
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tstf20

Statistical Theory and Related Fields

ISSN: 2475-4269 (Print) 2475-4277 (Online) Journal homepage: https://www.tandfonline.com/loi/tstf20

Testing hypotheses under covariate-adaptive
randomisation and additive models

Ting Ye

To cite this article: Ting Ye (2018) Testing hypotheses under covariate-adaptive
randomisation and additive models, Statistical Theory and Related Fields, 2:1, 96-101, DOI:
10.1080/24754269.2018.1477005

To link to this article:  https://doi.org/10.1080/24754269.2018.1477005

Published online: 25 May 2018.

Submit your article to this journal 

Article views: 63

View related articles 

View Crossmark data

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tstf20
https://www.tandfonline.com/loi/tstf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24754269.2018.1477005
https://doi.org/10.1080/24754269.2018.1477005
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2018.1477005
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2018.1477005
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2018.1477005&domain=pdf&date_stamp=2018-05-25
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2018.1477005&domain=pdf&date_stamp=2018-05-25
https://www.tandfonline.com/doi/citedby/10.1080/24754269.2018.1477005#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/24754269.2018.1477005#tabModule


STATISTICAL THEORY AND RELATED FIELDS
2018, VOL. 2, NO. 1, 96–101
https://doi.org/10.1080/24754269.2018.1477005

Testing hypotheses under covariate-adaptive randomisation and
additive models

Ting Ye

Department of Statistics, University of Wisconsin Madison, WI, USA

ABSTRACT
Covariate-adaptive randomisation has a long history of applications in clinical trials. Shao, Yu,
and Zhong [(2010). A theory for testing hypotheses under covariate-adaptive randomization.
Biometrika, 97, 347–360] and Shao and Yu [(2013). Validity of tests under covariate-adaptive
biased coin randomization and generalized linear models. Biometrics, 69, 960–969] showed that
the simple t-test is conservative under covariate-adaptive biased coin (CABC) randomisation in
terms of type I error, and proposed a valid test using the bootstrap. Under a general additive
model with CABC randomisation, we construct a calibrated t-test that shares the same property
as the bootstrapmethod in Shao et al. (2010), but do not need large computation required by the
bootstrapmethod. Some simulation results arepresented to show the finite sampleperformance
of the calibrated t-test.
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1. Introduction

In clinical trials and medical studies, patients arrive
sequentially and must be treated immediately. When
two treatments are compared under simple randomisa-
tion (SR), patients are allocated randomly into two
treatment groups. The statistical inference may suf-
fer from the disadvantage of not balancing patients’
prognostic factors such as the age category, gender,
disease stage, prior chemotherapy and geographical
region that may influence the outcomes, although
simple randomisation still produces valid statistical
tests. Various randomisation methods have been pro-
posed in the literature and they have advantages such
as minimising imbalance between treatment groups,
reducing selection bias, minimising accidental bias
and improving efficiency in inference; see, for exam-
ple, Efron (1971), Taves (1974), Pocock Simon (1975),
Kalish Begg (1985), Aickin (2001), Weir Lees (2003),
Shao, Yu, Zhong (2010), Shao Yu (2013) and Ma,
Hu, Zhang (2015). A common characteristic of these
methods is the use of a randomised treatment allo-
cation that depends on covariates or prognostic fac-
tors but is conditionally independent of the outcomes
given the covariates used in randomisation. Thus, they
are called covariate-adaptive randomisation methods.
The current paper focuses on one such method that
applies the biased coinmethod (Efron, 1971) to patients
grouped by prognostic factors, which is referred to as
the covariate-adaptive biased coin (CABC) method by
Shao et al. (2010). Similar results can be obtained for
the minimisation procedure (Pocock & Simon, 1975;

Taves, 1974) and the stratified block randomisation
(Kalish & Begg, 1985), which together with the CABC
are the most popular covariate-adaptive randomisation
methods in clinical trials.

