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ABSTRACT
The intraclass correlation coefficient (ICC) plays an important role in various fields of study as
a coefficient of reliability. In this paper, we consider objective Bayesian analysis for the ICC
in the context of normal linear regression model. We first derive two objective priors for the
unknown parameters and show that both result in proper posterior distributions. Within a
Bayesian decision-theoretic framework, we then propose an objective Bayesian solution to the
problems of hypothesis testing and point estimation of the ICC based on a combined use of the
intrinsic discrepancy loss function and objective priors. The proposed solution has an appealing
invariance property under one-to-one reparametrisation of the quantity of interest. Simulation
studies are conducted to investigate the performance the proposed solution. Finally, a real data
application is provided for illustrative purposes.
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1. Introduction

Consider the intraclass model of the form

Yi = Xiβ + εi, i = 1, 2, . . . , n, (1)

where Yi is a k × 1 vector of response variables, Xi is a
k × p designmatrix of (p − 1) regressors (assuming the
first column is ones) andβ is a p × 1 vector of unknown
common regression coefficients. We assume that the

random error εi
iid∼ N(0k, σ 2�), where iid∼ stands for

‘independent and identically distributed’, 0k is a k × 1
vector of zeros, and� = (1 − ρ)Ik + ρJk with Ik being
a k × k identity matrix and Jk being a k × kmatrix con-
taining only ones. The parameter ρ is often referred as
the intraclass correlation coefficient (ICC). Note that
ρ ∈ (−(k − 1)−1, 1) is the necessary and sufficient con-
dition for positive-definiteness of �. When ρ is equal
to 0, the intraclass model becomes the classical linear
normal model with independent errors.

The ICC has been widely applied in various fields
of study as a coefficient of reliability, from epidemi-
ologic research to genetic studies; see, for example
Barkto (1966), Fleiss (1986), Lin, Hedayat, Sinha,
Yang (2002), among others. The analysis of the ICC
transitionally consists of two branches, hypothesis test-
ing and point estimation, and it has received atten-
tions from two main statistical streams of thought:
frequentists and Bayesians. From a frequentist view-
point, Paul (1990) considered the maximum likelihood

estimate (MLE) of the ICC in a generalised model set-
ting by solving iteratively a single estimating equation.
Paul (1996) developed the score tests for testing the
significance of the interclass correlation in familial
data. For Bayesian methods, Jelenkowska (1998) stud-
ied Bayesian estimation of the ICC in the linear mixed
model. Chung and Dey (1998) considered Bayesian
analysis of the ICC using the reference prior under a
balanced variance components model. Later on, Ghosh
and Heo (2003) considered Bayesian credible intervals
for ρ based on different objective priors andmade com-
parisons among these priors in terms of matching the
corresponding frequentist coverage probabilities.

It deserves mentioning that the problems of hypoth-
esis testing and point estimation for ρ have not yet been
studied within a decision-theoretical viewpoint. This
motivates us to propose an objective Bayesian solution
to these problems based on the Bayesian reference cri-
terion (for short, BRC) (Bernardo & Rueda, 2002). The
proposed solution allows the researchers to simultane-
ously study important inference summaries of the ICC,
including point estimation, credible interval estimation
and precise hypotheses. In addition, it enjoys various
appealing properties: (i) it is invariant under one-to-
one reparametrisation of the parameter of interest ρ;
(ii) it depends only on the assumed model, appropri-
ate objective priors and the observed data; (iii) it is
appropriate to perform the hypothesis test: H0 : ρ =
ρ0 versusH1 : ρ �= ρ0 for anyρ0 ∈ (−(k − 1)−1, 1) and
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(iv) it can be easily approximated numerically in most
statistical software and can thus be implemented by the
practitioners from different fields.

