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ABSTRACT
We consider the estimation of causal treatment effect using nonparametric regression or
inverse propensity weighting together with sufficient dimension reduction for searching low-
dimensional covariate subsets. A special case of this problem is the estimation of a response
effect with data having ignorable missing response values. An issue that is not well addressed
in the literature is whether the estimation of the low-dimensional covariate subsets by suffi-
cient dimension reduction has an impact on the asymptotic variance of the resulting causal
effect estimator. With some incorrect or inaccurate statements, many researchers believe that
the estimation of the low-dimensional covariate subsets by sufficient dimension reduction does
not affect the asymptotic variance. We rigorously establish a result showing that this is not
true unless the low-dimensional covariate subsets include some covariates superfluous for esti-
mation, and including such covariates loses efficiency. Our theory is supplemented by some
simulation results.
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1. Introduction

Consider the estimation of an unknown parameter θ
based on a sample of size n from a given population.
Many estimators are of the form θ̂n(λ̂n), a function of
λ̂n that is an estimator of another parameter λ, where
both θ̂n and λ̂n are functions of the sample (e.g., Gong
& Samaniego, 1981; Randles, 1982). Under some con-
ditions both n1/2{θ̂n(λ̂n)− θ} and n1/2{θ̂n(λ)− θ} are
asymptotically normal with mean zero as n increases
to infinity. A question of both theoretical and prac-
tical interest is whether the estimation efficiency is
affected by the fact that λ is estimated, i.e., whether
θ̂n(λ̂n) and θ̂n(λ) have the same asymptotic variance.
Examples with equal asymptotic variance were given in
Raghavachari (1965), Adichie (1974), DeWet, and Van
Wyk (1979) and Randles (1982). Examples in which
θ̂n(λ̂n) and θ̂n(λ) have different asymptotic variances
can be found in Gong and Samaniego (1981) and Ran-
dles (1982).

In the problem of causal evaluation of treat-
ment (Hahn, 1998, 2004; Hirano, Imbens, & Rid-
der, 2003; Imbens, Newey, & Ridder, 2006; Rosenbaum
& Rubin, 1983; Wang & Chen, 2009; Wang, 2007),
the previously described issue is not well addressed in
the literature, and some incorrect or inaccurate state-
ments are given with incorrect proofs. The problem
can be described as follows. Let T be a binary treat-
ment indicator, X be a p-dimensional vector of pre-
treatment covariates and Yk be the potential outcome

under treatment T= k. We focus on the causal effect
θ = E(Y1)− E(Y0), other causal effects such as quan-
tile treatment effects can be similarly considered. Since
only one treatment is applied, what we can observe is
Y = TY1 + (1 − T)Y0, not both Y1 and Y0. Based on a
random sample from the distribution of (Y ,X,T), we
can estimate θ under the assumption that T ⊥ Yk |X
(Rosenbaum & Rubin, 1983), i.e., T and Yk are inde-
pendent conditional on X, k=0,1. In the special case
where Y0 ≡ 0, this problem reduces to the well-known
missing data problem where T=0 indicates a missing
Y1, θ = E(Y1), and T ⊥ Y1 |X is simply the missing at
random assumption.

Estimators based on nonparametric regression or
nonparametric inverse propensity weighting as
described in Section 2 require almost no model
assumption on (Y ,X) but they do not perform well
when the covariate dimension p is not very small. Since
frequently only a few linear combinations ofX are actu-
ally related with Yk, it is attractive to first find a lower
dimensional BTk X satisfying Yk ⊥ X |BTk X, where Bk
is a p × dk constant matrix with a small dk, k=0,1,
and then apply nonparametric regression or inverse
propensity weighting with X replaced by BTk X. If B0
and B1 are known, then the resulting estimator of θ
is denoted as θ̂n(λ) with λ = (B0,B1). However, λ is
usually unknown and a sufficient dimension reduction
method (e.g., Cook & Weisberg, 1991; Li, 1991; Xia
Tong, Li, & Zhu, 2002) is typically applied to estimate it
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by λ̂n = (B̂0, B̂1). Under some conditions, both θ̂n(λ̂n)
and θ̂n(λ) are asymptotically normal with mean zero
and hence the relevant question is whether the esti-
mation of λ by λ̂n affects the asymptotic efficiency of
estimating θ . There is no precise conclusion in the liter-
ature regarding this issue, but some researchers implic-
itly assume that using n1/2-consistent estimators of λ
is asymptotically the same as using the true λ. For
instance, Hu, Follmann, and Wang (2014) and Deng
& Wang (2017) claimed that θ̂n(λ̂n) and θ̂n(λ) have
the same asymptotic variance if B̂k is n1/2-consistent,
which is an incorrect conclusion in general. In a very
recent publication, Luo, Zhu, and Ghosh (2017) made
the same wrong conclusion.

