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Nutritional epidemiology methods and related statistical challenges and
opportunities
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Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA

ABSTRACT
The public health importance of nutritional epidemiology research is discussed, along with
methodological challenges to obtaining reliable information on dietary approaches to chronic
disease prevention. Measurement issues in assessing dietary intake need to be addressed to
obtain reliable disease association information. Self-reported dietary data typically incorporate
major random and systematic biases. Intake biomarkers offer potential for more reliable analy-
ses, but biomarkers have been established only for a few dietary variables, and thesemay be too
expensive to apply to all participants in large epidemiologic cohorts. A possible way forward
involves additional nutritional biomarker development using high-dimensional metabolomic
profiling, usingbloodandurine specimens, in conjunctionwith furtherdevelopmentof statistical
approaches for accommodatingmeasurement errorwith failure time response data. Statisticians
have the opportunity to contribute greatly to worldwide public health through the develop-
ment of statistical methods to address these nutritional epidemiology research challenges, as
is elaborated in this contribution.
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1. Introduction

Chronic diseases constitute the major cause of mor-
bidity and mortality in many countries worldwide,
especially in countries that are more economically
developed. In fact, the incidence of cardiovascular
diseases, major cancers and diabetes tends to be sev-
eral times higher in economically developed popula-
tions than in other parts of the world (e.g., Forman
et al., 2014). Much of this elevated incidence appears to
be driven by modifiable exposures, since migrant pop-
ulations tend to develop disease rates similar to those
in their new environment within a generation or two of
migration, even though the acculturation process may
span some decades. However, the primary drivers for
the observed risk elevations for specific chronic diseases
are not well understood.

Diet and physical activity patterns over the lifespan
provide natural candidate exposures to explain chronic
disease risk variations among populations, as well as
chronic disease risk changes over time in specific pop-
ulations. However, when expert committees have been
assembled to review the analytic epidemiology litera-
ture on these patterns and exposures they have mostly
concluded that there are few nutrition and chronic dis-
ease associations that can be viewed as established, or
even as probable (World Cancer Research Fund and
American Institute for Cancer Research, 1997, 2007;
WorldHealthOrganization, 2003). In contrast, ecologi-

cal analyses tend to exhibit strong correlations between
national incidence rates and per capita food ‘disappear-
ance’ measures, especially for such food components
as total energy and total fat (Armstrong & Doll, 1975;
Prentice & Sheppard, 1990).

Much of the explanation for these apparently dis-
crepant findings likely resides in the properties and
quality of available dietary data. Analytic epidemiology
studies mostly rely on self-reported dietary intake data,
with prominent assessment methodologies involving
food frequencies, food records or dietary recalls. At best
these measurement approaches yield noisy estimates of
targeted intakes, which are usually expressed as daily
average intakes over a short period of a few days to
a few months. The noise feature alone typically leads
to greatly attenuated associations, necessitating stud-
ies having a large number of incident cases of disease
for associations to be evident. A larger issue is system-
atic bias in the self-report assessments, corresponding
to differential reporting by study subjects according to
such personal characteristics as bodymass index (BMI)
defined as weight in kilograms divided by the square of
height in metres, age and ethnicity. These random and
systematic biasesmay combine to thoroughly distort, or
possibly even reverse, disease association estimates. In
comparison, ecological analyses that compare dietary
intakes among population groups (e.g., countries) can
be expected to be relatively free from influences due
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to the noise component of measurement error, even if
based on individual self-report data, but systematic bias
alongwith potential ecological confounding, preclude a
strong reliance on related disease association analyses.

What then are the study designs that can help to
develop reliable information on dietary intakes and
patterns for chronic disease risk reduction? Certainly
randomised, controlled dietary intervention trials have
the potential to be informative. However, there are sub-
stantial challenges related also to this research strategy.
Such trials typically need to be quite large for change
to a new dietary pattern to appreciably offset preceding
years or decades of the study participant’s usual diet,
and usually need to be of long duration for the same
reason. Hence, randomised dietary intervention trials
with chronic disease outcomes can be quite expensive
and logistically challenging, while only evaluating one,
or a few, specific dietary patterns. Furthermore, the
long trial duration can pose challenges for adherence to
the assigned dietary intervention and may open up the
possibility of post-randomisation confounding if par-
ticipants adopt medications and other approaches to
chronic disease risk reduction in a differential manner
among randomised groups.