For any given randomisation method, statistical
tests valid under the particular randomisation scheme
should be used for testing the possible treatment effect.
A statistical test is said to be valid if the type I error
rate of the test is at most α, a given significance level,
at least in the limiting case when the total sample
size increases to infinity. The validity of various sta-
tistical tests under SR has been extensively studied
in the statistical literature. For covariate-adaptive ran-
domisation, however, there only exist a few theoretical
results about the validity of statistical tests (e.g. Ma
et al., 2015; Shao et al., 2010 and Shao & Yu, 2013),
although covariate-adaptive randomisation has been
used in clinical trials for a long time and there are many
empirical results regarding properties of tests under
covariate-adaptive randomisation (e.g. Aickin, 2002;
Brikett, 1985; Forsythe, 1987; Hagino et al., 2004; Weir
& Lees, 2003). As Rosenberger and Sverdlov (2008,
Section 4) pointed out in their review, ‘Very little the-
oretical work has been done in this area, despite the
proliferation of papers. The original source papers are
fairly uninformative about theoretical properties of the
procedures’.

Under linear and generalised linear models, Shao
et al. (2010) and Shao and Yu (2013), respectively,
derived valid tests for comparing two treatments under
CABC. Their tests are based on a modification of the
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tests developed under SR, where the modification is
to apply a bootstrap variance estimation method that
has a CABC component to address the variation in
CABC randomisation. This bootstrap test was shown
to be valid asymptotically and robust against misspeci-
fication of model and link function.

The purpose of this paper is to show that we can con-
struct an asymptotically valid test under CABCwithout
using the bootstrap by directly providing a consistent
variance estimator in a general additive model that
includes both linear and generalised linear models as
special cases. The new test shares the robustness prop-
erty with the bootstrap, but does not need the large
computation required by the bootstrap. The same idea
can be applied to the other two popular covariate-
adaptive randomisation methods in clinical trials, the
minimisation and stratified block randomisation.

2. Notation and preliminaries

Let N be the number of patients under two treatments,
Ii be the treatment indicator that equals j if patient i
is assigned to treatment j, j=0,1 and Yij be the out-
come of patient i under treatment j. For patient i, Yi =
IiYi1 + (1 − Ii)Yi0 is observed. Associated with patient
i, let Xi be a vector of covariates and prognostic fac-
tors and Zi be a function of Xi used in CABC, where
Zi is discrete with values zk, k = 1, . . . ,K, and K is
a fixed integer ≥ 2. We assume that (Yi0,Yi1,Xi), i =
1, . . . ,N, are independent and identically distributed
random vectors from some distribution.

Under SR, Ii’s are independent with P(Ii = 1) =
1/2 for all i and are independent of (Yi,Xi). With
a fixed constant p > 1/2, the biased coin method in
Efron (1971) assigns the ith patient according to

P(Ii = 1) =

⎧⎪⎨
⎪⎩
p, Di−1 < 0,
1/2, Di−1 = 0,
1 − p, Di−1 > 0,

i = 1, . . . ,N, where D0 = 0 and Di−1 is the difference
between the number of patients in treatment 1 and the
number of patients in treatment 0 after i−1 assign-
ments have been made. This assignment rule tends
to achieve balance between the numbers of patients
in two treatment groups, since p > 1/2 and Di−1 is
an imbalance metric. The CABC method applies the
biased coin within each category of patients with Zi =
zk, k = 1, . . . ,K. The motivation is to achieve balance
between treatment groups for each prognostic factor.
A characteristic of CABC, which is common for all
covariate-adaptive randomisation methods, is that Ii’s
and (Yi1,Yi0)’s are conditionally independent given
Zi’s, although unconditionally Ii’s and (Yi1,Yi0)’s are
dependent.

A statistical test T is a function of observed
(Ii,Yi,Xi), i = 1, . . . ,N, constructed such that we reject

a given null hypothesis H0 if and only if T > cα , where
α is a given significance level and cα is a quantile of the
standard normal distribution or a t-distribution. T is
said to be (asymptotically) valid if, when H0 holds,

lim
N→∞ P(T > cα) ≤ α (1)

with equality holds for at least some cases.
One of the main results in Shao et al. (2010), fol-

lowed by Shao and Yu (2013), is that if a test T is con-
structed using covariatesXi’s under a correctly specified
model between Yi and Xi, and T is valid according
to Equation (1) under SR, then T is still valid under
CABC.

