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Objective Bayesian analysis for the accelerated degradation model using
Wiener process with measurement errors

Daojiang He, Yunpeng Wang and Mingxiang Cao

Department of Statistics, Anhui Normal University, Wuhu, People’s Republic of China

ABSTRACT

The Wiener process as a degradation model plays an important role in the degradation analysis.
In this paper, we propose an objective Bayesian analysis for an acceleration degradation Wiener
model which is subjected to measurement errors. The Jeffreys prior and reference priors under
different group orderings are first derived, the propriety of the posteriors is then validated. It is
shown that two of the reference priors can yield proper posteriors while the others cannot. A sim-
ulation study is carried out to investigate the frequentist performance of the approach compared
to the maximum likelihood method. Finally, the approach is applied to analyse a real data.

1. Introduction

In practical applications, one may want to estimate the
failure time of a product, however, it is quite difficult to
collect sufficient failure time data due to the high qual-
ity of the product. If quality characteristics exist, whose
degradation over time can be related to reliability, an
effective approach is to collect the degradation data of
the product, and then use the degradation data to pre-
dict the failure time. Compared with the traditional
failure time analysis in term of asymptotic efficiency,
the degradation analysis has demonstrated a higher
precision. General discussion of degradation models
and their uses is included in Simgpurwalla (1995) and
Meeker and Escobar (1998).

Moreover, it is also hard to observe enough use-
ful degradation data under normal experiment condi-
tions. For this, Nelson (1990) proposed an accelerated
degradation test (ADT) which collects degradation data
under harsher conditions and then predicts the mean-
time-to-failure (MTTF) under the normal conditions.
Accelerated degradation models can be divided into
three classes, which are constant-stress ADT (CSADT),
step-stress ADT (SSADT) and progressive-stress ADT
(PSADT), respectively. Due to the attractive mathe-
matical properties and physical interpretations, degra-
dation models based on Wiener process have been
extensively utilised to describe the accelerated degra-
dation of products. There are some work along this
topic, for example, Doksum and Hoyland (1992) intro-
duced the conception of PSADT to assess the prod-
uct’s lifetime distribution. Tang, Yang, and Xie (2004)
and Liao and Tseng (2006) considered the optimisa-
tion of SSADT which assumed that the degradation
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characteristic followed a Wiener process. Ye, Chen, and
Shen (2015) studied a new ADT model by introducing
a common parameter in the mean and the variance into
the Wiener degradation model.

In the aforementioned work, the methods of degra-
dation analysis are mainly from the frequentist or sub-
jective Bayesian perspectives. The objective Bayesian
method has attracted much attention in the literature,
since it has many advantages in statistical analysis, one
can see Berger (2006) and references therein for more
details. Recently, the objective Bayesian method has
been applied to the statistical analysis for degradation
models. For example, Xu and Tang (2012) used the
objective Bayesian method to analyse a linear degra-
dation model; Guan, Tang, and Xu (2016) proposed an
objective Bayesian analysis fora CSADT model; He, He,
and Cao (2016) introduced the approach to analyse a
Wiener degradation model with random effects.

On the other hand, in real applications, it is
inevitable to introduce some measurement errors dur-
ing the observation process. Therefore, it is better to
include the measurement errors in the degradation
models. In this paper, we investigate an accelerated
degradation Wiener model which is subjected to mea-
surement errors, and then use the objective Bayesian
method to analyse the model.

The rest of this paper is organised as follows. In
Section 2, the accelerated degradation Wiener model
with measurement errors is introduced. In Section 3,
the Jeffreys prior and reference priors under differ-
ent group orderings are derived. In Section 4, the
propriety of the posterior distributions based on the
non-informative priors is validated. In Section 5, a
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simulation study is carried out to see the performance
of the Bayesian estimates compared with the max-
imum likelihood estimates. In Section 6, the pro-
posed approach is applied to a real data in Zhao and
Elsayed (2004). Some concluding remarks are given in
Section 7.

2, The accelerated degradation model

Assume that X () is the degradation characteristic of a
product measured at time ¢, consider the following lin-
ear degradation model based on a Wiener process with
drift:

X(t) = put + o B(b), (1)

where p is the drift parameter, o is the diffusion coeffi-
cient and B(t) is the standard Brownian motion.