In comparison, the use of nutritional biomarkers
provides a practical and potentially comprehensive
approach to strengthening nutritional epidemiology
observational research. If such biomarkers can be
obtained from biospecimens, typically blood or urine
specimens, stored on the members of large epi-
demiology cohorts, then these objective intake mea-
sures can be directly associated with subsequent dis-
ease risk, perhaps using nested case–control (Prentice
& Breslow, 1978; Thomas, 1977) or case–cohort (Pren-
tice, 1986; Self & Prentice 1988) sampling within study
cohorts.

Otherwise, biomarker determinations can be made
in a cohort subsample, and used to correct self-report
data for random and systematic biases, with corrected
estimates subsequently associated with disease risk.
However, only a few dietary components have estab-
lished intake biomarkers, and there is a strong research
need for the development of additional biomarkers.
To be useful, such biomarkers should plausibly adhere
to a classical measurement model. Even when such
biomarkers can be identified, there is a need for fur-
ther development of statistical methods and theory for
estimating key disease association parameters, such as
parameters relating disease hazard ratios to preceding
(unobserved) dietary intake histories (Carroll, Rup-
pert, Stefanski, & Crainiceanu, 2006; Prentice, 1982), in
cohort study contexts.

These nutritional epidemiology methodology needs
and opportunities have a strong statistical compo-
nent. In fact, statistical input in this multidisciplinary
nutritional epidemiology research area is as cru-
cial to the development of useful and interpretable

disease prevention information as is input from any
other disciplinary group. Furthermore, the needed
research includes most interesting statistical method-
ology issues, including issues in the use of high-
dimensional metabolomic data for nutritional
biomarker development, and issues related to esti-
mating disease association parameters in non-linear
models when predictor variables include considerable
measurement error.

These issues will be elaborated below, in an attempt
to encourage additional statistical theoreticians to
consider research goals in this important public
health research area, especially during this time of
national and international crises in diabetes, obesity,
major cancers and cardiovascular diseases, in affluent
populations.

2. Nutritional biomarker development
methods

The principal requirement for a useful nutritional
biomarker, w, is adherence to a classical measurement
model,

w = z + e, (1)

where z is the targeted nutritional variable and e is a
pure noise error component that is independent of z
and other study subject characteristics (e.g., age, eth-
nicity, BMI, . . . ) that may be pertinent to the risk of
the chronic disease under study. The hallmark of the
biomarker is then freedom from systematic bias rela-
tive to the targeted dietary variable and relative to risk
factors for the outcome under study. Additionally, the
variance of e should not be too large compared to the
variance of z, so that w provides an efficient biomarker.

Usually z is defined as log-transformed usual daily
intake over a certain time period, such as a few weeks
or months, while w typically arises as a corresponding
log-transformed intake assessment from biospecimens
collected at a single point, or a few points, in time.
Prominent examples of nutritional biomarkers include
a doubly labelled water (DLW) biomarker of energy
intake (Schoeller, 1999), a urinary nitrogen biomarker
of protein intake (Bingham, 2003), and 24-hour urine-
based measures of sodium and potassium intake (Luft,
Fineberg, & Sloan, 1982; Rakova et al., 2013). Addi-
tionally, our research group, using data from a 153-
woman human feeding study, has recently proposed
novel biomarkers for the intake of several carotenoids
and tocopherols using blood serum concentration
measurements (Lampe et al., 2017), and a carbohy-
drate biomarker using plasma fatty acid profiles (Song
et al., 2017). These latter biomarkers required the inclu-
sion of certain study subject variables for (1) to be
plausible.

Only a few research groups have engaged in nutri-
tional biomarker identification and development, and
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the brevity of the nutritional biomarker list described
above strongly suggests that nutrient metabolite recov-
ery in urine along with blood nutrient concentrations
will not provide sufficiently comprehensive sources
of data for biomarker development. However, urine
and blood metabolomic profiling (i.e., studies of
small molecule concentrations) provide an intrigu-
ing possibility for additional nutritional biomarker
development.