However, there are practical considerations under
which some covariates are not included in the construc-
tion of the test T. For example, including all covariates
may lead to changing a simple test procedure to a com-
plicated one, such as from one-way analysis of variance
to two-way analysis of variance; data in some discrete
covariate categories may be sparse so that including
these covariates may result in some bad behaviour of
the test. When Zi is not included in the construction
of T and CABC is used, the result in Shao et al. (2010)
indicates that the test is conservative in the sense that
limN→∞ P(T > cα) ≤ α0 < α with a fixed α0. The rea-
son for this is that typically T is a ratio of an estimated
effect θ̂ under SR divided by the standard error of θ̂ ;
although θ̂ is still asymptotically valid under CABC, the
standard error of θ̂ valid under SR overestimates that
under CABC.

To obtain a valid test under CABC, it suffices to
derive a standard error of θ̂ that is asymptotically con-
sistent, or equivalently a consistent variance estimator
of θ̂ . Shao et al. (2010) proposed a bootstrap vari-
ance estimator with a re-assigning treatment indica-
tors in bootstrapping. This bootstrapmethod, however,
requires a large amount of computation.

3. Themain result

We consider the following general additive model:

E(Yij|Xi) = μj + ψ(Xi), (2)

whereψ(·) is an unknown function satisfyingE{ψ(Xi)}
= 0 and E{ψ(Xi)

2} < ∞, and μj is the response mean
under treatment j=0,1. We consider either the two-
sided hypotheses H0 : μ1 = μ0 versus H1 : μ1 �= μ0,
or the one-sided hypotheses H0 : μ1 ≤ μ0 versus H1 :
μ1 > μ0.

The two sample t-test is

TS = Ȳ1 − Ȳ0

(S21/n1 + S20/n0)1/2
(3)

or the absolute value of TS, where n1 = ∑N
i=1 Ii and

n0 = ∑N
i=1(1 − Ii) are, respectively, the numbers of
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patients in treatment groups 1 and 0, and Ȳj and S2j
are, respectively, the sample mean and sample variance
within treatment j.

Suppose that CABC is applied within each group
formed by Zi, which is a discrete function of Xi tak-
ing values z1, . . . , zK with a fixed K ≥ 2. As proved
in Shao et al. (2010), TS is conservative under CABC
because CABC does not introduce any bias and the
variance estimator S21/n1 + S20/n0 in Equation (3) does
not account for the correlation between Ȳ1 and Ȳ0.
They then suggested applying a particular bootstrap
method to construct a consistent variance estimator
of var(Ȳ1 − Ȳ0) under CABC, which leads to a valid
bootstrap t-test, denoted as TB.

Explicitly, as shown in the appendix, undermodel (2)
and CABC,

(Ȳ1 − Ȳ0)− (μ1 − μ0)

2τψ |Z/N1/2 →D N(0, 1), (4)

where →D is convergence in distribution,

τ 2ψ |Z = E[var{ψ(Xi)|Zi}] + σ 2
ε , (5)

and σ 2
ε = var(Yij − E(Yij|Xi)). An interesting observa-

tion is that, under model (2) and the null hypothesis,

E[var(Yij|Zi)] = τ 2ψ |Z , (6)

which can be consistently estimated by

τ̂ 2ψ |Z = 1
N

K∑
k=1

mkS2k, (7)

where S2k is the sample variance of Yi within Z = zk and
mk is the number of subjects in the data set withZ = zk,
k = 1, . . . ,K. The proof is given in the appendix. This
alternative way of obtaining a consistent variance esti-
mator is not only computationally easy but also robust
against any model misspecification. The two sample
t-test with variance estimated by (7) is

TSC = (Ȳ1 − Ȳ0)

2τ̂ψ |Z/N1/2 , (8)

which is named as a calibrated t-test.
Consider the following working model,

E(Yij|Zi) = μj + βZi. (9)

This model is a special case of model (2) but it is not
necessary correct. Wald’s test statistic under SR is

TW = Ŷ1 − Ŷ0

(Ŝ21/n1 + Ŝ20/n0)1/2
, (10)

where Ŷj and Ŝ2j are, respectively, the sample mean and
sample variance based on (Yi − β̂Zi)’s under treatment
j, and β̂ is the least square estimator of β assuming

model (9). As shown in Shao Yu (2013), under CABC
and model (2),

β̂ = β0 + op(1), β0 = cov{Zi,ψ(Xi)}
var(Zi),

(11)

and

(Ŷ1 − Ŷ0)− (μ1 − μ0)

