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Objective Bayesian analysis for the accelerated degradation model using
Wiener process with measurement errors

Daojiang He, Yunpeng Wang and Mingxiang Cao

Department of Statistics, Anhui Normal University, Wuhu, People’s Republic of China

ABSTRACT

The Wiener process as a degradation model plays an important role in the degradation analysis.
In this paper, we propose an objective Bayesian analysis for an acceleration degradation Wiener
model which is subjected to measurement errors. The Jeffreys prior and reference priors under
different group orderings are first derived, the propriety of the posteriors is then validated. It is
shown that two of the reference priors can yield proper posteriors while the others cannot. A sim-
ulation study is carried out to investigate the frequentist performance of the approach compared
to the maximum likelihood method. Finally, the approach is applied to analyse a real data.

1. Introduction

In practical applications, one may want to estimate the
failure time of a product, however, it is quite di cult to
collect su cient failure time data due to the high qual-
ity of the product. If quality characteristics exist, whose
degradation over time can be related to reliability, an
e ective approach is to collect the degradation data of
the product, and then use the degradation data to pre-
dict the failure time. Compared with the traditional
failure time analysis in term of asymptotic e ciency,
the degradation analysis has demonstrated a higher
precision. General discussion of degradation models
and their uses is included in Simgpurwalla (1995) and
Meeker and Escobar (1998).

Moreover, it is also hard to observe enough use-
ful degradation data under normal experiment condi-
tions. For this, Nelson (1990) proposed an accelerated
degradation test (ADT) which collects degradation data
under harsher conditions and then predicts the mean-
time-to-failure (MTTF) under the normal conditions.
Accelerated degradation models can be divided into
three classes, which are constant-stress ADT (CSADT),
step-stress ADT (SSADT) and progressive-stress ADT
(PSADT), respectively. Due to the attractive mathe-
matical properties and physical interpretations, degra-
dation models based on Wiener process have been
extensively utilised to describe the accelerated degra-
dation of products. There are some work along this
topic, for example, Doksum and Hoyland (1992) intro-
duced the conception of PSADT to assess the prod-
uct’s lifetime distribution. Tang, Yang, and Xie (2004)
and Liao and Tseng (2006) considered the optimisa-
tion of SSADT which assumed that the degradation
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characteristic followed a Wiener process. Ye, Chen, and
Shen (2015) studied a new ADT model by introducing
acommon parameter in the mean and the variance into
the Wiener degradation model.

In the aforementioned work, the methods of degra-
dation analysis are mainly from the frequentist or sub-
jective Bayesian perspectives. The objective Bayesian
method has attracted much attention in the literature,
since it has many advantages in statistical analysis, one
can see Berger (2006) and references therein for more
details. Recently, the objective Bayesian method has
been applied to the statistical analysis for degradation
models. For example, Xu and Tang (2012) used the
objective Bayesian method to analyse a linear degra-
dation model; Guan, Tang, and Xu (2016) proposed an
objective Bayesian analysis fora CSADT model; He, He,
and Cao (2016) introduced the approach to analyse a
Wiener degradation model with random e ects.

On the other hand, in real applications, it is
inevitable to introduce some measurement errors dur-
ing the observation process. Therefore, it is better to
include the measurement errors in the degradation
models. In this paper, we investigate an accelerated
degradation Wiener model which is subjected to mea-
surement errors, and then use the objective Bayesian
method to analyse the model.

The rest of this paper is organised as follows. In
Section 2, the accelerated degradation Wiener model
with measurement errors is introduced. In Section 3,
the Je reys prior and reference priors under di er-
ent group orderings are derived. In Section 4, the
propriety of the posterior distributions based on the
non-informative priors is validated. In Section 5, a
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simulation study is carried out to see the performance
of the Bayesian estimates compared with the max-
imum likelihood estimates. In Section 6, the pro-
posed approach is applied to a real data in Zhao and
Elsayed (2004). Some concluding remarks are given in
Section 7.

2. The accelerated degradation model

Assume that X(t) is the degradation characteristic of a
product measured at time t, consider the following lin-
ear degradation model based on a Wiener process with
drift:

X(t) = pt + g B(t), ()]

where L is the drift parameter, o is the di usion coe -
cient and B(t) is the standard Brownian motion.