We rigorously establish a result showing that
under the additional condition T ⊥ X |BTk X, k=0,1,
n1/2{θ̂n(λ̂n)− θ̂n(λ)} = op(1). Although this condition
is sufficient but not necessary for the asymptotic equiv-
alence between θ̂n(λ̂n) and θ̂n(λ), we provide an exam-
ple showing that without T ⊥ X |BTk X, k=0,1, θ̂n(λ̂n)
and θ̂n(λ) have different asymptotic variances. Our the-
ory is supplemented by simulation results showing that
θ̂n(λ̂n) can be substantially less efficient than θ̂n(λ).
However, our simulation results also show that finding a
Bk satisfying the additional conditionT ⊥ X |BTk Xmay
not be a good idea, because, although the resulting esti-
mator is not affected by the estimation of Bk, BTk X may
include some covariates superfluous for estimation and
have an unnecessarily high dimension to lose efficiency.

2. Theory

To study the asymptotic behaviour of θ̂n(λ̂n) and
θ̂n(λ), we first described three popular nonparamet-
ric estimators θ̂n. We adopt the notation in Section 1.
The regression method (Hu et al., 2014; Imbens
et al., 2006) estimates θ = E{E(Y1 |BT1X,T = 1)−
E(Y0 |BT0X,T = 0)} through estimating the function
mk(s) = E(Yk |BTk X = s,T = k) by the usual kernel
estimator m̂k(s) = ∑n

i=1 T
(k)
i YiKhk(B

T
k Xi − s)/

∑n
i=1

T(k)i Khk(B
T
k Xi − s), k=0,1, where T(1)i = Ti, T

(0)
i =

1 − Ti,Khk(s) = h−dk
k Kk(h−1

k s),Kk is adk-dimensional
kernel function and hk is the bandwidth. The regression
estimator of θ is

θ̂REG(λ) = 1
n

n∑
i=1

{m̂1(BT1Xi)− m̂0(BT0Xi)}.

The inverse propensity weighting method (Imai &
Ratkovic, 2014; Imbens, 2004; Kang & Schafer, 2007)
estimates the probability πk(s) = pr(T = k |BTk X = s)
by the kernel estimator π̂k(s) = ∑n

i=1 T
(k)
i Khk(B

T
k Xi −

s)/
∑n

i=1Khk(B
T
k Xi − s), k=0,1, and obtains the fol-

lowing estimator of θ by inverse propensity weighting,

θ̂IPW(λ) =
∑
k=0,1

(−1)k−1

{ n∑
i=1

T(k)i
π̂k(BTk Xi)

}−1

×
n∑

i=1

T(k)i Yi

π̂k(BTk Xi)
.

However, this estimator often does not have good
empirical performance and can be improved by the esti-
mator combining the regression and inverse propensity
weighting, the so-called augmented inverse propensity
weighting estimator,

θ̂AIPW(λ)

= 1
n

n∑
i=1

∑
k=0,1

(−1)k−1

×
{

T(k)i Yi

π̂k(BTk Xi)
− T(k)i − π̂k(BTk Xi)

π̂k(BTk Xi)
m̂k(BTk Xi)

}
.