2τψ |Z/N1/2 →D N(0, 1). (12)

Under model (2) and CABC,

Ŝ21
n1

+ Ŝ20
n0

=
4τ 2ψ
N

+ op
(
1
N

)
, (13)

where

τ 2ψ = var{ψ(Xi)− β0Zi} + σ 2
ε . (14)

Since τ 2ψ in Equation (14) and τ 2ψ |Z in Equation (5) are
related by

τ 2ψ = var{E[ψ(Xi)− β0Zi|Zi]} + τ 2ψ |Z , (15)

results (12)–(15) show that Wald’s test TW is conserva-
tive under CABC unless E{ψ(Xi)− β0Zi|Zi} is a con-
stant, i.e. ψ(Xi)− β0Zi is independent of Zi. Thus,
Wald’s test TW is not valid in the sense of Equation (1),
unless the working model (9) is a correct model.

If we borrow the idea of consistently estimating the
variance of Ŷ1 − Ŷ0 under H0, a calibrated Wald’s test
can also be constructed as

TWC = (Ŷ1 − Ŷ0)

2τ̂ψ |Z/N1/2 , (16)

which is valid and asymptotically equivalent to its coun-
terpart TSC in Equation (8).

This calibrated variance idea can also be extended to
the case where workingmodel (9) is replaced by a more
complicated one.

4. Simulation results

4.1. Linearmodel

A simulation study was carried out to examine the type
I error of the calibrated t-test TSC and Wald’s test TWC
under CABC along with five other tests: the two sample
t-test TS under SR, Wald’s test TW under SR, the two
sample t-test under CABC, Wald’s test under CABC
and the bootstrap t-test TB under CABC.

In the simulation study, the significance level is
α = 5%; εij is N(0, 1); the probability p in CABC is
2/3; the sample size N is 200; the bootstrap variance
estimator VB is approximated by Monte Carlo with
B=200; and the simulated type I error and power are
based on 10,000 runs and 2000 runs, respectively. The
simulation setting is Yij = (μ1 − μ0)Ii + Zi1 + 2Zi2 −
2Zi1 ∗ Zi2 + εij, where Zi1 and Zi2 are both binary with
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Table 1. Simulation power in % under linear model (α = 5%,
N= 200, 10,000 simulation runs whenμ1 − μ0 = 0, 2000 sim-
ulation runs whenμ1 − μ0 �= 0).

SR CABC

μ1 − μ0 TS TW TS TW TB TSC TWC

0 4.97 4.96 1.91 3.06 5.37 5.49 5.35
0.1 8.40 10.15 5.00 7.40 11.50 11.40 11.35
0.2 19.82 24.62 16.82 22.12 27.83 28.38 28.88
0.3 40.90 48.00 37.65 46.55 53.85 54.70 54.75
0.4 62.85 70.70 64.00 72.40 78.05 78.55 78.40
0.5 81.30 88.35 85.10 90.50 93.20 93.25 93.55
0.6 92.95 97.10 96.50 97.85 98.65 98.80 98.90
0.7 98.05 99.25 99.30 99.75 99.80 99.85 99.75
0.8 99.55 99.90 99.85 99.85 99.90 99.90 99.95
0.9 99.90 100.00 100.00 100.00 100.00 100.00 100.00

Notes: TS : two sample t-test; TB : bootstrap t-test; TW : Wald’s test, in this case,
one-way analysis of covariance test; TSC : calibrated t-test, with variance
estimated by τ̂ 2ψ |Z ; TWC : calibrated Wald’s test, with variance estimated

by τ̂ 2ψ |Z ; SR: simple randomisation; CABC: covariate-adaptive biased coin.

P(Zi1 = 1) = P(Zi2 = 1) = 1/2. Both Zi1 and Zi2 are
used in theCABCand in the construction ofWald’s test,
but the interaction term is ignored in the construction
of Wald’s test.

The simulation results and values of μ1 − μ0 are
shown in Table 1. A few conclusions fromTable 1 are:

1. The two sample t-test TS and Wald’s test TW
derived under the simplified working model are
conservative under CABC.

2. The type I errors of the bootstrap t-test TB, cal-
ibrated t-test TSC and calibrated Wald’s test TWC
under CABC are reasonably close to the nominal
level 5%, depicting the validity of all three tests, and
the consistency of τ̂ 2ψ |Z .