The degradation rate is a ected by many factors,
such as the voltage, pressure, temperature and so on,
which are usually called acceleration variables or stress
levels. To make the prediction of the lifetime more accu-
rate, the degradation model should take those stress
levels into account when the information is available.
In this paper, we will consider a CSADT.

Let sp <51 <--- <s, be r+1 stress levels, where
so stands for the stress level under normal experiment
condition, and s; represents the stress level under the
harshest experiment condition. It is assumed that the
drift parameter is related to the stress levels, while the
di usion coe cient is independent of the stress levels.
That is to say, the model for CSADT turns into

Xi(t) = pit + o B(t), )

where Xj(t) is the degradation process under the ith
stress level, and ; is the corresponding drift parameter,
fori=0,1,...,r.

In ADTs, when a measurement is taken at time t,
there is usually a measurement error. Assume that Y;(t)
is the observable variable,and (t) isthe corresponding
measurement error, then

Yi(t) = Xi(t) + (D), 3)

where (t) is assumed to be independent of X;(t) and
distributed as a normal distribution with the mean 0
and the variance 62, fori =1,2,...,r.

Suppose that there are n; units under the ith stress
level sj in the CSADT, and let mjj be the number of
measurements for the jth unit under the ith stress level,
fori=1,2,...,r;j=1,2,...,n;.Giveniandj,assume
that yji, k=1,2,...,m;j are the observations at the
measurement time tj; < tijz < - -+ < tjjm. For simplic-
ity, we now consider the increment model. Denote

Yiik = Yik — Viik=1)» ik = tijk — tj—=1), (4)
where Yijo =0 and tijp = 0. Lety;; = ( Vit Yij2s e
i) andt; = ( tijz,  Gijp,..., ), i=1,2,...,1

1=12,...,n; k=1,2,...,mj. Then yj; follows a
multivariate normal distribution:

i - NQit i), ()
where
02 tj + 202 —0? 0
—g? 02 tjp+20% —0?
ij = 0
: g2
0 0
0
0% tij(my-1) +20° —o?
—0? 0% tijm; + 202

(6)

Let w denote the threshold value, which is often deter-
mined by the manufacturer standard. The lifetime T; of
a product under the stress level sj is de ned as

Ti = inf{t = 0] xi(t) = w}.

According to Ye, Shen, and Xie (2012), T; follows an
inverse Gaussian distribution, whose probability den-
sity function is given by

(o O w? 0?
1G I I.,li’ 0_2 2T[ti30'2
242 2
HEtE — 2[itio + 0
X exp — , >0 (7
p 202ti 1 ( )
And the MTTF under the level s;j is
®w
—, 1i=0,1,...,r. (8)

MTTF; = E(Ti) = —,
i i Wi

According to Ye and Chen (2014), the functions
between the parameter L and the stress level s; often
have the following three forms:

(i) the Power law model: i =p - s/,
(i) the Arrhenius model: pj = p - e~%5i,
(iii) the Exponential model: pj = p - %,

where p and g are unknown parameters. Note that the
Arrhenius model and the Power law model are widely
used when the stress level is the temperature or volt-
age, while the Exponential model is usually used to
characterise the e ect of the weathering variable.



Under this assumption, we can rewrite the parameter
I as follows:

Wi =pod™, i=12....r

where
8 = exp{alg(ss) — 9(so)]} = L > 1
Ho

is the acceleration factor from the stress level sy to s1,
and

_ 9(i) —9(s0)
' oG — 9(s0)’

Note that hy > --- > h; = 1. Moreover, g(sj) = —1/s;
for the Arrhenius model, g(s;) = log(s;) for the Power
law model and g(si) = s; for the Exponential model,
respectively.

By reparameterisation, let

i=12...,r.

n= o2’
then jj = GZQij, where
tijp +2n -n 0
—n tjp+2n —n
Qjj = 0 ' '
: -
0 - 0
0
. 0 N C)
tijm;—1) +2n —n
—n tijmy; + 20

Consequently, the likelihood function for the new
parameters & = (g, n, 8, Ho) is given by

r nj 1
Liy|€) = e
m1jm @MOA)TIQ]
(vij — Ho8" i) Q™ (vij — HoB"Ty)
xexp —

202 '
(10)

wherey ={y;j:i=12,...,rj=12,...,nj}.