The remainder of the paper is organised as follows.
In Section 2, we derive two objective priors of the
unknown parameters and discuss the propriety of their
corresponding posterior distributions. In Section 3,
we propose an objective Bayesian solution to both
hypothesis testing and estimation problems of ρ from
a decision-theoretical viewpoint. Section 4 investigates
the performance of the proposed solution through sim-
ulations and a real data application. Some conclud-
ing remarks are provided in Section 5, with additional
proofs given in the Appendix.

2. Posterior distribution

For notational convenience, let Y and ε be nk × 1 vec-
tors and X is an nk × p design matrix, and they are
given by

Y =

⎛
⎜⎝
Y1
...
Yn

⎞
⎟⎠ , X =

⎛
⎜⎝
X1
...
Xn

⎞
⎟⎠ , ε =

⎛
⎜⎝

ε1
...

εn

⎞
⎟⎠ ,

respectively. The model in (1) can be expressed in a
more compact way as

Y = Xβ + ε, (2)

where ε follows an nk-dimensional normal distribu-
tion with mean vector 0nk and covariance matrix σ 2�,
where � = In ⊗ � is an nk-dimensional matrix and ⊗
denotes the Kronecker product. The likelihood func-
tion of the intraclass model in (2) is given by

p(Y | β , σ 2, ρ)

∝ |σ 2�|−1/2 exp

×
{
− 1
2σ 2 (Y − Xβ)′�−1(Y − Xβ)

}

∝ (σ 2)−nk(1 − ρ)−n(k−1)/2

× (1 + (k − 1)ρ)−n/2 exp

×
{
− 1
2σ 2 (Y − Xβ)′�−1(Y − Xβ)

}
,

where |A| denotes the determinant of a matrix A.
Bayesian analysis begins with prior specification

for all the unknown parameters in the model. In the
absence of relevant prior knowledge for (β , σ 2, ρ) in
the above model, noninformative priors are often pre-
ferred. One of the most popular noninformative pri-
ors is the Jeffreys prior, which is proportional to the
square root of the determinant of the Fisher informa-
tion matrix. It can be shown that the Jeffreys prior is

given by

πJ(ρ, σ 2,β) ∝ (σ 2)−(p+2)/2(1 − ρ)−1

× (1 + (k − 1)ρ)−1|X′�−1X|1/2. (3)

Given that the parameter of interest is ρ, we integrate
outβ and σ 2 (i.e.,πJ(ρ | D) ∝ ∫ ∫

f (Y | β , σ 2, ρ)πJ(ρ,
σ 2,β) dβ dσ 2) and obtain the marginal posterior den-
sity for ρ, denoted by πJ(ρ | D), whereD represents the
observable data. It follows that

πJ(ρ | D) ∝ (1 − ρ)−n(k−1)/2−1

× (1 + (k − 1)ρ)−n/2−1S(ρ)−nk/2, (4)

where S(ρ) = Y′(�−1 − �−1X(X′�−1X)−1X′�−1)Y.
Note that when X1 = · · · = Xn, the prior in (4) can be
simplified by replacing S(ρ) with (Y − X′β̂)′�−1(Y −
X′β̂), where β̂ = (X′�−1X)−1X′�−1Ȳ and Ȳ = ∑n

i=1
Yi/n. The simplified version is just the Jeffreys prior
derived by Ghosh and Heo (2003).

One may argue that, when we aim at a sub-
set of the parameters with the rest treated as nui-
sance parameters, the direct use of the Jeffreys
prior may sometimes be unsatisfactory. To over-
come such a pitfall, Bernardo (1979) proposed an
algorithm to derive objective priors by maximising
some entropy distances. This was further explored by
Berger and Bernardo (1992a, 1992b) and named by
them the reference priors. We obtain that the one-
at-a-time reference prior for the parameter ordering
{ρ, σ 2,β} or {ρ,β , σ 2} is given by