3. TB, TSC and TWC have almost the same empirical
power, which agrees with the asymptotic equiva-
lence of TB, TSC and TWC under CABC.

The advantage of the proposed bootstrap t-test is
that it directly estimates the variance of Ȳ1 − Ȳ0 by
Monte Carlo sampling, which performs well under
small sample size and is robust against any model mis-
specification. The one-way analysis of covariance test
is invalid under CABC if model is misspecified. But
the calibrated one-way analysis of covariance test is
robust against model misspecification, computation-
ally easy and performs well with regard to both type I
error and power. The calibrated t-test is computation-
ally easy, but has certain requirement on sample size for
the gap between variance estimator and var(Ȳ1 − Ȳ2) to
be ignorable.

4.2. Logistic model

The second simulation setting is logit(pij) = −1.5 +
(μ1 − μ0)Ii + Zi1 + 3Zi2 + 2Zi1Zi2, where Zi1 and Zi2
are both binary with P(Zi1 = 1) = P(Zi2 = 1) = 1/2.
Both Zi1 and Zi2 are used in the CABC and in the

Table 2. Simulation power in % under logistic model (α = 5%,
N= 200, 10,000 simulation runs whenμ1 − μ0 = 0, 2000 sim-
ulation runs whenμ1 − μ0 �= 0).

SR CABC

μ1 − μ0 TS TW TS TW TB TSC

0.0 5.25 5.01 1.13 5.03 5.24 5.75
0.1 5.57 6.00 1.44 5.82 5.79 6.41
0.2 6.84 8.44 2.27 8.05 8.42 8.98
0.3 9.13 12.34 4.21 12.08 12.15 12.90
0.4 12.72 17.53 6.93 17.91 17.84 18.67
0.5 17.82 25.35 10.39 24.90 23.54 25.05
0.6 20.80 33.30 18.05 35.15 33.25 34.35
0.7 27.51 43.22 25.10 44.68 42.17 43.32
0.8 35.34 53.16 33.33 55.27 52.76 54.27
0.9 43.30 63.20 44.35 66.30 64.25 65.80
1.0 52.05 73.95 55.50 75.40 73.70 74.60
1.1 60.59 81.88 66.01 82.43 80.87 81.93
1.2 69.80 87.75 74.90 88.30 86.90 87.50
1.3 77.36 92.87 82.83 92.72 91.37 91.92
1.4 83.05 95.55 88.10 95.40 94.35 94.80
1.5 88.55 97.29 91.67 97.34 96.59 96.84

Notes: TS : two sample t-test; TB : bootstrap t-test; TW : Wald’s test; TSC : cali-
brated t-test, with variance estimated by τ̂ 2ψ |Z ; SR: simple randomisation;
CABC: covariate-adaptive biased coin.

construction of Wald’s test, but the interaction term is
ignored in the analysis. The rest of the parameters are
the same as in Table 1.

The simulation results and values of μ1 − μ0 are
shown in Table 2. A few conclusions fromTable 2 are:

1. The two sample t-test is conservative underCABC,
while Wald’s test is valid though derived under the
simplified working model.

2. TSC is valid under CABC, indicating that under the
generalised linear model, the new variance estima-
tor τ̂ 2ψ |Z is still valid.

3. TB and TSC have almost the same power as Wald’s
test TW .
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Appendix. Proofs of (4)–(7)

Proof of (4): Applying result (7.9) in Efron (1971) to each
category defined by Zi and using the fact that E(Ii|Z) = 1/2
andE(nj|Z) = N/2, whereZ = {Z1, . . . ,ZN}, we obtain that
nj
N

− 1
2

= op(N−1/2) conditionally onZ , j = 0, 1. (A1)

Applying (A1), we obtain

Ȳ1 − Ȳ0 = μ1 − μ0 + 2
N

N∑
i=1

{Ii − (1 − Ii)}ψ(Xi)

+ 2
N

N∑
i=1

{Iiεi1 − (1 − Ii)εi0} + op(N−1/2).

Letting	i = ψ(Xi)− E{ψ(Xi)|Zi}, we obtain that

1
N

N∑
i=1

{Ii − (1 − Ii)}ψ(Xi)

= 1
N

N∑
i=1

{Ii − (1 − Ii)}	i

+ 1
N

N∑
i=1

{Ii − (1 − Ii)}E{ψ(Xi)|Zi}.