Over the past 15 years, high-dimensional genotype
data for disease association analyses, and for other pur-
poses, have provided a considerable stimulus to statis-
tical theory development, with methods based on the
notion of only a few real associations among many
examined, or sparsity, coming to play an influential
role (Hastie, Tibshirani, & Wainwright, 2015). These
studies have generated lengthy lists of chronic disease-
associated genetic variants for many chronic diseases
and conditions. Most such associations, however, are
very weak and collectively may not explain as much
response variation as do simply collected data on family
history for the outcomes in question. The difference
between the outcome variation explained by family his-
tory compared to that explained by measured genetic
variates is sometimes referred to as the ‘missing heri-
tability ’. Another explanation, however, is that much
of the observed familial association is attributable to
shared environment, including similar diet and activity
patterns among family members, rather than to shared
genotype.

High-dimensional exposure history data are more
complicated to model and analyse than are high-
dimensional genotype data for at least two reasons.
Unlike time-invariant germline genetic variants that
can be assessed or imputed with great precision,
environmental exposure data often are assessed with
substantial measurement error, as with dietary and
activity pattern assessments. Second, exposure patterns
for individuals may change in a noteworthy fashion
over the years and decades that are relevant to chronic
disease risk. Hence, the statistical challenges in using
high-dimensional exposure data are substantial in the
nutritional epidemiology area, and require the input
of theoreticians who are knowledgeable in the appli-
cation of both high-dimensional data and exposure
measurement error methodologies.

The two ‘exposome’ complexities just mentioned are
separable to some extent. Blood and urinemetabolomic
profiles typically provide measurements that are
responsive to recent dietary exposures, for example
over the past few days. In that the diets of free liv-
ing individuals tend to track over time, much may be
learned by studying disease risk in relation to dietary
exposures over short preceding time periods (e.g., most
recent year). The incorporation of dietary changes over
an extended period of time may be able to be accom-
plished by obtaining biospecimens periodically during

a lengthy cohort follow-up period, and by relating
disease risk at specific follow-up times to a preceding
biomarker-based dietary intake history.

Our research group has been developing
metabolomic profile data in the context of the human
feeding study mentioned above (Lampe et al., 2017)
among 153 participants in the U.S.Women’s Health Ini-
tiative. Profiles developed in the laboratory of Dr. Dan
Raftery involve both targeted platforms, typically with
100–200 pre-specified metabolites, and global plat-
forms with a much larger number of metabolites, many
of which lack biological identification. Especially, the
global platforms, which require peak identifications
in mass spectra (e.g., liquid chromatography/mass
spectrometry (LC/MS) or gas chromatography/mass
spectrometry (GC/MS)), include complex missing data
features and a non-ignorable noise component for
quantitative measurements. Higher dimensional sta-
tistical methods that have proven to be successful in
genetic association applications need to be extended to
allow for the measurement properties of these types for
metabolomic profile data. Without such extension, it
seems likely that global platform measurements will be
systematically excluded from potential biomarker spec-
ifications based on their weak performance in cross-
validation components of model building activities,
even if the underlying metabolites are highly relevant
to the targeted intake.

3. Disease association analysis methods using
nutritional biomarkers

Suppose now that data from a study cohort are avail-
able as S = T ∧ C, δ = I[S = T] and Z(S) = {z(u); 0 ≤
u < S}, where S is the smaller of time from cohort
enrolment to chronic disease diagnosis (T) or to right
censoring (C), δ is a non-censoring indicator, and Z(S)
is the history of actual dietary intakes, as well as dietary
self-report and potential confounding factors for the
study subject up to time S. Cox regression (Cox, 1972,
1975; Kalbfleisch & Prentice, 2002) provides a major
tool for studying the association between Z and disease
risk, under the usual assumption that the hazard rate
for T at following time t does not depend on censor-
ing conditional on Z(t), for any t>0. Under the Cox
model, the hazard rate

λ{t;Z(t)} = lim
�t↓0

pr{t ≤ T < t + �t;T ≥ t,Z(t)}/�t

is modelled as

λ{t;Z(t)} = λ0s(t) exp{x(t)β}, (2)

where x(t) = {x1(t), . . . , xp(t)} is a data analyst-defined
regression vector formed from {Z(t), t} with corre-
sponding hazard ratio parameter β = (β1, . . . ,βp)