πR(ρ, σ 2,β) ∝ (σ 2)−1(1 − ρ)−1(1 + (k − 1)ρ)−1,
(5)

which is exactly the same as the reference prior iden-
tified by Ghosh and Heo (2003), because their model
is just a special case of model in (1) when we set
X1 = · · · = Xn. In addition, it can be shown that the
prior in (5) is a second-order matching prior because it
achieves approximate frequentist validity of the poste-
rior quantiles of the interest parameter ρ with a margin
of error of o(n−1). We refer the interested readers to
Datta and Ghosh (1995b), Datta and Ghosh (1995a)
and Datta andMukerjee (2004) about the second-order
matching criterion in detail. The resulting marginal
posterior density of ρ under this prior, denoted by
πR(ρ | D), is given by

πR(ρ | D) ∝ (1 − ρ)−n(k−1)/2−1

× (1 + (k − 1)ρ)−n/2−1|X′�−1X|−1/2

× S(ρ)−(nk−p)/2. (6)

Given that neither πJ in (3) nor πR in (5) is proper, it
is important to study the propriety of their correspond-
ing posterior distributions, which is summarised in the
following theorem with proofs given in the Appendix.
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Theorem 2.1: Consider the intraclass linear model
in (1). Under either the Jeffreys prior πJ in (3) or the ref-
erence prior πR in (5) for the unknown parameters, the
joint posterior distribution of (ρ, σ 2,β) is proper when
k ≥ 2.

As commented by Bernardo (2010), the problems of
hypothesis testing and point estimation can be viewed
as a special decision problem from a Bayesian decision-
theoretic point of view. The choice of the loss function
plays a central role in the statistical decision theory.
There are numerous loss functions, such as the squared
error loss, the zero-one loss and the absolute error loss,
whereas many of them often lack the invariance prop-
erty required in practice. For example, the squared error
loss is often overused in statistical inference as a mea-
sure of the discrepancy between two sampling distri-
butions, heavily depending on the chosen parameteri-
sations (Bernardo, 2005). In this paper, we consider the
intrinsic discrepancy as a loss function due to its various
appealing properties discussed in the next section.

3. Bayesian reference criterion

In this section, we propose an objective Bayesian
solution based on the BRC proposed by Bernardo
and Rueda (2002). In Section 3.1, we overview the BRC
and derive the intrinsic discrepancy for the hypothesis
testing of ρ. We then obtain Bayesian intrinsic statistic
in Section 3.2 and Bayesian intrinsic estimator of ρ in
Section 3.3.

3.1. Intrinsic discrepancy loss function

Without loss of generality, we assume that the proba-
bilistic behaviour of observable data y can be appropri-
ately described by the probability model

M ≡ {p(y | θ ,ω), y ∈ Y, θ ∈ �,ω ∈ 	}, (7)

where θ is the parameter of interest and ω is a nui-
sance parameter. We aim at deciding whether or not to
treat the reduced model p(y | θ0,ω) underH0 : θ = θ0
as a proxy for the general model M. In other words,
we decide whether the model under H0 is compatible
with the observable data. Since the Kullback–Leibler
(KL) direct divergence is a goodmeasure of discrepancy
between two probability distributions (Robert, 1996),
Bernardo (1999) developed the logarithmic discrep-
ancy derived by minimising this divergence measure.
Given that the logarithmic discrepancy is not symmet-
ric and this feature may be unsuitable in some contexts,
Bernardo and Rueda (2002) developed a symmetric
version, often called the intrinsic discrepancy given by

δ(θ ,ω, θ0) = min{κ(θ0 | ω, θ), κ(θ ,ω | θ0)},

where

κ(θ0 | ω, θ) = inf
ω0∈	

∫
p(y | θ ,ω) log

p(y | θ ,ω)
p(y | θ0,ω0)

dy

and

κ(θ ,ω | θ0) = inf
ω0∈	

∫
p(y | θ0,ω0) log

× p(y | θ0,ω0)

p(y | θ ,ω)
dy.