The degradation rate is affected by many factors,
such as the voltage, pressure, temperature and so on,
which are usually called acceleration variables or stress
levels. To make the prediction of the lifetime more accu-
rate, the degradation model should take those stress
levels into account when the information is available.
In this paper, we will consider a CSADT.

Let s < s1 < --- < s, be r+1 stress levels, where
so stands for the stress level under normal experiment
condition, and s, represents the stress level under the
harshest experiment condition. It is assumed that the
drift parameter is related to the stress levels, while the
diffusion coefficient is independent of the stress levels.
That is to say, the model for CSADT turns into

Xi(t) = pit + o B(1), (2)

where X;(t) is the degradation process under the ith
stress level, and p; is the corresponding drift parameter,
fori=0,1,...,r.

In ADTs, when a measurement is taken at time ¢,
there is usually a measurement error. Assume that Y;(¢)
is the observable variable, and ¢;(¢) is the corresponding
measurement error, then

Yi(t) = Xi(t) + €(t), (3)

where €;(¢) is assumed to be independent of X;(¢) and
distributed as a normal distribution with the mean 0
and the variance o2, fori = 1,2,...,.

Suppose that there are »; units under the ith stress
level s; in the CSADT, and let m;; be the number of
measurements for the jth unit under the ith stress level,
fori=1,2,...,r5j=1,2,...,n; Giveniandj, assume
that y;x, k=1,2,...,mj; are the observations at the
measurement time t;j; < tjjp < -+ < tjj. For simplic-
ity, we now consider the increment model. Denote

Ayijk = Yijk = Yiik—1)> Atk = tijk — Lije—1)>  (4)

where yjjo = 0 and tjjo = 0. Let y;; = (Ayij1, Ayijp, . - +»
Ayijk)/ and Tjj = (Atijl, Atijz, e Atijk)/,i =12,...,1;

ji=12,...,n; k=1,2,...,mj. Then y; follows a
multivariate normal distribution:

ylj ~ N(I’Llrl]) Elj)) (5)
where
O'2At,'j1 + 202 —o? 0
—o? 02 Atjp + 202 —o2
€ ij2 € €
i = 0 ’
: o2
0 0
0
. 0
GzAtij(mij—l) + 2(762 —(762
2

—0,

& azAtijmij + 203

(6)

Let w denote the threshold value, which is often deter-
mined by the manufacturer standard. The lifetime T; of
a product under the stress level s; is defined as

T; = inf{t > 0| x;(t) > w}.
According to Ye, Shen, and Xie (2012), T; follows an

inverse Gaussian distribution, whose probability den-
sity function is given by

2 2

w W w
fig (ti; —,—2) ==
Hi o 2t} o

Wit = 2puitio + o
20°2t;

xexp{— }, t;>0. (7)

And the MTTF under the level s; is

MTTE, = E(T) = =, i=0,1,...,r. (8)
n

i

According to Ye and Chen (2014), the functions
between the parameter p; and the stress level s; often
have the following three forms:

(i) the Power law model: u; = p - s?,
(ii) the Arrhenius model: u; = p - e~ /s,
(iii) the Exponential model: u; = p - e,

where p and g are unknown parameters. Note that the
Arrhenius model and the Power law model are widely
used when the stress level is the temperature or volt-
age, while the Exponential model is usually used to
characterise the effect of the weathering variable.



Under this assumption, we can rewrite the parameter
Wi as follows:

m:,w’“, i=12,...,1

where

6 = explqlg(s)) — gGs0)]} = =2 > 1
Mo

is the acceleration factor from the stress level sy to sj,
and

_ 86si) — g(s0)
YT g(s1) — g(s0)

Note that i, > - -+ > h; = 1. Moreover, g(s;) = —1/s;
for the Arrhenius model, g(s;) = log(s;) for the Power
law model and g(s;) = s; for the Exponential model,
respectively.

By reparameterisation, let

=12,...,r.

_ ol
r) - 0_2’
then % = 62Qjj, where
Atijp + 2n -0 0
=1 Atip +2n  —n
Q; = 0 . .
: -1
0 0
0
) o |- ©
Atij(m,'j—l) + 2n —n
-n Atijm; + 21

Consequently, the likelihood function for the new
parameters & = (o, 1,0, o) is given by

roon
1
Ly|§) = ST —
I Gy
. hiz N OT (s hip..
()/z] — ot Tz]) Q,’j ()’z] — pob Tl])
X exp  — 302 ,

(10)

wherey = {y;j:i=12,....,rs j=12,...,n}.