′ to
be estimated, while λ0s is an unspecified ‘baseline’ haz-
ard rate function at x(t) ≡ 0 in stratum s, where the
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stratification s = s{t;Z(t)} ∈ {1, 2, . . .} is also defined
by the data analyst. Estimation of the association
parameter β is based on applying usual maximum
likelihood formulae to the ‘partial likelihood’ function
(Cox, 1975)

L(β) =
∏
s>0

ds∏
i=1

⎧⎨
⎩

∏
k∈Ds(�tsi)

exk(tsi)β
/ ∑

�∈Rs(tsi)
ex�(tsi)β

⎫⎬
⎭,

(3)

where ts1 < ts2 < · · · < tsds are the uncensored disease
incidence times in stratum s, Ds(�tsi) is the set of indi-
viduals failing at time tsi in stratum s and Rs(tsi) is the
set of study subjects ‘at risk’ (i.e., without prior disease
diagnosis or censoring) for disease occurrence in stra-
tum s at time tsi. The Cox model incorporates substan-
tial flexibility as a result of its nonparametric baseline
disease rates and its stratification features, and it is well
suited to estimation problems for exposures that may
vary over time, and for confounding factors that may
also need to be allowed vary over a study follow-up time
for an independent censoring assumption to be plausi-
ble. Note that the hazard ratio interpretation for β is
natural and convenient in many biomedical research
contexts, including nutritional epidemiology studies.

Expression (3) also provides a basis for the estima-
tion of β in (2) when data are available only for cases
developing disease during cohort follow-up and time-
matched ‘controls’ without disease at the time of cor-
responding case occurrence simply by regarding each
matched case–control set as a distinct stratum (Prentice
& Breslow, 1978; Thomas, 1977). Similarly, maximisa-
tion of (3) is also appropriate if data are available only
on cases and a random sample, or stratified random
sample, of the study cohort, with Rs(tsi) redefined to
include only cases occurring in stratum s at time tsi and
subcohort controls at risk in stratum s at that time. Note
that a variance estimator more complex than that from
the negative second derivative of logL(β) is required
with case–cohort sampling (Prentice, 1986; Self &Pren-
tice, 1988). These ad hoc sampling designs do not have
established optimality properties, though efficiency can
be expected to be good if case and comparison groups
are well matched on potential confounding variables.
The corresponding hazard ratio parameter estimates
cited above are also suboptimal, with efficiency loss that
tends to be larger when some of the covariate compo-
nents are available for all cohort members. Estimating
efficiency can be improved by including inverse prob-
ability weights in these estimating equations (Breslow,
McNeney, & Wellner, 2003; Breslow & Wellner, 2007),
but resulting estimators have not been shown to be
semiparametric efficient.

Now consider the estimation of the hazard ratio
parameter in (2) when the ‘covariate history’Z(t) incor-
porates measurement error. More specifically suppose

that the targeted x(t) in (2) can be written as

x(t) = x̃(t) + ẽ(t), (4)

where x̃(t) values are obtained from available measure-
ments, and ẽ(t) is a measurement error component
that is independent of x̃(t) and potential confound-
ing factors. Also suppose that the stratification vari-
able s = s{t;Z(t)} relies only on elements of Z that are
free of measurement error. The induced hazard rate
model that specifies disease risk given measured data
only, at each follow-up time t, can be written (Prentice,
1982) as

λ0s(t)E{ex(t)β ;T ≥ t, X̃(t)},
where X̃(t) = {x̃(u); 0 ≤ u < t} and E denotes expec-
tation. In general, these induced hazard rates involve
an expectation factor that is a complicated function of
the baseline hazard rates in (2). However, if the disease
outcome is rare during the cohort follow-up period,
then the conditioning event T ≥ t can be ignored to a
good approximation. Doing so leads to a hazard rate
model under the specialised Berkson-type measure-
ment model (4) of

λ0s(t)E{ex(t)β ; X̃(t)}
= λ0s(t) ex̃(t)βE{eẽ(t)β ; X̃(t)}
= λ̃0s(t) ex̃(t)β

with the last equality following from the independence
of ẽ(t) and x̃(t) and normality assumptions. Hence if
one could identify a data construct x̃(t) that adheres
to (4), one could regress the hazard rate on x̃(t) in a
standard Cox model fashion to estimate the regression
coefficient β in (2).