In what follows, we use θ̂n(λ) to denote one of θ̂IPW(λ),
θ̂REG(λ) and θ̂AIPW(λ). Under the conditions T ⊥
Yk |X, Yk ⊥ X |BTk X, k=0,1, and some regularity con-
ditions, it has been shown that n1/2{θ̂n(λ)− θ} is
asymptotically normal with mean 0 and variance

σ 2(λ) = var{E(Y1 |BT1X)− E(Y0|BT0X)}

+ E

{
var(Y1 |BT1X)

pr(T = 1 |BT1X)
+ var(Y0 |BT0X)

pr(T = 0 |BT0X)

}

(1)

(e.g., Hu et al., 2014; Luo et al., 2017; Wang &
Chen, 2009; Wang, 2007).

Our main result is about the asymptotic behaviour
of θ̂n(λ̂n) with a n1/2-consistent estimator λ̂n of λ =
(B0,B1), which leads to a sufficient condition under
which θ̂n(λ̂n) and θ̂n(λ) are asymptotically equivalent.
In the following, vec(B) denotes a column vector whose
components are elements of a matrix B and op(1)
denotes a term converging to 0 in probability. A proof
of the following theorem is given in the appendix.

Theorem 2.1: Assume T ⊥ Yk |X, Yk ⊥ X |BTk X, k =
0, 1, and the regularity conditions in the appendix.

(i) If B̂k is a n1/2-consistent estimator of Bk, k = 0, 1,
then,

n1/2{θ̂n(λ̂n)− θ̂n(λ)}
=
∑
k=0,1

n1/2cTk vec(B̂k − Bk)+ op(1), (2)
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where

ck = −vec

⎡
⎣E
⎧⎨
⎩cov(T,X |BTk X)

πk(BTk X)
∂mk(s)
∂sT

∣∣∣∣∣
s=BTk X

⎫⎬
⎭
⎤
⎦ .

(3)
(ii) If

n1/2vec(B̂k − Bk)

= n−1/2
n∑

i=1
ψk(Xi,Yi,Ti)+ op(1) (4)

for some functions ψk with E{ψk(X,Y ,T)} = 0,
k = 0, 1, then, n1/2{θ̂n(λ̂n)− θ} is asymptotically
normal with mean 0 and variance

σ 2(λ)+ var

⎧⎨
⎩
∑
k=0,1

cTkψk(X,Y ,T)

⎫⎬
⎭

+ 2cov

⎧⎨
⎩
∑
k=0,1

cTkψk(X,Y ,T), S(X,Y ,T)

⎫⎬
⎭ ,

(5)

where σ 2(λ) is given by Equation (1) and

S(X,Y ,T) = T{Y1 − m1(BT1X)}
π1(BT1X)

− (1 − T){Y0 − m0(BT0X)}
π0(BT0X)

+ m1(BT1X)− m0(BT0X).

Condition (4) is satisfied for some sufficient dimen-
sion reduction methods (Hsing & Carroll, 1992; Zhu &
Ng, 1995).

Theorem 2.1 shows that the asymptotic difference
between θ̂n(λ̂n) and θ̂n(λ) is related to the magnitude
of B̂k − Bk, k=0,1, through Equation (2). From the
sufficient dimension reduction literature, B̂k − Bk is at
most of the order n−1/2. Hence, a sufficient condition
underwhich θ̂n(λ̂n) and θ̂n(λ) are asymptotically equiv-
alent is that both c0 and c1 in Equation (3) are equal
to 0. By formula (3), the only realistic situation where
ck = 0 is when cov(T,X |BTk X) = 0, which is implied
by T ⊥ X |BTk X.

Hence, if we choose Bk satisfying both Yk ⊥ X |BTk X
and T ⊥ X |BTk X, then θ̂n(λ̂n) and θ̂n(λ) are asymp-
totically equivalent, provided that Equation (4) holds.
However, we may pay a price for doing so, because
BTk X satisfying the additional requirementT ⊥ X |BTk X
may include some covariates superfluous for estima-
tion and, thus, have an unnecessarily high dimension
and lose efficiency. Let λ = (B0,B1) with Bk satisfying
Yk ⊥ X |BTk X, and let λ′ = (B′

0,B1
′) with B′

k satisfy-
ing both Yk ⊥ X |B′T

k X and T ⊥ X |B′T
k X. Although

θ̂n(λ̂
′
n) and θ̂n(λ′) are asymptotically equivalent, their

asymptotic variance is σ 2(λ′) given by Equation (1)
with Bk replaced by B′

k, which is larger than σ 2(λ)

when dim(B′
k) is larger than dim(Bk) due to the extra

requirement of T ⊥ X |B′T
k X. Furthermore, even when

θ̂n(λ̂n) is less efficient than θ̂n(λ) due to the estima-
tion of λ, it may still be more efficient than θ̂n(λ′). The
following is an example for illustration.