3. Non-informative priors

In this section, we will derive some important non-
informative priors for the model (3), which include the
Jeftreys prior and three reference priors under different
groups.
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Theorem 3.1: The Fisher information matrix for the
parameters & = (1o, 0,0, n) in the model (3) is

_(In o©
1) = (0 122), (1)
where
1 " r
. 0 .
) > aimo™ ) > aimho!
I = ;= !
2 b
@ Z a‘( h‘92hi_l & ) h292h,‘—2
> Y aimh 3 2 ai(h;
o= i=1
2m ] e~
= — D> )
o Rl
Ip = LS L ;
LS S ey LYY we
Rl i=1 j=1
and
r nj ni
D 3) ST S RS
i=1 j=1 i=1
2 —1 0 0
—1 2 —1
-1
—1 2 —1
0 0 —1
mij X mjj

(13)

Proof: Thelog-likelihood function, up to a constant, is
given by

1 r n;
ly|8) = —mlogo — - ;;bglom

nj
> i — nob" )

i=1 j=1

1 r
202

x Q' (v — 18" 7).

We just prove the right lower 2 x 2 corner of the
Fisher information matrix, since the other entries can
be obtained by direct differentiation of I(y | §).

Taking the first partial derivatives of I(y|&) with
respect to 1, and the second partial derivatives with
respect to o, and applying Fact 3 in Berger, Oliveira, and
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Sanao (2001), we can get

aoyl§) m 3

r ni
> Wi — nodity)

o2 o2 ot rarden
—1 hi
x Q" (yij — ot Tip),
al( IE)
y == ZZtr(\IJU)
i=1 j=1
1 r
+ — Z()/zj Mot 1771]) Ql]
i=1 j=1
9Qjj .
’JQI] i — ob" ).

Taking derivation of dl(y|&)/dn with respect to o
results in

Plyl& 1 v b =1
“doon =" Z Z()’zj — Kot ’sz)/Q,-j
i=1 j=1

Q; _
"QU (i — 1ob" ).

Using Fact 4 in Berger et al. (2001), we have
2’1y18) -
E(=—22) =— —
< dodn ; le o3

X tr (Q;l Qi Q; 102Q,])

= ‘}, ) Z tr(Wi),

i=1 j=1

E(M)_ﬂ__

Ztr (sz o Q,]>

2 2 4
do o ot = i
2m
_ =
al(yl§) 1
E( o ;;tr(ng 2;}2}

< tr <Q;1 Qjj Q;l ZQU) —0

Consequently, we obtain that

olyl§)\? 1l vy h
i=1 j=1
,0Q; |
x Q5 Ry O - ot zy)

r

1 i
=32
i=1 j=1
,0Qy 2
x2tr<QlJ1 IJQZJI 2QU

— % Z Z tr(W3).

i=1 j=1

Then the result of Theorem 3.1 is straightforward. W

According to Jeffreys (1961), the Jeffreys prior is
proportional to the square root of the determinant of
the Fisher information matrix. Hence, the following
theorem can be obtained.

Theorem 3.2: The Jeffreys prior for & = (uo,6,0,n) is
given by

7(E) x %wﬁ(n)gl(n,e), (14)

where

A =m)_ Z CCHEE DY Z (W) |

i=1 j=1 i=1 j=1
(15)

gm0 = Y aimai(n(h; — k)2,

1<i<j<r

(16)

In addition to the Jeffreys prior, Bernardo (1979)
proposed the reference prior for deriving non-
informative priors which separates the parameters into
several different group orderings of interest. Refer-
ence prior has become one of the most useful non-
informative priors in the literature, see Berger and
Bernardo (1992), Sun and Berger (1998) and Berger,
Bernardo, and Sun (2009) and references therein for
more details. Now, we present the reference priors for
the parameters under different group orderings.

Theorem 3.3: Consider the degradation model (3), then
we have
(1) the reference prior under the group ordering

{o,(n,6), o} is of the form

1 (51(n,6) > 12 1t1’(‘l’§) 1/2 17)
S S aimo ’

(2) the reference prior under the group ordering
{(rt0,0,n),0} is given by

TR, X %\/fl(n)gl 1, 0), (18)



(3) the reference prior under the group ordering
{10, (8,1n), 0} has the form

. 1/2
1 .
TRy X — (fl(n) ;ai(’?)h%e% 2) ; (19)

where fi(n) and g1(n,0) are defined in (15) and (16),
respectively.