Suppose that an assessment q(t) of x(t) is available
for all members of a study cohort, while a biomarker
assessment w(t) of x(t) is also available on a random
sample from the same population, at all follow-up times
t ≥ 0. If q(t) is a self-report assessment of x(t), then a
measurement model

q(t) = a0 + a1x(t) + a′
2v(t) + ε(t) (5)

may be appropriatewhere a0, a1 and a2 = (a21, a22, . . .)′
are constants, v(t)′ = (v1(t), v2(t), . . .) are study sub-
ject characteristics thatmay be associatedwith themea-
surement properties of q(t) or that may be needed to
control confounding in (2), and ε(t) is a random noise
component that is independent of x(t), given v(t). In
the biomarker sample, one will have measurements

w(t) = x(t) + e(t),

where the error e(t) is independent of x(t) and is also
independent of study subject characteristics that deter-
mine v(t), an assumption that will often be plausible
if Z(t) incorporates dietary intake data over a short
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time period (e.g., a fewmonths) prior to t. Also, impor-
tantly, suppose that the error terms e(t) and ε(t) are
independent given v(t). Then under joint normality
assumptions for {x(t), ε(t)} given v(t), one has

E{x(t); q(t), v(t)} = b0 + b1q(t) + b′
2v(t)

for some constants b0, b1 and b2, and x̃(t) = Ê{w(t);
q(t), v(t)} satisfies (4) where Ê denotes an estimator of
x(t) arising from linear regression of w(t) on q(t) and
v(t) in the biomarker sample. In this context, x̃(t) is
referred to as a biomarker calibrated estimate of x(t).
Values of x̃(t) can be calculated for each of themembers
of the study cohort and the regression parameter β can
be estimated by standard Cox regression (Cox, 1975) of
the disease outcome data on x̃(t). A non-standard vari-
ance estimator is required for the regression parameter
estimator to acknowledge the randomness in calibra-
tion equation coefficient estimates. A bootstrap proce-
dure typically works well for variance estimation. The
estimation procedure just described simply generalises
the regression calibration procedure for failure time
data (Carroll et al., 2006; Prentice, 1982) to a broader
class of measurement error models.

In some applications, q(t) may also be a biomarker
measurement that is available on the entire cohort, or
on a suitable set of cases and controls drawn from the
cohort. The calibration procedures may be applied as
above, though the v(t) term can then be dropped from
the calibration equation. Note that the error terms for
the two biomarker assessments in the biomarker sample
need to be statistically independent in this context, with
implications for the exposure time period used in the
definition of Z(t) in (2).

The above procedures depend on the biomarker
adhering to a classical measurement model, the dis-
ease under study being infrequent (e.g.,< 10%) during
cohort follow-up, and the so-called instrumental vari-
able q(t) adhering to (5) with error term ε(t) that is
independent of the error term e(t) for the biomarker
given v(t). These assumptions will often be appropri-
ate in nutritional epidemiology contexts for dietary
exposure variables having an established biomarker.
The regression calibration procedure outlined above
also assumed the log-hazard rate to depend linearly on
the modelled exposure variable x(t). Additional hazard
ratio regression modelling choices will also be of inter-
est for the exploration and presentation of nutritional
epidemiology data. However, estimation procedures for
such other modelling choices have received little atten-
tion to date, when the measured exposure variables
incorporate substantial measurement error.