3. Non-informative priors

In this section, we will derive some important non-
informative priors for the model (3), which include the
Je reys prior and three reference priors under di erent
groups.
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Theorem 3.1: The Fisher information matrix for the
parameters & = (o, 8,0, n) in the model (3) is

| 0
=3 . . (11)
2
where
1’ . ' _
Sooame? B amne?
I = Pt , )
B e B8 ai(mnten?
02 02 .
i=1 i=1
2m 1t
o2 r tr( i)
_ i=1 j=1
122 = r nj 1 ron )
po € g) 3 tr( )
i=1 j=1 i=1 j=1
and
r nj n;j
m = mij, ai(n) = TianlTij (12)
i=1 j=1 =1
2 -1 0 0
-1 2 -1
- —_ -1
i=Qi - 0 0
-1 2 -1
0 0 -1 —
(13)

Proof: The log-likelihood function, up to a constant, is
given by

r nj

1

I(y|&) = —mlogo — 3 log |Qjjl
i=1 j=1

r nj

1

2
20 i=1 j=1

(¥ij — o8 "Tjj)
* Qj(yij — HoB "),

We just prove the right lower 2 < 2 corner of the
Fisher information matrix, since the other entries can
be obtained by direct di erentiation of I(y | §).

Taking the rst partial derivatives of I1(y|¢) with
respect to n, and the second partial derivatives with
respect to o, and applying Fact 3 in Berger, Oliveira, and
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Sanao (2001), we can get

olyl®) _m _3 " " h
602 0% ot _ J_=1(Yij — Hob " i)
x Q™ (¥ij — Hob " Typ),

oyl _ 1" "
== i
on 2 i =1
1 r nj
+ o3 (vij — Ho8" i) Q;f*
i=1 j=1
0Qjj

WQﬁl(yij — Hob"'Ty).

Taking derivation of dl(y|&)/dn with respect to ¢
results in

Alyly) - 1 " hiey =L
=—= (Yij — Ho8"' i) Q5
3 ]
ooon 0° . =1
QIJ

QIJ 1(yu P-Oe 'Tjj).

Using Fact 4 in Berger et al. (2001), we have

e "M
== P
0oon =1 j=1 4]
x tr Q—l QIJ —10.2QIJ
1 r nj
=5 tr( i),
i=1 j=1
221y | &) m 3 " _
i=1 j=1
_2m
=-
al(yl%) 1 " ron
o -2 v+ 252
n i=1 j=1 i=1 j=1

xtr Q' Q”Qul 2Q; =0o.

Consequently, we obtain that

al(ylE) * 1 nn by
—  =Var o (¥ij — Ho8™'Tij)
2
on 207 ) =
0Qjj
xQul ”Q“l(yu Lloe "Tjj)

1 r nj
= 104
40 i=1 j=1
Q 2
x 2tr Q,]1 ”Qul 2Qj
1 r nj
=5 tr( ).
i=1 j=1

Then the result of Theorem 3.1 is straightforward.

According to Je reys (1961), the Je reys prior is
proportional to the square root of the determinant of
the Fisher information matrix. Hence, the following
theorem can be obtained.

Theorem 3.2: The Je reys prior for & = (o, 0,0,n) is
given by

G R ACTCR) N L)
where
r nj r nj 2
fi(n) =m tr( %) - tr( i)
i=1 j=1 i=1 j=1
(15)
0:(n,8) = ai(n)aj(n)(h; — h;)?e2n+2n=2

I<i<j=r

(16)

In addition to the Je reys prior, Bernardo (1979)
proposed the reference prior for deriving non-
informative priors which separates the parameters into
several di erent group orderings of interest. Refer-
ence prior has become one of the most useful non-
informative priors in the literature, see Berger and
Bernardo (1992), Sun and Berger (1998) and Berger,
Bernardo, and Sun (2009) and references therein for
more details. Now, we present the reference priors for
the parameters under di erent group orderings.

Theorem 3.3: Consider the degradation model (3), then
we have
(1) the reference prior under the group ordering
{5,(n,8), Ko} is of the form
i 1/2
u(.0) i Lt )
=1 ai(n)0 2" ’

1

MRy o (17)

(2) the reference prior under the group ordering
{(10,8,1), 0} is given by

Ho

MRy o f1(N)91(n, 0), (18)



(3) the reference prior under the group ordering
{Mo, (8,1), 0} has the form

r 1/2

1 L
TR fi(n) ai(nh?e®=2 | (19)
i=1

where f1(n) and gi1(n,6) are de ned in (15) and (16),
respectively.