Proof: We prove the result for the group ordering
{1t0, (0,1),0)}, and the proof of the others is similar.
It is readily to obtain that the inverse of the Fisher
information matrix in (11) is

no = (% ). (20)

where

2

g1(1,0) 4 Z“l(”)hw -

2

S 2y

Y=

2

- Za (mhie* !

Mogl(nﬁ)
% gl(nﬂ) Z aitn

2m

fl(’?)

AT )ZZtr(\If,])

i=1 j=1

Yn =

f1(77) Z Z ()

11]1

2 )ZZtT(\IJl])

i=1 j=1

Following Berger and Bernardo (1992) with a slight
difference in the notation, we can obtain that

81(n,0)
o2 Zile ai(n)hiZ@zhi—z

2 r
Ngfl(n) 202hi—2 2m
k2| = 202m ;:1 ai(n)h;6 s k3= o2

ki =

Now we choose compact sets ;= [cy,dy] X
[can, dat] x [c31, d31] x [cq, dy] for (no,6,n,0), such
that ¢y, 3, ¢y — 0, ¢y — 1 and dyy, dy), d3p, dy —

STATISTICAL THEORY AND RELATED FIELDS . 31

00, as | = oo. Then we have

740 | 120, (0, 1))
_ |k3|1 21[C4ld4] (0 T’)
o dar 7112
S ks |2 do
1

= 1 R
o (logdy — log cyy) lcarda) ()

where 14(-) stands for the indicator function of a set A.
Thus

Ebllog(lk2]) | 20, (6, 1)]

dyi
=/ log(lka )73 (o | o, (8, m)) do

4]

= log {uéﬁ my ai(n>h%92hf-2} + Ci(D),

i=1

where

dg 1 |
Ci(l) = / ———74((,n) | 1o, 0) do.
oy 2mo

It follows that

75 (6,m),0) | 110)

(o | o> (0,m)) exp {3 E3llog(lka]) | 120, (0, )1}
Licydy1 (0, 1)

TS [ exp (LB [log(Ka ) | 1o, (6,11} 6 dy

31 Jel

r 12
= 73(0 0, (6, ) (fl(n) > ai(n)hfeﬂlf—z)

i=1

x Co(D1 ey (),

where

dy pdy r L 12
C(D) = f / A Y aimhie®2 ) dody.
€31 €21 i=1

Consequently,

E} [log(lk11) | 120]

dy pdy pdy
/ / / log(|k1l)

x 715((0,1),0 | 1) 40 do dn

dy pdy pdy 81(n,0)
=[] e
cy Jezp Jey i=1 4in)n;

x (0, (,0) | 110) d9 do dn
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is a constant, and

7l (o, 0,0, 1))

730, (0, 1) | o) exp { 1! [log(1ki]) | o]}
1i¢,,dy1 (o)

S LE log(IKi ) | o] duo

1/2
Cy(l
- 20 (fl 'Y ko 2)

o(dy —cyp)log d4l im1

x 1g,(o, 77>9’/L0)-
Let (ug,0%,0%,n*) be an inner point of €2, then the
reference prior under the group ordering { o, (6,71),0}
is given by
7R, (1o, 0,0,1)
i 10 00, 0)
=00 7} (1, (6%, 7%), 07%)

r 1/2
1 .
o — (ﬁ(n) Zaiw)hfez’“) :

i=1

This completes the proof of Theorem 3.3. |

4. Posterior analysis

It can be seen that the priors derived in Section 3 are all
improper, so it is necessary to verify whether the pos-
terior distributions based on these priors are proper or
not.

We first prove a lemma, which plays an important
role in proving the subsequent theorems.

Lemma 4.1: The elements of sz_'l are all positive.

Proof: 1t is readily shown that Q; is positive definite,
thus Q;l
main diagonals of Q;l are all positive. By the method
of mathematical induction and the theory of partition
matrix, it can be shown that the off-diagonal entries of
Q; ! are also positive. |

is also positive definite, which implies that the

Theorem 4.1: The posterior distributions of (o,n,
0, o) based on the prior mr, and wg, are both proper.

Proof: We only prove the propriety of the posterior dis-
tribution based on the prior 7g,, the other one can be
shown in a similar way.