The unit of the intrinsic discrepancy is the nat of
information, while it could be a bit of information
if the logarithm was taken in base 2 instead of base
e. The intrinsic discrepancy has an invariant prop-
erty under one-to-one reparametrisation. For a thor-
ough discussion of other properties, see Bernardo
and Rueda (2002), Bernardo and Juárez (2003) and
Bernardo (2010). Inwhat follows,we provide the intrin-
sic discrepancy between two intraclass models with its
derivations given in the Appendix.

Theorem 3.1: The intrinsic discrepancy for testing H0 :
ρ = ρ0 versus H1 : ρ �= ρ0, for ρ0 ∈ (−(k − 1)−1, 1)
under the intraclass model in (1) is given by

δ(ρ0, ρ) =
{
κ(ρ0 | ρ) if ρ ∈

(
− 1

k−1 , ρ0
]
,

κ(ρ | ρ0) if ρ ∈ (ρ0, 1),
(8)

where

κ(ρ | ρ0) = nk
2

log
{
1 + (k − 2)ρ − (k − 1)ρ0ρ
(1 + (k − 1)ρ)(1 − ρ)

}

− n
2
log

{
(1 + (k − 1)ρ0)(1 − ρ0)

k−1

(1 + (k − 1)ρ)(1 − ρ)k−1

}
.

(9)

It can be easily verified that ρ0 
→ δ(ρ0, ρ) is a con-
tinuous convex function with a unique minimum at
ρ = ρ0. Figure 1 depicts the curves ρ0 
→ δ(ρ0, ρ) for
n=1, k=4 and ρ ∈ {−0.3, 0, 0.3}. We observe that the
corresponding curve of the intrinsic discrepancy always
vanishes at ρ0 = ρ.

3.2. Bayesian intrinsic statistic

If we select the intrinsic discrepancy as the loss func-
tion, then the intrinsic statistic can be defined as the
posterior expectation of the intrinsic discrepancy loss,
namely,

d(ρ0 | D) =
∫
�

δ(ρ, ρ0)πδ(ρ | D) dρ, (10)

where πδ(ρ | D) is the marginal posterior distribution
for ρ under the δ-reference prior when the quantity of
interest is δ(ρ0, ρ) in (8). Because δ(ρ0, ρ) is a one-to-
one piecewise function of ρ, we follow Proposition 1
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Figure 1. The intrinsic discrepancy δ(ρ0, ρ) in (8) as a function of ρ0 for n= 1, k= 4 and ρ ∈ {−0.3, 0, 0.3}.

of Bernardo (1999) and show that the δ-reference prior
corresponding to the parameter of interest δ(ρ0, ρ) is
exactly the same as the reference prior for ρ corre-
sponding to the parameter of interest ρ. In addition, the
posterior distribution of ρ is invariant under this kind
of transformations (Bernardo & Smith, 1994, p. 326).
The intrinsic statistic in (10) can thus be rewritten as

d(ρ0 | D) =
∫
�

δ(ρ0, ρ)πδ(ρ | D) dρ

=
∫
�

δ(ρ0, ρ)π(ρ | D) dρ

=
∫ ρ0

−1/(k−1)
κ(ρ0 | ρ)π(ρ | D) dρ

+
∫ 1

ρ0

κ(ρ | ρ0)π(ρ | D) dρ,

whereπ(ρ | D) is themarginal posterior distribution of
ρ under either πJ in (3) or πR in (5). We observe from
Bernardo (2010) that the intrinsic statistic can be inter-
preted as the expected value of the log-likelihood ratio
against the simplified model under H0. On the other
hand, the BRC can be defined as

Reject H0 : ρ = ρ0 when d(ρ0 | D) > d∗

for some given utility constant d∗. In this paper, we
advocate the conventional choices d∗ ∈ {log(10), log
(100), log(1000)} for scientific communication. The
value of about log(10) indicates some evidence against
H0; the value of about log(100) provides rather
strong evidence against H0, while the value of about

log(1000) can be safely used to reject H0. For fur-
ther details about these values, we refer the inter-
ested readers to Bernardo and Rueda (2002), Bernardo
and Juárez (2003), Bernardo and Pérez (2007) and
Bernardo (2010).

