function
estimation at each stage. Algorithm3 is the procedure of
multi-stage optimal treatment regime estimation with
K decision points. Note we use double subscripts here:
the first subscript represents stage and the second one
represents subject.

Algorithm3:K-stage advantage learning based
CCNN/CNN
Input : (ĀKi, X̄Ki, yi)

n
i=1

Output: DTR d∗k(Ā(k−1)i, X̄ki), i =
1, . . . , n, k = 1, . . . ,K

1 V(k+1)i = yi;
2 for k← K to 1 do
3 (1) Train CNN following Algorithm 1 or

CCNN following Algorithm 2, inputs are
(Āki, X̄ki,V(k+1)i)ni=1. The estimated
contrast function at stage k
fk(Ā(k−1)i, X̄ki) ={
Hk
m(Ā(k−1)i, X̄ki) for CNN

tr(Zk(Hk
m−1(Ā(k−1)i, X̄ki))B̂k) for CCNN.

Here superscripts are used to distinguish
different stages. The estimated optimal
treatment regime at stage k is

d∗k(Ā(k−1)i, X̄ki) = I{fk(Ā(k−1)i, X̄ki) > 0}.
(2)Update value function:

Vk(Ā(k−1)i, X̄ki)← Vk+1(Āki, X̄(k+1)i)

+ fk(Ā(k−1)i, X̄ki) ∗ (d∗k(Ā(k−1)i, X̄ki)

− Aki).

4 end

4. Simulation

We ran simulation studies to compare A-learning based
CCNN with existing popular methods. Our compar-
ison is based on two-stage situation. In training, val-
idation and testing datasets, covariates X1 and X2,
randomised treatment A1 and A2 are generated using
STAR*D data (Details of the dataset are covered in the
next section). This guarantees we simulate data that is
close to true distribution. The response variable Y is
generated as follows:

y = A1A2 + A2 sin(βT
2 [X1;X2])+ A1 sin(βT

1X1)+ ε,

where random error ε is generated independently from
normal distribution with mean zero and standard devi-
ation 0.1. X̄2 is obtained by stacking new informa-
tion at each stage according to chronological order,
i.e. [X1;X2]. We considered four scenarios with fixed
coefficients generated from different distribution com-
binations:

cases 1: β1i ∼ N(0, 1) ∀ i = 1, 2, . . . , dim(βT
1 ),

β2j ∼ N(0, 1)) ∀ j = 1, 2, . . . , dim(βT
2 );

cases 2: β1i ∼ U[0, 1] ∀ i = 1, 2, . . . , dim(βT
1 ),

β2j ∼ N(0, 1) ∀ j = 1, 2, . . . , dim(βT
2 );

cases 3: β1i ∼ N(0, 1) ∀ i = 1, 2, . . . , dim(βT
1 ),

β2j ∼ U[0, 1] ∀ j = 1, 2, . . . , dim(βT
2 );

cases 4: β1i ∼ U[0, 1] ∀ i = 1, 2, . . . , dim(βT
1 ),

β2j ∼ U[0, 1] ∀ j = 1, 2, . . . , dim(βT
2 ).

Here dim(X1) and dim([X1;X2]) are dimensions of
βT
1 and βT

2 , respectively, and each dimension follows
independent and identical distribution. U stands for
uniform distribution.

We compare the results of l1 -pls . Lasso penalty is
added to least square loss (4) to avoid overfitting. The
objective function (5) is optimised using scikit-learn
module in python (Pedregosa et al., 2011). For both
methods, tuning parameters are selected bymaximising
the value function estimation on validation dataset.

L(β) = 1
n

n∑
i=1

{
Yi[Ai − π(Xi)]
π(Xi)[1− π(Xi)]

− βTXi

}2
, (4)

min
β

L(β)+ λ
p+1∑
j=1
|βj|. (5)

For both methods, we assume the propensity score is a
constant and estimate it by sample mean. We ran simu-
lation using 50 Monte Carlo datasets and reported the
mean value function on testing dataset based on dif-
ferent estimated decision rules. Figure 1 summarised
simulation results.