From (10), we can rewrite the likelihood function as
follows:

Liy[&)

r n;i
— (27_[0_2)71’”/2 l—[ 1—[ |Qij|71/2

i=1j=1

_ "A Ly —
X exp = oty AT (y — o) )
202

(21)

where

T=(1,7-->7)>

/

t=0" (), th . Th) s =12, (22)

and

A= diag(Qll) QlZs cee >Q1n1, e er) QrZa s anr)'

(23)

From the likelihood function (21) and the reference
prior mg, (0, (n,60), i), the joint posterior density of
(00,0, 0,n) is given by
7R, (051,60, 1o | y)
o L(y | &§)7r, (0, 1,6, o)
2
1 (gm,mz,f Dyl ltrw%))”

ol Yy ai(m6?h

X

r ni
< [TTT1Qs =

i=1 j=1
: O — mot) Ay — wot) }
X exp | — 2 .
20
Let
[:L — (‘C/Aflt)il‘r/)nfly, (24)
A= (y—at) ANy — pr). (25)

Using Lemma 4.1, it can be shown that
Z] 1 r]Qr] Vrj
ohr Z] 1 1]Qz] Tij
N Zi IZJ 1 l]Ql] Yij

ohr ZJ 1 r]QrJ Trj
L) <A < f3(m), (27)
where
2
2 er Z er Vi
S =y A ly— (2o 22715 )
Z] 1 I’]QT] f
ZJ 1 r]Qr] Vrj )
+ rQr Trjs
<ZZ]ZI!]Q1]1 ]lejj
(28)

Z: IZJ 1 lez] )/1])
ZJ 1 r]Qr] TTJ

r n;
DI @

i=1 j=1

) =y Ay + <



Therefore,
R, (0,1,6, 10| y)

1 <g1(n>9)Z, 12 1tr(‘11,]))

X
omtl Zi:l al(n)GZh’

roon;
< [T]T1Qil ™"

i=1 j=1

A+ (no — R*T'ATT
202 '

X exp{—

Now taking the integration of 7g, (¢, 1,0, (o | y) with
respect to [to, then we have

7R, (0,1,0]y)

1 (gl(nﬁ) Yim1 2 tr(‘lfé))l/2

X
omt+l Z::I ai(n)QZh;

roon
_ A
T e -]

i=1 j=1
00 A2 A —1
x/ ex (o —p)TATT
0 P 202

1 <gl(n,9)2§ DIl ltrw;)) 2

} duo

omtl ZLI al(n)gzh
XHH|Q "2 exp |- S
i=1 j=1 202 v T/A_lt

When integrating 7, (o, 0,0 | y) with respect to o, we
can get

7TR1(77>9 |)’)

o0
=/ 7R, (0,1,0 | y)do
0

1 g,0) iy S r(wd)\
VT ATt Yo ai(m)6?hi

roon;
< [T]T1Qil™""?

i=1 j=1

/OO 1 A
X —expy——do
g om 202

1 (gl(n,(?) Y1 Xk tr(“’j))

X

. VT AT Yo ai(n)gh
roon;
< [T J1Qyl™"/2a =072, (30)
i=1 j=1
Noticing that
ny roon
o2hr Z r,’jQr_jlrrj <A < 9 Z Z r[nglrij,
=1 i=1 j=1

(31)
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and combining with (26) and (27), we can obtain that
an upper bound for (30) is

ghrthr—1—1 r

u(n,0) = IZE ; tr(W;)
1/2
x Y aimajm)(hi — h)?
1<i<j<r
< [T] J1Qul™*fam="=D/2
i=1 j=1
= fa(mo— 7,
where
fa(n) = Z Ztr(\l@)
ar(n) i—1 =1
1/2
x> aiman)(hi — hy)?
1<i<j<r
r ni
<[T]T1Qil "2~ D2 (32)
i=1 j=1
It can be shown that as 6 and 7 tend to oo,
fa) =0 (n~*?). (33)

Consequently, we have

o0 o0
/ / Fa(me" 1M1 dg dn < oo, (34)
0 1

since h,_; < h,. This implies that the posterior distri-
bution g, (¢, 1,0, o | y) is proper. |

Theorem4.2: The posterior distributions of (o, 1,0, (Lo)
based on the priors g, and wty are both improper.