For example, it is common to display
epidemiological data by showing estimated hazard
ratios, or closely related odds ratios, across quartiles
or quintiles of the modelled exposure variable. One
possibility for the estimation of hazard ratios across
such quantiles, assuming model (2), is to calibrate the

exposure variable, then estimate hazard ratios based on
quantiles of the calibrated exposure. Another possibil-
ity is to define x(t) in (2) to be a set of quantile indicator
variables, typically taking the smallest or largest quan-
tile as the base value for hazard ratio comparison. One
can then consider a regression calibration procedure of
the type outlined above with x̃(t) defined as a set of
calibrated quantile indicators for each quantile except
the comparator. Simulation studies described in the
following sections show, perhaps surprisingly, that the
second approach has better performance than the first
and even enjoys some robustness to departure from the
rare disease assumption used in the calibration proce-
dure. Themain point here, however, is that hazard ratio
estimation procedures are needed to handle a variety of
regressionmodel forms in (2), as an integral component
of nutritional epidemiology association analysis meth-
odswhenbiomarker data are available in a study cohort,
or in appropriate subsamples thereof.

4. Hazard ratio estimation for exposure
quantiles

It is commonplace in epidemiological reporting to
show estimated hazard ratios across quantiles of key
univariate exposure variables. The regression calibra-
tion approach outlined above has not previously been
adapted to this estimation problem.

To do so consider a time-independent targeted vari-
able x∗ = I{x ∈ (x0, x1)} for some fixed x0 and x1 val-
ues, when I again denotes an indicator function, and
suppose that

λ(t; x, q, v) = λ0(t) exp{β1x∗ + β ′
2v}.

Under a rare outcome specification, the induced
hazard rate given observable variates is to a good
approximation

λ(t; q, v) = λ̃0(t) exp{β1E(x∗; q, v) + β ′
2v}.

Under the multivariate normality assumptions of the
previous section, x given (q, v) is normally dis-
tributed with mean that can be estimated by regress-
ing biomarker values w on q and v, and with variance
that can be estimated using repeat biomarker deter-
minations in a biomarker substudy. From these esti-
mators, one can compute a corresponding estimator
of the expectation of x∗ given q and v by integrating
this estimated normal density from x0 to x1. Simultane-
ous calibrated hazard ratio estimators can be calculated
by corresponding integration over the elements of a
partition formed by quantile cutpoints of this same
estimated normal distribution for x∗.

To test this approach, we simulated data from a
hazard rate model

λ(t; x, q, v) = λ0(t) exp{β1x∗
1 + β2x∗

2 + β ′
3v},
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Table 1. Simulationa summary statistics for regression calibra-
tion estimates of tertile hazard ratios.

Hazard ratio regression coefficients

Estimation Statistic β1 = 0.405 β2 = 0.811 β3 = 0

RC1b Sample mean 0.416 0.805 0
Sample standard
deviation

0.217 0.111 0.031

95% CI coverage 96.6 94.9 95.0
Trueb Sample mean 0.406 0.813 0

Sample standard
deviation

0.072 0.069 0.028

95% CI coverage 95.1 95.5 95.0
Naiveb Sample mean 0.259 0.510 −0.081

Sample standard
deviation

0.074 0.072 0.03

95% CI coverage 49.3 1.3 22.7
RC2b Sample mean 0.281 0.553 0

Sample standard
deviation

0.071 0.075 0.03

95% CI coverage 62.4 9.1 94.8
aSimulation based on 5000 cohorts each of size 2000, with an external
biomarker subsample of size 500 in which both biomarker (w) and self-
report (q) are measured along with a 20% random subsample in which a
second biomarker measurement (w) is available.

b RC1 is proposed regression calibration procedure; True is from Cox regres-
sion using x-value without measurement error; Naive is based on tertiles
for measured q-values; and RC2 arises from forming tertiles of calibrated
x-values.

where x∗
1 and x∗

2 are indicators corresponding to the
second and third tertiles of x, which followed a standard
normal distribution. Also the univariate covariate vwas
taken to be independent of x and to adhere to a stan-
dard normal distribution, while sampling errors e and
ε were also normally distributed with mean zero and
variance 0.5, andwere independent of each other and of
the other modelled variates, while the measured expo-
sure q derived from q = 0.8x + 0.5v + ε. Also, termi-
nal censoring was imposed at a fixed value c. Data were
generated from a cohorts of size 2000 with (q, v) mea-
surements, along with an external biomarker sample
of size 500 with both w and q values available and a
20% reliability subsample with a secondw value having
measurement error that is independent of the first.