Proof: We prove the result for the group ordering
{Ho, (8,n),0)}, and the proof of the others is similar.
It is readily to obtain that the inverse of the Fisher
information matrix in (11) is

HO= & 0 (20)

where

2 r

ai(n)h?e2—2
e "
11 — 2 r

o
- a(nhe®i?
Hog1(n,8) _, (i

2 r
hot(n.8) _,
0? r 2h ‘
———  a(n)e"
W3oi(n.8) _,
2m
fi(n)
ron

aj(n)hig2ni—1

22 = o
1) 1) o !

r n;
(0)

0 =1 j=1

2 r n;j

tr( ij)

o
20(N) 2y =

tr( §)

Following Berger and Bernardo (1992) with a slight
di erence in the notation, we can obtain that

ky = 91(n.9)
02 [ a(nh?edi—2’
2 r
_ Hgfi(n) 20 2hi—2 _2m
ko| = i(Mhe" <, kg = —.
kel = = 5 B ai(n)h; 3= 52
Now we choose compact sets | = [cy,dy] <

[ca1, d2i] > [ca), d3] > [car, dgy] for (Mo,8,n,0), such
that ¢q), c3, €4 — 0, ¢y — 1 and dy,dy, d3j, dgy —
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o0, as| — oo, Then we have

(0 | o, (8,)
_ Iksl"*11cy dq1(0., 1)
dgy k|72 do

Cal
_ 1 . ©)
B (0} (IOg d4| - |Og C4|) [Car,da] )

where 1(-) stands for the indicator function of aset A.
Thus

Eb[log(lkz]) | Ko, (8, n)]
day
= log(lkz|)mi(o | Ko, (8,n)) do

Cq1
r

=log W3fi(n)  ai(h?e? 72 +Cy(l),
i=1

where
dg)

Ci() =

C4l

1
5280 1) [ 1o, 8) do.

It follows that

m5((8,1), ) | Ho)
(0 | o, (8. M) exp SE5[log(lkal) | Ho, (8, n)]
Ly, da] ®,n)
23 Mexp 1ED[log(lkel) | 1o, (8, m)] dO dn
r 1/2

= T[(IS(O- “-'l01 (9, n)) fl(r]) aj (n)hizezm_z
i=1

x C2(|)1[02|,d2|](e)1

where

1/2
do dn,.

dy  dy r 5 oh—p
fi(n)  ai(n)h;e"

Gy C2 i=1

Ca(l) =

Consequently,

E! [log(lk) | o]
dg d3y dy
= log([kq|)

C4) C3| C21

> 5((8,1), 0 | o) dO do dn

dy  dy  dy .0
_ log : 91(.71 )2 —
i=1 (NN

c 02
4 C3| C21
> 1158, (n,0) | o) d6 do dn
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is a constant, and

11} (Mo, 8,0, 1))

(8, (o,n) | Ho)exp 3E}[log(lki])| o]
Ly dyi1 (o)

1 2} [log(JKal) | o] dpg
r 172

Ca(l _
- @0 g O s
0 (dy —cy)log ¢ i—1
x1 .(Ulﬂle,uo)-

Let (g, 0 ,0 ,n ) be an inner point of |, then the
reference prior under the group ordering {Wo, (8,n),0}
is given by

an(“O! 6! o, n)

i (Mo, (8,1), 0)

m
=0 1 (Mg, (8,1 ),0)
r 172

ai (o2

1
s fi(n)
i=1

This completes the proof of Theorem 3.3.

4. Posterior analysis

It can be seen that the priors derived in Section 3 are all
improper, so it is necessary to verify whether the pos-
terior distributions based on these priors are proper or
not.

We rst prove a lemma, which plays an important
role in proving the subsequent theorems.

Lemma 4.1: The elements of Qal are all positive.

Proof: It is readily shown that Qjj is positive de nite,
thus Qal is also positive de nite, which implies that the

main diagonals of Qal are all positive. By the method
of mathematical induction and the theory of partition
matrix, it can be shown that the o -diagonal entries of
Q;* are also positive.

Theorem 4.1: The posterior distributions of (o,n,
B, Ho) based on the prior Tir, and g, are both proper.