Proof: 1t is readily shown that the marginal posterior
distribution of the parameters (1, 0) based on the prior
TR, is given by

1/2
R, (0,0 | y) \/% (fl(ﬂ) Za (ﬂ)hz@Zh 2)

i=1
r nj
< [T J1Qyl /2 0m=b72, (35)
i=1 j=1
Following the proof of Theorem 4.1, we can obtain that

Fmay (2622 ) 2
6 2hr Z: IZ =1 1]Q1] Tij

< [TTT1Ql™ =172

i=1 j=1

R (17,0 1Y) > <

1
0<f5(77)§a
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where

/2
fi(mar(n) )

fs(m) = . o

’ ( i=1ZjélfijQijlfij

< [T]T1Qil 26~ "=D72 (36)

i=1 j=1
Note that as 1 tends to oo,

fs(n) =0 (n?). (37)

Consequently, we have

o0 o0 1
/ / J5(m) 6 dn = oo. (38)
0 1

This implies that mg,(n,0 |y) is not integrable with
respect to 6 and 71, which follows that the posterior
distribution under g, is improper. By analogous argu-
ments, we can show that the posterior distribution
under 77 is also improper. |

It follows from Theorems 4.1 and 4.2 that only the
priors g, and 7g, enable posterior inferences. In order
to generate samples from the joint posterior distribu-
tionof (o, 1,0, o), say (o, n, 6, o | y), we can use the
following steps.

Step 1. The random walk Metropolis algorithm
can be employed to generate samples from those
marginal posterior distributions of (9,6, 1), denoted

by g, (1,6, o | y) and g, (1,6, po | p):

TTRy (77> 9) Ho |)’)

r n;
o [T]T1Qil™"2

i=1 j=1

l. 1/2
" (gl(n,e) > Z?:l tr(\Ifé ) g2

doioy ai(m)6?h
(39)

R, (1,6, poly)

oc [ TT T 1l ™20/ fingi(n, )y ™2, (40)

i=1 j=1
where
1 /A —1
V=50 = mox) Ay — pox). (41)
Step 2. Then draw samples from the conditional

posterior distribution of o given (1,6, j1o), denoted
by 7r, (0 | 0,0, n, y) and 7g, (0% | o, 6, 1, ). For the

priors g, and 7g,, it can be shown that

m
7Ry (02 | 110,60, 0, 9) ~ IG (5, v), @

m
T (0 [0, 0imy) ~1G (S20). (43)

where IG(a, b) refers to an inverse Gamma distribution
with the shape parameter a and the scale parameter b.
Step 3. The samples of 6/ can be obtained from 02 =

no?.

5. Simulation study

In this section, we will investigate the performance of
the Bayesian estimators based on the priors g, and
7R,. In the simulation experiment, three stress lev-
els are used to observe the degradation process. The
true values of the parameters (uo, 6,0, ‘752) are set as
(0.04,3.9,1,0.4), and the temperature is taken as the
stress level. Here, the Arrhenius model is assumed
between the drift parameter and the temperature. The
normal stress Sy is specified as 50°C, and the accel-
erated levels are set as S; = 83°C, S, = 133°C and
S3 = 173°C. Moreover, each unit is observed four
times, and the observation time are 100, 400, 1000 and
2000 h, respectively. Under the above setting, poste-
rior samples based on the priors mg, (0,0, 1, (o) and
7R, (0,6, 1, o) are generated by the sampling method
as mentioned in Section 4. The proposed Bayesian esti-
mators are compared with the maximum likelihood
estimator (MLE) in terms of the mean square error
(MSE) and the frequentist coverage probability of 95%
confidence interval under different sample sizes. By
replicating the experiment 5000 times, we can obtain
the estimated MSEs and coverage probabilities, which
are shown in Table 1. It should be pointed out that
the confidence intervals for MLE are approximated
by the likelihood ratio based method as in Peng and
Tseng (2009).

From Table 1, the following conclusions can be
drawn:

e Asisexpected, the MSEs of all the estimators become
smaller as the sample size increases. Furthermore,
the MSEs of Bayesian estimators for all parameters
are smaller than that of the MLEs in an obvious way.

e It can be observed that the coverage probabilities of
the Bayesian estimators under 7r, and 7rr, are much
close to the nominal level 0.95. However, the cov-
erage probabilities of the MLE are not satisfactory,
since some of which do not reach 0.9 yet even for
large samples. Of course, this may be normal in that
the confidence intervals for the MLE are obtained by
the asymptotic distribution.

e Generally speaking, the performance of the Bayesian
estimators is superior to that of the MLEs in terms
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Table 1. MSEs and coverage probabilities (within parentheses) of the Bayesian estimators and MLE.