Multiple simulation scenarios were considered, each
giving very similar results. Table 1 shows summary
statistics from 5000 generated cohort samples with
λ0(t) ≡ 0.7,β1 = log(1.5),β2 = 2 log(1.5) and c=1,
giving a censoring probability of about 35%. Even
though one does not expect a rare disease approxi-
mation to be accurate with censoring rates as low as
35% the calibrated hazard ratio estimators (RC1) for the
second and third tertiles show very little bias relative
to their generating values. Sample standard deviation
estimates and coverage rates for estimated 95% confi-
dence intervals are also shown, the latter being close
to nominal values. Also shown in Table 1 are corre-
sponding summary statistics (i) if one had available
the actual generated x-values and used these in stan-
dard Cox regression (true); (ii) if one used tertiles from
the measured q-values in Cox regression (naive) and
(iii) if one used tertiles from the calibrated X (RC2).

Clearly the naive and RC2 ‘estimators’ do not perform
adequately in this simulation setting.

Our proposed tertile hazard ratio estimators (RC1)
seem eminently usable though, of course, they
incorporate considerable additional random variation,
compared to analyses based on true x-values, as is to
be expected with this amount of measurement error
contamination.

5. Example of sodium intake and
cardiovascular disease risk

To further illustrate the importance of needed hazard
ratio estimation developments, consider the associa-
tion between dietary sodium and cardiovascular dis-
ease risks. Even though a high intake of sodium, or
a high intake ratio of sodium to potassium, is asso-
ciated with elevated blood pressure in observational
studies and randomised trials (Stamler et al., 1988;
Tzoulaki et al., 2012; Whelton et al., 1997), evi-
dence for these dietary associations with cardiovascu-
lar diseases has been inconclusive (Bibbins-Domingo
et al., 2010; Strazzullo, D’Elia, Kandala, & Cappuc-
cio, 2009; Yang et al., 2011) in spite of considerable
public health interest and importance (Mozaffarian
et al., 2014; Oria, Yaktine, & Strom, 2013). Uncertainty
concerning these associations was enhanced when the
large international ProspectiveUrbanRural Epidemiol-
ogy (PURE) reported a J-shaped relationship between
sodium excretion and major cardiovascular disease
outcomes, with higher disease risk at intakes that were
relatively low as well as relatively high (O’Donnell
et al., 2014) with risk elevations at the low end at val-
ues well below recommended maximal intakes (US
Department ofHealth andHuman Services, 2015). This
led to questions concerning the wisdom of sodium
reduction as an isolated public health recommendation
(Oparil, 2014).

While most reports of sodium intake in relation
to chronic disease outcomes have relied on dietary
self-report, the PURE study can be commended
for using a biomarker assessment of sodium intake.
Specifically morning spot urine sodium excretion was
adjusted using a formula (Kawasaki, Itoh, Uezono,
& Sasaki, 1993) to provide an estimate of 24-hour uri-
nary excretion. However, in other studies spot urine
excretion has been found to not correlate well with 24-
hour sodium excretion (Cogswell et al., 2013; Ji, Miller,
Venezia, Strazzullo & Cappuccio, 2014; Ji et al., 2012),
implying that even if the adjusted intake estimates
adhere to (1) the error variance may be quite large rel-
ative to the variance for the targeted intake Z. This
suggests that the spot urine derived intake estimates
may be inefficient, at best, as a biomarker of usual daily
sodium intake. Even sodium excretion from 24-hour
urine specimens is somewhat noisy as a usual intake
biomarker, with average excretion over multiple days
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able to usefully reduce the measurement error variance
in (1).

The PURE study authors presented associations
between estimated usual sodium intake and cardio-
vascular disease hazard ratios by fitting a cubic spline
model in (2) without making any provision for mea-
surement error in their sodium intake estimates.
Methods for fitting this type of model while allowing
measurement error in (1) to constitute a major frac-
tion of the biomarker variations are needed to inter-
pret, and to correct, the PURE study associations for
measurement error.