Applying result (7.9) in Efron (1971) to each category defined
by Zi and using the fact that E{ψ(Xi)|Zi} is discrete, we
conclude that the last term in the previous expression is

op(N−1/2) conditionally onZ . Thus,

Ȳ1 − Ȳ0 = μ1 − μ0 + 2
N

N∑
i=1

{Ii − (1 − Ii)}	i

+ 2
N

N∑
i=1

{Iiεi1 − (1 − Ii)εi0} + op(N−1/2).

The asymptotic mean of Ȳ1 − Ȳ0 is μ1 − μ0, which follows
from the fact that (	i, εi1, εi0)’s are conditionally indepen-
dent of I = {I1, . . . , IN} givenZ , E(εij|Z) = E(εij) = 0, and
E(	i|Z) = E{	i|Zi} = 0 by the definition of	i.

Since εij’s are of mean 0 and independent of (Z ,I),

cov

(
2
N

N∑
i=1

{Ii − (1 − Ii)}	i,

× 2
N

N∑
i=1

{Iiεi1 − (1 − Ii)εi0}
∣∣∣∣∣Z
)

= 0

and

var

(
2
N

N∑
i=1

{Iiεi1 − (1 − Ii)εi0}
∣∣∣∣∣Z
)

=
(

4
N2

N∑
i=1

{I2i var(εi1)+ (1 − Ii)2var(εi0)}
∣∣∣∣∣Z
)

= σ 2
ε E

(
4
N2

N∑
i=1

Ii + 4
N2

N∑
i=1
(1 − Ii)

∣∣∣∣∣Z
)

= 4σ 2
ε

N
.

Since 	i’s and I are conditionally independent given Z and
E{	i|Zi} = 0, we obtain that

var

(
2
N

N∑
i=1

{Ii − (1 − Ii)}	i

∣∣∣∣∣Z
)

= 4
N2 E

{
var

( N∑
i=1

{Ii − (1 − Ii)}	i |Z ,I)
∣∣∣∣∣Z
}

= 4
N2 E

{ N∑
i=1

{Ii − (1 − Ii)}2var{	i|Zi}
∣∣∣∣∣Z
}

= 4
N2

N∑
i=1

var{	i|Zi}

= 4V	
N

,

where V	 = N−1∑N
i=1 var{	i|Zi}. Therefore,

var(Ȳ1 − Ȳ0|Z) = 4
(
V	 + σ 2

ε

)
N

+ op(N−1)

and

var(Ȳ1 − Ȳ0) =
4τ 2ψ |Z
N

+ o(N−1)

Given Z , Ii’s and (	i, εi1, εi0)’s are conditionally indepen-
dent. Hence, by the central limit theorem and the above
results, the conditional distribution of

2
N1/2

N∑
i=1

[b{Ii − (1 − Ii)}	i + Iiεi1 − (1 − Ii)εi0]
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given (Z ,I), is asymptotically normal with mean 0 and vari-
ance 4(V	 + σ 2

ε ), which converges to 4τ 2ψ |Z by the law of
large number. Thus, conditionally on Z or unconditionally,
the quantity in (??) is asymptotically normal with mean 0 and
variance 4τ 2ψ |Z . �

Proof of (7): Without loss of generality, we assume that
underH0,μ1 = μ0 = 0 in the proof. From the fact that Ȳj =
μj + op(1),

S2k = 1
mk

N∑
i=1

Y2
ij I(Zi = zk)+ op(1),

where mk is the number of subjects satisfying Z = zk. Recall
that Yij’s and Zi’s are independent and identically distributed.
By the law of large numbers,

S2k = N
mk

E[Y2
ij I(Zi = zk)] + op(1) = E[Y2

ij |Zi = zk] + op(1).

Now that τ̂ 2ψ |Z can be expressed as N−1∑N
i=1 E[Y

2
ij |Zi] +

op(1), which together with the dominated convergence
theorem and the fact that N−1∑N

i=1 E{Y2
ij |Zi} = τ 2ψ |Z +

op(1) imply that τ̂ 2ψ |Z = τ 2ψ |Z + op(1). �
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