Example 2.2: Let X = (X(1),X(2))T, Y1 = X(1) + ε,
Y0 ≡ 0, where X(1) and X(2) are independent and uni-
form on the interval [0, 1], ε ∼ N(0, 1) and is indepen-
dent of X. Let pr(T = 1 |X) = exp(−2 + 3X(2))/{1 +
exp(−2 + 3X(2))}. Then BT1X = X(1) satisfying Y1 ⊥
X | BT1X, but not T ⊥ X | BT1X. Let B′T

1 X = X. Then
both Y1 ⊥ X | B′T

1 X and T ⊥ X | B′T
1 X hold. However,

dim(BT1X) = 1 < 2 = dim(B′T
1 X), and B′T

1 X contains
X(2) that is not useful for estimating θ = E(Y1). In this
case, σ 2(λ) = 1/12 + {pr(T = 1)}−1 = 2.612, smaller
thanσ 2(λ′) = 1/12 + E{1 + exp(2 − 3X(2))} = 3.424.
The c1 vector defined by Equation (3) is a two-
dimensional vector whose first component is 0 and
second component= −E{cov(T,X(2)|X(1))/pr(T = 1|
X1)} = −0.136 �= 0, so the asymptotic variance of
θ̂n(λ̂n) given by Equation (5) differs from σ 2(λ). Calcu-
lating the asymptotic variance in Equation (5) requires
further information about B̂1.

In next section, we provide some numerical results
for the variance in Equation (5).

3. Simulation

To support our theory we investigate the finite-sample
performances of θ̂REG and θ̂AIPW with two choices
of Bk discussed in Section 2, i.e., Bk satisfies Yk ⊥
X |BTk X with smallest possible dim(BTk X), and B′

k satis-
fies Yk ⊥ X |B′T

k X and T ⊥ X |B′T
k X with smallest pos-

sible dim(B′T
k X). We consider estimators using the true

Bk and B′
k as well as estimated Bk and B′

k by apply-
ing the sliced inverse regression method (Li, 1991).
According to Theorem 2.1, estimators using the true Bk
and estimated Bk have different asymptotic variances,
whereas estimators using the true B′

k and estimated
B′
k are asymptotically equivalent. We try two sample

sizes, n=200 and n=1000. As in Hu et al. (2014), the
nonparametric kernel estimators π̂k(Ŝk) and m̂k(Ŝk) are
computed using the rth order Gaussian product kernel
with standardised covariates. The bandwidth we used
here is hk = 1.5n−2/(2rk+dk) (Chen,Wan, &Zhou, 2015;
Hu et al., 2014).

We consider the following three simulation models.

(1) X = (X1,X2,X3)
T with independent N(0, 102)

components,Y0 = 10X1 + ε0,Y1 = 10 + X2 + ε1,
where εk’s are independent N(0, 1) and are inde-
pendent ofX, and pr(T = 1 |X) = exp(3X2)/{1 +
exp(3X2)}. The outcome models are linear in X
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Table 1. Relative bias (RB) and standard deviation (SD) of θ̂n based on 1000 simulations.