Compared to l1-pls, CCNN has better performance
in terms of overall potential outcome. Value function
based on CCNN is larger than that of l1-pls: in case
1, the value ratio for CCNN and l1-pls is 1.34. We
also notice that the difference between two methods
in stage 2 is less than that of stage 1. There are sev-
eral reasons: the optimal decision rule at stage 1 is more
intricate than that of stage 2. Therefore neural network
outperforms l1-pls in approximation of this highly non-
linear function. Optimal decision rule at stage 2 can be
written as

d∗2(X2,A1) = I(A1 + sin(βT
2 [X1;X2]) > 0).

While optimal decision rule at stage 1 is more com-
plicated. Another possible explanation may be optimal
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Figure 1. Value function given patients received estimated optimal treatments for both stages.

decision rule at stage 1 involves fewer covariates, result-
ing in less noise and more signal. Nevertheless, when
the true decision function can be approximated well
enough by linear regression, it is possible that l1-plsmay
achieve better results.

5. Application to STAR*D study

In this section, we demonstrate the performance of the
proposed deep A-learning methods using the STAR*D
clinical trial dataset. We compared mean population
outcome following the estimated DTR using the deep
A-learning andPLS estimator based on a linear decision
rule.

5.1. Dataset

STAR*D is the largest and longest clinical trial to com-
pare the effectiveness of treatments formajor depressive
disorder. It has four levels. Each level lasts for 12 weeks.
The severity of depression is measured by Quick Inven-
tory of Depressive Symptomatology (QIDS) score. Par-
ticipants without adequate clinical response at the end
of each level would continue to the next stage. For level
1, all participants received citalopram. For each level
of 2–4, patients received one randomised treatment.
Covariates are collected from enrolment, IVR call, ROA
interviews, clinic visit and other events (such as suicide,
non-serious adverse event and protocol deviation). See
Fava et al. (2003) for design andmeasurement details of
STAR*D study.

5.2. Processing

In general, there are two types of options: switch to
a different medication or adding on to their existing
medication. Since all patients received the same treat-
ment at level 1 and the number of patients who entered
level 4 is too small, we only focus on the 299 patients
that has complete information at level 2 and level 3.
Table 1 is the list of treatment switch and treatment
augmentation options at the two levels. We take the

Table 1. Lists of STAR*D treatmentoptions at level 2 and level 3.

Type Level Treatment

Switch 2 Bupropion SR, Sertraline, Venlafaxine XR
Augmentation 2 Citalopram plus Bupropion SR, Citalopram plus

Buspirone
Switch 3 Nortriptyline, Mirtazapine
Augmentation 3 Lithium augmentation, Triiodothyronine

augmentation

negative level 3 16-item QIDS (QIDS-C16) as response
variable Y . The propensity score is assumed to be con-
stant and is estimated using samplemean. At each level,
we remove a few covariates with small variance and
reshape the covariate vector to a square matrix. The
inputs of CNN/CCNN for level 2 are a 17× 17 matrix
and a 19× 19 matrix for level 3 respectively. Local nor-
malisation and zero-phase component analysis (ZCA-
whitening) are incorporated for the input data. ZCA-
whitening proposed by Krizhevsky and Hinton (2009)
is a popular technique for pre-processing ofCNN. It can
preserve local properties. ZCA-whitening can produce
sphered and less-correlated covariates while transform-
ing the data as little as possible. ZCA is summarised
in (6) where 
 is the covariance matrix, whose eigen-
values are s1, s2, . . . , sr and close to the original variable
linearly independent eigenvectors are column vectors
of matrix P. The regularisation parameter ε is added to
avoid numerically unstable situations.