Proof: We only prove the propriety of the posterior dis-
tribution based on the prior mgr,, the other one can be
shown in a similar way.
From (10), we can rewrite the likelihood function as
follows:
r n;j
|Qy| 12

i=1j=1

_(y—o1)

L(y|€) = (2na?)~m/?

~L(y — MoT)
2072 '
(21)

x exp

where
T=(T,Ty,..., ),
T=0"(T, T i) =121, (22)
and
= diag(Q11, Q12, ..., Qungs -+, Qr1, Qr2, . .., Qrny)-
(23)

From the likelihood function (21) and the reference
prior TR, (0, (n,8), Ho), the joint posterior density of
(Mo,8,0,n) is given by
TR, (0,N,6, Ko |Y)
L(y [€)Tr, (0, N, 6, Ho)

i 1/2
1 g1(n, 6) ir=1 anl tr( ﬁ)
gm* i=1 ai(n)o 2N
r n;j
x |Qy| /2
i=1j=1
(Y= HoT)  THY — HoT)
P 202
Let
p=@ Tttty (24)
A=(y—pr) Yy -—qarn). (25)
Using Lemma 4.1, it can be shown that
n—1 Teralny'
o o L TijQElTij
r
i1 j=1Ti
< ﬂ < ;]—1 1 uQu le’ (26)
By T4Qq Ty
fa(n) < A <f3(n), (27)
where
_ _ 2
., 2 = Qi
fa(n) =y y—
'—1 TrJer T
2
Q' r
+ g r] rj rJ TeralTrj:
i=1 J 1 uQ TIJ =1
(28)
ir—l 1 |Q| Yij
Bm=y “ly+ —— 1550
QT
r nj
x T;Q5 i (29)

i=1 j=1



Therefore,
TR (0,N,6, Mo |Y)

1 gl(nv e) {:1 Jn;]_ tr( ﬁ
gm+l =1 ai(n)e 2

172

r nj
x |Qij| 2
i=1j=1
A+ (o — )T
202
Now taking the integration of mr, (0, n, 8, Ko | y) with
respect to o, then we have

X exp

TR, (0,N,6]Y)
i 172
r N
: A
x Qi 2 exp —5—
i=1j=1 20
“ (Mo— Pt
- d
x . exp 502 Ho
i 172
1 01(n.8) =y Jn=1 tr( ﬁ
gm+l ir=1 ai (ﬂ)92hi
tn -172 A o
x Qi R ——
i=1 j=1 20 T Tt

When integrating g, (0,1, 8 | y) with respect to a, we
can get

TR, (N,0 1Y)

[ee]

= TR, (0,N,0 |y)do

; 1/2
., 1 01(n.8) iz jn=1tr(ﬁ
T It i—1 ai(n)e2n
r N
x |Qij| ~1/2
i=1j=1
o A
x —exp —— do
o am P "2
; 1/2
L1 a8 o Lt §
T IT i—1 ai(n)e2n
r N
= |Qij|_l/2>\_(m_l)/2- (30)
i=1j=1
Noticing that
ny r n;j
02" 1;Q 'ty <tT Tlt<e® Qi Tij
(31)

STATISTICAL THEORY AND RELATED FIELDS 33

and combining with (26) and (27), we can obtain that
an upper bound for (30) is

ghr+hr—1—1 rni

u(n,8) = — tr( 2)
ar(me?
1/2
x ai(n)aj(n)(hi — hy)?
1<i<j=r
ni
< QT AR
i=1j=1
= fy(n)o =",
where
1 r nj
fa(n) = tr( §)
ar(r]) i=1 1:1 I
1/2
x ai(n)aj(n)(hi — hy)?
l<i<j=r
ni
x QI *f(m) =™V (32)
i=1j=1
It can be shown that as 8 and n tend to oo,
fs)=0 n"¥% . (33)
Consequently, we have

fa(n)8M 1" ldodn < o0,  (34)

since hy—1 < hy. This implies that the posterior distri-
bution mr, (0, N, 8, Mo | y) is proper.

Theorem4.2: The posterior distributionsof (o, n, 6, o)
based on the priors Tir, and 1 are both improper.