θ̂n(λ̂n) θ̂n(λ) θ̂n(λ̂
′
n) θ̂n(λ

′)

Method Model n RB SD RB SD RB SD RB SD

REG (1) 200 0.06 7.48 0.06 7.23 0.07 7.66 0.06 7.53
1000 0.03 3.39 0.03 3.22 0.04 3.31 0.03 3.30

(2) 200 0.03 0.37 0.02 0.29 0.06 0.58 0.05 0.41
1000 0.01 0.17 0.01 0.12 0.04 0.22 0.03 0.20

(3) 200 −0.01 0.52 −0.02 0.44 −0.04 0.66 −0.05 0.62
1000 0.01 0.19 −0.01 0.18 −0.01 0.23 −0.03 0.24

AIPW (1) 200 0.04 7.50 0.04 7.21 0.05 7.65 0.04 7.52
1000 0.02 3.40 0.02 3.23 0.03 3.31 0.02 3.29

(2) 200 0.02 0.34 0.01 0.28 0.05 0.57 0.05 0.41
1000 0.00 0.15 0.00 0.12 0.03 0.20 0.02 0.17

(3) 200 0.00 0.48 −0.01 0.43 −0.04 0.61 −0.05 0.60
1000 0.01 0.18 0.00 0.17 0.00 0.22 −0.03 0.22

Notes: λ = (B0, B1), Yk ⊥ X | BTkX , k = 0,1; λ′ = (B′
0, B

′
1), Yk ⊥ X | B′T

k X and T ⊥ X | B′T
k X , k = 0,1. λ̂n and λ̂′

n : estimates of λ and λ′ by sufficient dimension
reduction.

and the log-conditional treatment odds is linear in
X. Under thismodel, dim(BT0X) = dim(BT1X) = 1,
dim(B′T

0 X) = 2 and dim(B′T
1 X) = 1.

(2) X = (X1, . . . ,X7)
T with independentN(0, 1) com-

ponents, Y0 = 3X1 + 6X2 + 3X3 + ε0, Y1 = 10 +
3X1 + 6X2 + 3X3 + 3X4 + ε1, where εk’s are inde-
pendent N(0, 1) and are independent of X, and
pr(T = 1 |X) = exp(2X4)/{1 + exp(2X4)}. The
outcome models are linear in X and the log-
conditional treatment odds is linear in X. Under
this model, dim(BT0X) = dim(BT1X) = 1 but
dim(B′T

0 X) = dim(B′T
1 X) = 2.

(3) X = (X1, . . . ,X7)
T with independent N(0, 1)

components, Y0 = 3(X1 + X2 + 2X3 + 2X4)+
1.5X2

6 + ε0, Y1 = 12 + 3(X1 + X2 + 2X3 + X4 +
X5)+ 1.5X2

7 + ε1, where εk’s are independent
N(0, 1) and are independent of X, and pr(T =
1 |X) = exp(−2X5 + 0.7X2

6 − 0.5X2
7)/{1 + exp

(−2X5 + 0.7X2
6 − 0.5X2

7)}. The outcome models
are nonlinear in X and the log-conditional treat-
ment odds is also nonlinear inX. Under thismodel,
dim(BT0X) = dim(BT1X) = 2 but dim(B′T

0 X) =
dim(B′T

1 X) = 4.

Table 1 shows the simulated relative bias and stan-
dard deviation in each scenario based on 1000 simula-
tion runs. It can be seen that the simulation results are
in agreement with the asymptotic result (Theorem 2.1),
especially when n=1000, i.e., the SD of θ̂n(λ̂′

n) and
θ̂n(λ

′) are very close while the SD of θ̂n(λ̂n) and θ̂n(λ)
may be quite different. Although θ̂n(λ̂n) may be worse
than θ̂n(λ), it may be better than θ̂n(λ̂′

n); hence, it is not
a good idea to search for a λ̂′

n that does not affect the
asymptotic variance. Regarding the two different esti-
mationmethods, θ̂REG and θ̂AIPW have very comparable
performances.
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Appendix

The following regularity conditions are assumed for
Theorem 2.1, where conditions (1)–(4) are the same as con-
ditions C1–C5 in Wang & Chen (2009) with X replaced by
Sk = BTk X, k= 0,1:

(1) πk(Sk) = pr(T = k | Sk) is bounded away from 0 and 1.
(2) The propensity function πk(Sk), the Sk-density function

f (Sk) and mk(Sk) all have bounded partial derivatives
with respect to Sk up to order rk with rk ≥ 2, where rk
is the order of the kernelKhk .