3.3. Bayesian intrinsic estimator

We follow Bernardo and Juárez (2003) and define the
intrinsic estimator of ρ as

ρ∗ = ρ∗(D) = arg min
ρ0∈�

d(ρ0 | D), (11)

which is the valueminimising the posterior expectation
of the intrinsic discrepancy loss function. The intrin-
sic estimator inherits the invariance property of the
intrinsic statistic under one-to-one piecewise transfor-
mation, which means that if ψ = ψ(ρ) is a one-to-one
reparametrisation of ρ, then the intrinsic estimator of
ψ is simply ψ∗ = ψ(ρ∗).

4. Examples

We examine the performance of the proposed solution
to both hypothesis testing and point estimation prob-
lems of ρ through simulation studies ( Section 4.1) and
a real data application (Section 4.2).

4.1. Simulation study

We conduct simulation studies to investigate the
behaviour of the proposed solution under different
scenarios. There are n observations and 2 regressors
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(p=3) and the data are generated from the model
in (1). Without loss of generality, we set σ 2 = 1, β =
(1, 1, 1)′ and � = (1 − ρT)I3 + ρTJ3, where ρT is the
prespecified true value of ICC. Each element of Xi for
i = 1, . . . , n is generated from a uniform density over
the interval (−2, 2). To check the variations of the pro-
posed approach, ρT is taken to be one of four different
values:−0.3, 0, 0.3, 0.8 corresponding to the correlation
being negative, zero, medium and large, respectively,
while considering different sample sizes n=5 (small)
and n=20 (medium). For each simulation setting, we
consider N=10,000 replications. We analyse the aver-
aged estimates along with the mean absolute errors
(MAE) given by

MAE = 1
N

N∑
j=1

|ρ̂j − ρT |,

where ρ̂j represents the estimate of ρT in jth replication.
The MAEs of the Bayesian estimations and the MLE

(Paul, 1990) are reported in Tables 1 and 2. Several
features can be drawn as follows. (i) The intrinsic esti-
mator under πR outperforms the one under πJ in most
cases, especially when the sample size is small, and
they behave similarly as n increases. (ii) The intrinsic
estimator under each prior outperforms the posterior
mode and is comparablewith the posteriormedian. (iii)
When the true value ρT is near by 0, the MLE performs
the best, whereas when ρT is far from 0 (e.g., ρT = 0.8),
the intrinsic estimator performs the best among all the
estimators under consideration. (iv) On average, the
MAEs of all the estimators decrease significantly with
an increasing sample size. In a marked contrast with
other estimators, the intrinsic one is invariant under
one-to-one transformation, which is not shared by oth-
ers, such as the posterior mean. Simulations with other
choices of ρ have also been conducted, and similar con-
clusions are achieved and thus not presented here for
simplicity.

We further compare the frequentist coverage prob-
ability of the posterior distributions of ρ under πJ
and πR. Following Sun and Ye (1996), we let α be
the left tail probability and ρ(α) be the corresponding
quantile of the marginal posterior distribution π(ρ |
D) under either πJ or πR. Theoretically, it follows

F(ρ(α)) = ∫ ρ(α)
−∞ π(ρ | D)dρ = α. Letting P(α | ρT) =

P(ρ < ρ(α) | ρT ,D) = P(F(ρ) < α | ρT ,D)= P(
∫ ρ
−∞

π(ρ | D)dρ < α | ρT ,D), we observe that P(α | ρT)
should be very close to α if the chosen prior performs
well with respect to the probability matching criterion.
Table 3 shows the estimated tail probabilities of the
posterior distributions between two priors under dif-
ferent scenarios. We observe that the tail probabilities
of the posterior distribution of ρ under πR are closer
to the frequentist coverage probabilities than the ones
under πj. This observation is reasonable, because πR is
a second-order matching prior if ρ is the parameter of
interest.