Proof: It is readily shown that the marginal posterior
distribution of the parameters (n, 8) based on the prior
TiR, IS given by

1/2
1 ' _
TRy (N, 0 |Y) h fi(n)  ai(n)h?e?—2
i=1
r nj
> |Qij|—1/2A—(m—l)/2l (35)
i=1j=1

Following the proof of Theorem 4.1, we can obtain that

fi(mar(mnze2
TR, (ﬂ, 0 |Y) = ; —
02 L L QT
r N
x |Qij| ~2f3(m) ~(M~ 172
i=1 j=1

5.
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where
Wmam)
1
f5(n) = r ni ’ _1
i=1 j=1 T Qi Tij
r nj
x Qi ~2f3(n) =™ D2. (36)
i=1j=1
Note that as n tends to oo,
fs(n)=0 n~32 . (37)
Consequently, we have
[oe) (o) 1
f5(n);d6 dn = co. (38)
0 1 6

This implies that Tr,(n, 08 |y) is not integrable with
respect to 8 and n, which follows that the posterior
distribution under g, is improper. By analogous argu-
ments, we can show that the posterior distribution
under 1 is also improper.

It follows from Theorems 4.1 and 4.2 that only the
priors Tir, and Tir, enable posterior inferences. In order
to generate samples from the joint posterior distribu-
tionof(o,n, 8, Wwo),saym(o,n, 6, 1o |y), we can use the
following steps.

Step 1. The random walk Metropolis algorithm
can be employed to generate samples from those
marginal posterior distributions of (1o, 8, 1), denoted

by TR, (N, 8, Ko | y) and 1R, (. 8, Ko | y):

mRr,(N,0, Mo |Y)

r nj
Qij| 2
i=1j=1
o) =y Ly
 ai(n)e? '
(39)

T[RZ (n: el I"loly)

r n

Qi ™ ?po fr(m)gz(n, O)w ™2, (40)
i=1j=1

where
1 -1
P=20—H) M. (4D
Step 2. Then draw samples from the conditional

posterior distribution of o given (n,6, o), denoted
by TR, (0% | Ko, 8,n,y) and Tir, (02 | o, 8, 1, ). For the

priors Tir, and Tig,, it can be shown that

m
MR, (02| Mo, 0,n,y)  IG b @

m
MR, (0% | U0, 0,1,y)  IG S @

where 1G(a, b) refers to an inverse Gamma distribution

with the shape parameter a and the scale parameter b.
Step 3. The samples of 62 can be obtained from g2 =
2

no-.

5. Simulation study

In this section, we will investigate the performance of
the Bayesian estimators based on the priors mg, and
TR, In the simulation experiment, three stress lev-
els are used to observe the degradation process. The
true values of the parameters (Lo, 8,0,02) are set as
(0.04,3.9,1,0.4), and the temperature is taken as the
stress level. Here, the Arrhenius model is assumed
between the drift parameter and the temperature. The
normal stress Sp is speci ed as 50°C, and the accel-
erated levels are set as S; = 83°C, Sp = 133°C and
S3 = 173°C. Moreover, each unit is observed four
times, and the observation time are 100, 400, 1000 and
2000 h, respectively. Under the above setting, poste-
rior samples based on the priors g, (0,8,1n, Ho) and
TR, (0, 6,1, Ho) are generated by the sampling method
as mentioned in Section 4. The proposed Bayesian esti-
mators are compared with the maximum likelihood
estimator (MLE) in terms of the mean square error
(MSE) and the frequentist coverage probability of 95%
con dence interval under di erent sample sizes. By
replicating the experiment 5000 times, we can obtain
the estimated MSEs and coverage probabilities, which
are shown in Table 1. It should be pointed out that
the con dence intervals for MLE are approximated
by the likelihood ratio based method as in Peng and
Tseng (2009).

From Table 1, the following conclusions can be
drawn:

* Asisexpected, the MSEs of all the estimators become
smaller as the sample size increases. Furthermore,
the MSEs of Bayesian estimators for all parameters
are smaller than that of the MLEs in an obvious way.

e It can be observed that the coverage probabilities of
the Bayesian estimators under g, and Tr, are much
close to the nominal level 0.95. However, the cov-
erage probabilities of the MLE are not satisfactory,
since some of which do not reach 0.9 yet even for
large samples. Of course, this may be normal in that
the con dence intervals for the MLE are obtained by
the asymptotic distribution.

e Generally speaking, the performance of the Bayesian
estimators is superior to that of the MLEs in terms
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Table 1. MSEs and coverage probabilities (within parentheses) of the Bayesian estimators and MLE.