(3) E(Y4
k ) < ∞.

(4) The smoothing bandwidth hk satisfies nhdkk → ∞ and
n1/2hrkk → 0 as n → ∞.

(5) The kernelKk is boundedup to the second-order deriva-
tive.

(6) The smoothing bandwidth hk satisfies nh2k → ∞ as
n → ∞.

Proof of Theorem 2.1: For purposes of simplicity, we focus
only on the proof for regression type estimator θ̂REG with
d0 = d1 = 1 and show the difference of first term in regres-
sion estimator between using true B1 and estimated B1.
Denote h1,K1,m1(·), π1(·), B1 as h,K,m(·), π(·), B, respec-
tively, and defineKh(·) = h−1K(·/h) in the following proof.
Let 	ij = Kh(B̂TXj − B̂TXi)− Kh(BTXj − BTXi); it can be
verified that

1
n

n∑
i=1

{m̂(BTXi)− m̂(B̂TXi)}

= 1
n

n∑
i=1

{∑n
j=1 TjYjKh(B̂TXj − B̂TXi)∑n
j=1 TjKh(B̂TXj − B̂TXi)

−
∑n

j=1 TjYjKh(BTXj − BTXi)∑n
j=1 TjKh(BTXj − BTXi)

}

= 1
n

n∑
i=1

{∑n
j=1 TjYjKh(Sj − Si)+∑n

j=1 TjYj	ij∑n
j=1 TjKh(Sj − Si)+∑n

j=1 Tj	ij

−
∑n

j=1 TjYjKh(Sj − Si)∑n
j=1 TjKh(Sj − Si)

}

= A1 + A2 + A3,

where

A1 = 1
n2

n∑
i=1

n∑
j=1

{
TjYj	ij

π(Si)f (Si)
− Tjm(Si)	ij

π(Si)f (Si)

}
,

A2 = − 1
n2

n∑
i=1

n∑
j=1

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TjYj	ij

π(Si)f (Si)
− TjYj	ij

n−1∑n
l=1 TlKh(Sl − Si)

+n−1∑n
l=1 Tl	il

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,
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A3 = 1
n2

n∑
i=1

n∑
j=1

Tj	ij

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m(Si)
π(Si)f (Si)

− m(Si)
n−1∑n

l=1 TlKh(Sl − Si)
+n−1∑n

l=1 Tl	il

+

m(Si)−∑n
l=1 TlYlKh(Sl − Si)/∑n

l=1 TlKh(Sl − Si)
n−1∑n

l=1 TlKh(Sl − Si)+ n−1∑n
l=1 Tl	il

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Using a Taylor expansion around BTXj − BTXi for 	ij and
plugging in A1, we have

A1 = 1
n2

n∑
i=1

n∑
j=1

{
TjYj	ij

π(Si)f (Si)
− Tjm(Si)	ij

π(Si)f (Si)

}

= (B̂ − B)T

n2

n∑
i=1

n∑
j=1

{
Tj{Yj − m(Si)}
π(Si)f (Si)

1
h

×
[
K′
(
BTXj − BTXi

h

)
Xj − Xi

h

]}
+ op(n−1/2)

= (B̂ − B)T

n2

n∑
i=1

n∑
j=1

Qij + op(n−1/2).

Denote A11 = (1/n2)
∑n

i=1
∑n

j=1 Qij and Ă11 = (1/n2)∑n
i=1
∑n

j=1 E(Qij |Xi,Yi,Ti). Simple calculation entails that

E
{
1
h
TjK′

(
Sj − Si

h

)(
Xj − Xi

h

) ∣∣∣∣ (Xi,Yi,Ti) = (xi, yi, ti)
}

= −E(TX | S = si)f ′(si)− xiπ(si)f ′(si)− xiπ ′(si)f (si)

+∂{E(TX | S = t)}
∂t

∣∣∣∣
t=si

f (si)+ op(1),

and

E
{
1
h
TjYjK′

(
Sj − si

h

)(
Xj − xi

h

) ∣∣∣∣ (Xi,Yi,Ti) = (xi, yi, ti)
}

= −E(TYX | S = si)f ′(si)− xiπ(si)m(si)f ′(si)

+ ∂E(TYX | S = t)
∂t

∣∣∣∣
t=si

f (si)

− xiπ ′(si)m(si)f (si)− xiπ(si)m′(si)f (si)+ op(1).