 = P

⎛
⎜⎜⎜⎝
s1

s2
. . .

sr

⎞
⎟⎟⎟⎠PT,

W = P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
s1 + ε

1√
s2 + ε

. . .
1√

sr + ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
PT,

Xtransform = XW. (6)
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Table 2. Evaluation results for estimated values on STAR*D
dataset.

Methods Number of layers
Value function
estimation

CCNN 2 −7.22
CCNN 3 −4.57
CNN 2 −7.58
CNN 3 −5.92
CNN 4 −4.16
l1-pls – −8.38

5.3. Architecture

The architecture of two-layer CNN is as follows: the fil-
ter size of convolutional layer is 3× 3 for stage 2 and
5× 5 for stage 3 since number of covariates at level 3
is larger. The average pooling is implemented in the
pooling layer with pooling patch size 2× 2 and pool-
ing stride 2. We do not use any padding techniques
in order to control overfitting. Then a fully connected
layer maps all neurons to a scalar. For m-layer CNN,
it has m−1 convolutional layers followed by one fully
connected layer. The number of filters is tuned by IPW
estimator of value function:

V̂IPW = 1
n

n∑
i=1

yiI{A1,i = d∗1(X1i),A2,i = d∗2(X̄2i,A1i)}
(1− π1(X1i))

1−A1,iπ1(X1i)
A1,i

(1− π2(X̄2i))
1−A2,iπ2(X̄2i)

A2,i

.

The architecture of CCNN is very similar to CNN
except that pooling is taken place before convolution
operation. This can reduce the number of parameters
in the neural network. The number of dimension of
random feature approximation, the scale parameter of
Gaussian kernel and the nuclear norm constraint are
tuned. Both CNN and CCNN are trained using mini-
batch gradient descent. The learning rate of CNN and
CCNN are 2e− 3 and 2e− 4, respectively. CNN is
implemented using tensorflow (Abadi et al., 2015).

5.4. Results

We compare the results based on neural network with
l1-pls. Shrinkage parameter λ is tuned based on BIC. To
measure the performance of estimated DTR, we split
the data into three parts: 60% of dataset to be train-
ing data, 20% as validation and 20% as testing. Since
parameters are randomly initialised, the accuracy of
DTR varies each time.We trained each architecture 100
times using the training dataset and choose the best net-
work based on themaximum value function estimation
on the validation dataset. We report the value function
estimation on the testing dataset. Table 2 summarised
the results of different architectures.

Based on the results, we have the following observ
ations. BothCNNandCCNNcan learn aDTR that out-
performs l1-pls. They use intricate functions to learn a
decision rule. It is more accurate than that of PLS esti-
mator. For fixed number of layers, CCNN has better

performance than CNN.We also notice that processing
has a great influence on decision accuracy. For example,
without zca-whitening, both CNN and CCNN would
have smaller estimated value function.

6. Conclusion and future work

In this paper, we propose a deep A-learning framework
which integrates CNN and CCNN with A-learning for
optimal treatment regime estimation. This method can
be applied to situations where medical images are avail-
able. Here our contrast function is estimated based on
IPW estimator. The new methods have the following
advantages. It uses intricate functions to learn decision
rules, which allows for model flexibility. The parame-
ter sharingmechanismmakes it computational efficient
and controls overfitting. Both simulation results and
STAR∗D application indicate that deep A-learning out-
performs PLS estimator. Although deep neural network
has shown its competency in intricate scenarios, lin-
ear approximation based Q-learning or A-learningmay
still lead to amore accurate and computational-efficient
solution when the true optimal decision rule is simple.

Complicated architectures which consist of multi-
ple subnetworks have demonstrated themselves to be
very powerful. An extension for the near future is to
study the performance of deep A-learning using these
architectures. Adaptive methods for hyperparameter
specification are also worth studying. Last but not least,
the performance of neural network would improve if
training sample size increases. In computer vision, tech-
niques such as rotation and flipping are widely used for
data augmentation. Another line of future work is to
investigate whether incorporating those techniques can
help further improve the performance of optimal DTR
estimation.
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