(n1,n2,n3) MLE/priors IS 02 9 Ho
(555) MLE 0.751 0.401 0.344 9.734 < 1073
(0.8032) (0.8128) (0.8308) (0.8214)
TR, 0.737 0.317 0.299 4.284 < 1073
(0.9378) (0.9382) (0.9618) (0.9348)
TR, 0.728 0.308 0.298 42731073
(0.9380) (0.9382) (0.9612) (0.9392)
(10,15,15) MLE 0.1487 0.1256 9.474 < 1072 5164 < 1073
(0.8426) (0.8662) (0.8628) (0.8618)
TR, 0.1347 0.1082 8276 % 1072 9.128 < 1074
(0.9406) (0.9588) (0.9432) (0.9412)
TR, 9.312 x< 1072 8.374 % 1072 8.147 < 1072 9.136 < 1074
(0.9412) (0.9532) (0.9464) (0.9426)
(20,20,20) MLE 7.892 < 1072 8.637 x 1072 5.382 x 1072 1.358 x 1073
(0.8672) (0.8904) (0.9018) (0.8846)
TR, 7.346 x 1072 6.382 < 1072 4831 % 1072 6573 < 1074
(0.9442) (0.9468) (0.9548) (0.9534)
TR, 6.732 < 1072 4317 % 1072 4774 % 1072 6.427 < 1074
(0.9524) (0.9512) (0.9498) (0.9508)
(25,25,25) MLE 4297 x 1072 3428 > 1072 2116 x 1072 6.213 < 107
(0.8892) (0.9124) (0.9248) (0.9024)
TR, 4,025 < 1072 2114 %1072 1.0781 x 1072 2.754 < 1074
(0.9468) (0.9518) (0.9512) (0.9518)
TR, 3.841 % 1072 2115 % 1072 1.0778 x 1072 2749 < 1074
(0.9488) (0.9504) (0.9502) (0.9508)

of the MSE and the coverage probability. And for
Bayesian estimators, the performance of the prior
TR, Is similar to that of mr,, although TR, is some-
what better than 1ir, for small sample sizes.

6. Real data analysis

Now we apply the proposed Bayesian approach to
analyse the real data of LEDs in Zhao and Elsayed
(2004). In the original experiment, each unit was mea-
sured for ve times (50h, 100h, 150 h, 200 h, 250 h,
respectively), and the maximum test duration allowed
was 250 h. The normal stress was sop = 28 mA, and two
stress levels were s; = 35mA and s = 40 mA, respec-
tively.

We use to the Wiener accelerated degradation model
with measurement errorsto t the data. And the Power
law model is adopted between the drift parameter and
the stress level. Besides, the threshold value w is speci-

ed as 0.5 as in Lee and Tang (2007).

The 95% credible intervals of (o, 0,8,02) and the
posterior means are shown in Table 2. It can be seen that
the Bayesian estimates based on the priors g, and g,

Table 2. Posterior means and 95% credible intervals (within
parentheses) of parameters.

Prior Parameter Mean 95% Credible interval
TR, ] 1.4802 (1.0824,2.1147)
Ho 8.1648 < 107° (7.4571,8.8102) < 107°
o 1.7012 x 1073 (1.4198,2.3112) < 1073
g? 1.4794 x 1072 (1.0981,1.7932) = 1072
TR, ] 1.4765 (1.0176,2.0595)
Ko 8.1518 < 107° (7.4257,8.7328) < 107>
o 17132 x 1073 (1.4341, 2.3475) < 1073
0?2 15134 x 1072 (1.1297,1.8147) x 1072

are relatively close to each other. Finally, the estimated
MTTFos under the priors Tg, and Tg, are 6124 h and
6133 h, respectively.

7. Concluding remarks

In this paper, we propose an objective Bayesian
approach to investigate the acceleration degradation
model based on the Wiener process with measurement
errors. The Je reys prior and reference priors under
di erent group orderings are derived for the model.
The propriety of the posterior distribution under the
non-informative priors is validated. A simulation study
is carried out to see the performance of the Bayesian
approach, which indicates that the proposed method
is superior to the MLE in terms of the MSE and the
coverage probability. Finally, the method is applied to
analyse a real data set, and the MTTF of the product is
estimated.
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