Therefore,

Ă11 = 1
n

n∑
i=1

{
cov(TX,Y | S = si)f ′(si)

+ ∂E(TYX | S = t)
∂t

∣∣∣∣
t=si

f (si)

− ∂E(TX | S = t)
∂t

∣∣∣∣
t=si

m(si)f (si)

− xiπ(si)m′(si)f (si)
}

+ op(1)

= − 1
n

n∑
i=1

{
cov(TX,Y | S = si)f ′(si)

+ ∂cov(TX,Y | S = t)
∂t

∣∣∣∣
t=si

f (si)

+ E(TX | S = si)m′(si)f (si)

− xiπ(si)m′(si)f (si)
}

+ op(1)

= (c1)p×1 + op(1),

where

c1 = −E
{
cov(TX,Y | S)f ′(S)+ ∂ cov(TX,Y | S)/∂Sf (S)

π(S)f (S)

}

+ E
[ {E(TX | S)− Xπ(S)}m′(S)

π(S)

]

= E
[
∂{π(S)−1}

∂S
cov(TX,Y | S)− cov(T,X | S)m′(S)

π(S)

]
.

It can be seen that the first term in c1 will be equal to 0 if
Y1 ⊥ X |S, while the second term in c1 will be equal to 0 if
T ⊥ X |S. Thus, it leads to c1 = 0 when both Y1 ⊥ X |S and
T ⊥ X |S hold.

Let A11j = (1/n)
∑n

i=1 Qij and Ă11j = (1/n)
∑n

i=1 E(Qij |
Xi,Yi,Ti). We have

E(A11 − Ă11)
2

= 1
n2

n∑
j=1

E(A11j − Ă11j)
2

+ 2
n(n − 1)

∑
j�=k

E(A11j − Ă11j)E(A11k − Ă11k)

= 1
n
E(A11j − Ă11j)

2 = 1
n
{E(A2

11j)− E(Ă2
11j)}

≤ 1
n
E(A2

11j) = op(1).

Thus, A11 = c1 + op(1), which leads to

n1/2A1 = cT1 {n1/2(B̂ − B)} + op(1).

For A2, we also use a Taylor expansion for	ij:

A2 = − 1
n2

n∑
i=1

n∑
j=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TjYj	ij

π(Si)f (Si)
− TjYj	ij

n−1∑n
l=1 TlKh(Sl − Si)

+n−1∑n
l=1 Tl	il

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= − 1
n2

n∑
i=1

n∑
j=1

⎡
⎢⎢⎢⎣TjYj

h
K′
(
BTXj − BTXi

h

)

× (B̂ − B)T
(
Xj − Xi

h

)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
π(Si)f (Si)

− 1
n−1∑n

l=1 TlKh(Sl − Si)
+n−1∑n

l=1 Tl	il

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦

+ op(n−1/2).
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We then decompose A2 by conditioning on indexes i, j, that
is, we define

Ă2 = − 1
n2

n∑
i=1

n∑
j=1

⎡
⎢⎢⎢⎣TjYj

h
K′
(
BTXj − BTXi

h

)

× (B̂ − B)T
(
Xj − Xi

h

)
× E

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
π(Si)f (Si)

− 1
n−1∑n

l=1 TlKh(Sl − Si)+
n−1∑n

l=1 Tl	il

∣∣∣∣∣∣∣∣∣
Xi,Yi,Ti

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦ .

Since

E

{
1
n

n∑
l=1

TlKh(Sl − Si) | Si
}

= π(Si)f (Si)+ op(1),

E

{
1
n

n∑
l=1

TlYlKh(Sl − Si) | Si
}

= π(Si)m(Si)f (Si)+ op(1),

using a similar decomposition method as A1, we can
also show n1/2A2

p−→ 0 and n1/2A3
p−→ 0. Theorem 2.1 is

proved. �
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