(n1,nz,n3) MLE/priors o o? 0 1o
(5,5,5) MLE 0.751 0.401 0.344 9.734 x 1073
(0.8032) (0.8128) (0.8308) (0.8214)
R, 0.737 0.317 0.299 4284 x 1073
(0.9378) (0.9382) (0.9618) (0.9348)
R, 0.728 0.308 0.298 4273 x 1073
(0.9380) (0.9382) (0.9612) (0.9392)
(10,15,15) MLE 0.1487 0.1256 9.474 x 1072 5.164 x 1073
(0.8426) (0.8662) (0.8628) (0.8618)
R, 0.1347 0.1082 8.276 x 102 9.128 x 10~*
(0.9406) (0.9588) (0.9432) (0.9412)
R, 9.312 x 1072 8.374 x 1072 8.147 x 1072 9.136 x 1074
(0.9412) (0.9532) (0.9464) (0.9426)
(20,20,20) MLE 7.892 x 1072 8.637 x 1072 5382 x 1072 1.358 x 1073
(0.8672) (0.8904) (0.9018) (0.8846)
Ry 7.346 x 1072 6.382 x 1072 4831 x 1072 6.573 x 1074
(0.9442) (0.9468) (0.9548) (0.9534)
R, 6.732 x 1072 4317 x 1072 4774 x 1072 6.427 x 1074
(0.9524) (0.9512) (0.9498) (0.9508)
(25,25,25) MLE 4297 x 1072 3.428 x 1072 2.116 x 1072 6213 x 1074
(0.8892) (0.9124) (0.9248) (0.9024)
R, 4025 x 1072 2.114 x 1072 1.0781 x 1072 2.754 x 1074
(0.9468) (0.9518) (0.9512) (0.9518)
R, 3.841 x 1072 2.115 x 1072 1.0778 x 1072 2.749 x 1074
(0.9488) (0.9504) (0.9502) (0.9508)

of the MSE and the coverage probability. And for
Bayesian estimators, the performance of the prior
7R, is similar to that of mg,, although 7z, is some-
what better than 7g, for small sample sizes.

6. Real data analysis

Now we apply the proposed Bayesian approach to
analyse the real data of LEDs in Zhao and Elsayed
(2004). In the original experiment, each unit was mea-
sured for five times (50h, 100h, 150h, 200h, 250 h,
respectively), and the maximum test duration allowed
was 250 h. The normal stress was sy = 28 mA, and two
stress levels were s; = 35 mA and s, = 40 mA, respec-
tively.

We use to the Wiener accelerated degradation model
with measurement errors to fit the data. And the Power
law model is adopted between the drift parameter and
the stress level. Besides, the threshold value w is speci-
fied as 0.5 as in Lee and Tang (2007).

The 95% credible intervals of (g, 0,0, 062) and the
posterior means are shown in Table 2. It can be seen that
the Bayesian estimates based on the priors g, and g,

Table 2. Posterior means and 95% credible intervals (within
parentheses) of parameters.

Prior Parameter Mean 95% Credible interval
TRy 0 1.4802 (1.0824,2.1147)
o 8.1648 x 10~ (7.4571,8.8102) x 10~°
o 1.7012 x 1073 (1.4198,2.3112) x 1073
o? 1.4794 x 1072 (1.0981,1.7932) x 1072
R, 6 1.4765 (1.0176, 2.0595)
o 8.1518 x 10~ (7.4257,8.7328) x 10~
o 1.7132 x 1073 (1.4341,2.3475) x 103
o? 15134 x 1072 (1.1297,1.8147) x 1072

are relatively close to each other. Finally, the estimated
MTTFys under the priors mg, and mg, are 6124h and
6133 h, respectively.

7. Concluding remarks

In this paper, we propose an objective Bayesian
approach to investigate the acceleration degradation
model based on the Wiener process with measurement
errors. The Jeffreys prior and reference priors under
different group orderings are derived for the model.
The propriety of the posterior distribution under the
non-informative priors is validated. A simulation study
is carried out to see the performance of the Bayesian
approach, which indicates that the proposed method
is superior to the MLE in terms of the MSE and the
coverage probability. Finally, the method is applied to
analyse a real data set, and the MTTF of the product is
estimated.
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