Recently the authors have used the regression
calibration procedure described above with 24-hour
sodium excretion as a biomarker, in conjunction with
food frequency estimated sodium intake and a range
of study subject characteristics to develop calibration
equations to estimate short-term sodium intake (Huang
et al., 2014). These developments used data from a
biomarker substudy of the Women’s Health Initiative
(WHI) cohorts (Prentice et al., 2011). The calibra-
tion equations were used to produce usual daily intake
estimates for individuals in WHI cohorts of post-
menopausal women in the United States. Calibrated
estimates of log-sodium intake were then associated
with hazard ratios over cohort follow-up for various
cardiovascular disease outcomes. Positive associations
were found between calibrated sodium intake, and cali-
brated ratios of sodium to potassium intake, withmajor
cardiovascular diseases, including coronary heart dis-
ease, and heart failure (Prentice et al., 2017). In contrast
to the PURE Study, these analyses do not suggest higher
risk for these major cardiovascular disease outcomes
at relatively low sodium intakes, but a careful study of
hazard ratio function shape, while allowing for mea-
surement error in intake estimates would require the
ability to fit hazard ratio models more general than
the linear model in log-intake applied in these analy-
ses.

In some applications, an additive model of the
form (1) may be plausible, but the classical measure-
ment model assumption may not hold because of
dependence of the variance of the error term e on
the value of the targeted nutritional variable x. If the
error variance is large compared to the variance of x,
then even modest dependencies of the error variance
on x could have important implications of the esti-
mated shape of the hazard ratio function, especially
if complex hazard ratio dependencies, such as cubic
spline models, are entertained. Hence, additional sta-
tistical methods and theory development are strongly
needed for this important public health question to be
addressed using dietary biomarker and self-report data.
Such developments are needed not only for full-cohort
data analyses but also for themajor cohort subsampling
designs, including nested case–control and case–cohort
samplings.

In summary, even though sodium overconsump-
tion is projected to be responsible for very substan-
tial morbidity and mortality worldwide (Mozaffarian
et al., 2014), issues related to sodium intake assess-
ment have prevented definitive quantitative results
from emerging on the associations between sodium
intake over the lifespan and the incidence andmortality
of specific cardiovascular diseases. The further devel-
opment of statistical methods and theory is a crucial
component of related needed research.

6. Summary and conclusion

There have been many important statistical develop-
ments over the past 15–20 years as reliable, high-
dimensional genotype data on individual study subjects
came available. During the same time period, high-
dimensional data on gene, protein and metabolite
expression profiles, using blood and urine specimens,
as well as high-dimensional data from various types of
imaging techniques, have been ascertained in a vari-
ety of contexts. These latter data types typically target
quantities that vary over the lifespan of the study sub-
ject, and the ability of assessment platforms to be com-
prehensive in terms of analytes measured, may be a
challenge (e.g., mass spectrometry-based proteomic or
metabolomic platforms).

In public health contexts, gene, protein and metabo-
lite profiles may reflect both genotype and prior
exposure history, including such exposures as diet and
physical activity patterns over the preceding months or
years. If these exposure patterns could be well mea-
sured by self-report, then the high-dimensional data
just mentioned could be used to explain biological
pathways and processes whereby these commonplace
activities affect chronic disease risk. However, after sev-
eral decades of development and application of self-
report data for these exposures it is evident that they are
not sufficiently reliable for many nutritional epidemiol-
ogy purposes,most notably for the study of associations
with total energy intake, or with the absolute intake of
the components of energy.

To the extent that measures in urine and blood,
including metabolomic platform measurements,
directly reflect dietary intake patterns, these measures
may be able to provide an objective assessment of the
intake of food and nutrients over the recent past. Repeat
application of such objective assessments over cohort
follow-up periods may then allow an objective dietary
exposure histories to be developed with enhancement
of the reliability of related nutritional epidemiology
association analyses.

While this biomarker approach to nutritional epi-
demiology study has considerable potential, there is
a need for an intensive research effort to develop
biomarkers for many additional nutritional variables,
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and an equal need to develop flexible statistical mea-
surement error methods for applying such objective
exposure assessments. The latter need arises because
the biomarker strategy may be able to yield objec-
tive exposure assessments, but these assessments are
likely to incorporate noise components that cannot
be ignored in analyses to relate dietary exposures to
chronic disease risk.

This article is written with a goal of enlisting addi-
tional strong statistical methodologists and theorists in
this important public health research.
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