In addition to the parameter estimation, the pro-
posed solution can be used to test any value of
ρ = ρ0 ∈ (−0.5, 1) since k=3 in our simulation study.
For illustrative purposes, suppose that we are inter-
ested in evaluating whether the data are compatible
with H0 : ρ = 0. We analyse the frequentist behaviour
of the proposed solution under πR for the hypoth-
esis testing of ρ based on two scenarios discussed
below.

First, consider the scenario in which H0 : ρ = 0
is true. We simulate 5000 random samples from the

Table 2. TheMAE of theMLE forρ based on 10,000 replications
in the simulation study.

n= 5 n= 20

−0.3 0.137 0.058
0 0.198 0.102
0.3 0.231 0.118
0.8 0.236 0.074

Table 3. The estimated tail probabilities of posterior distribu-
tions based on 10,000 replications in the simulation study.

n= 5 n= 20

ρT Prior P(0.05 | ρT ) P(0.90 | ρT ) P(0.05 | ρT ) P(0.90 | ρT )
−0.3 πR 0.0453 0.9127 0.0477 0.9010

πJ 0.0497 0.9145 0.0425 0.9166

0 πR 0.0460 0.9069 0.0535 0.8977
πJ 0.0842 0.8598 0.0617 0.8879

0.3 πR 0.0439 0.9119 0.0453 0.9054
πJ 0.1021 0.8357 0.0614 0.8816

0.8 πR 0.0441 0.9087 0.0484 0.9001
πJ 0.1341 0.7825 0.0779 0.8587

Table 1. The MAE of the Bayesian estimators for ρ based on 10,000 replications in the simulation study.

n= 5 n= 20

ρT Prior Intrinsic Mean Median Mode Intrinsic Mean Median Mode

−0.3 πR 0.148 0.155 0.149 0.162 0.058 0.060 0.058 0.059
πJ 0.164 0.163 0.166 0.185 0.060 0.060 0.060 0.062

0 πR 0.242 0.213 0.243 0.333 0.108 0.105 0.108 0.115
πJ 0.294 0.263 0.296 0.379 0.114 0.111 0.114 0.121

0.3 πR 0.268 0.230 0.268 0.377 0.119 0.115 0.119 0.129
πJ 0.315 0.276 0.315 0.412 0.124 0.119 0.124 0.133

0.8 πR 0.148 0.157 0.148 0.151 0.057 0.059 0.057 0.057
πJ 0.142 0.141 0.141 0.153 0.056 0.056 0.056 0.058
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Figure 2. Sampling distribution of d(ρ | D) under H0 obtained from the 5000 simulations with ρT = 0 for different sample sizes
when testing H0 : ρ = 0.

model in (1) with ρT = 0 based on the simulation setup
above. Figure 2 depicts the sampling distribution of
d(ρ | D) from the 5000 simulations. For n=5, the sig-
nificance level is around 13.24% for d∗ = log(10) (mild
evidence); the significance level is around 3.26% for
d∗ = log(100) (strong evidence) and the significance
level is around 0.88% for d∗ = log(1000) (safe to reject
H0). We observe that as n increases (n=20), the signif-
icance level approximately goes down to 5.20%, 0.26%
and 0.06%, respectively. As one would expect, the sig-
nificance level significantly decreases as n increases
from a frequentist viewpoint.

Second, consider the scenario in which H0 : ρ = 0
is not true. We study the behaviour of the sampling
distribution of the proposed solution and the relative
frequency of the rejection of H0. We again simulate
5000 random samples from the model in (1) with ρT ∈
{−0.3, 0.3, 0.8}. Figure 3 shows the sampling distribu-
tion of d(ρ | D) from the 5000 simulations. Note that
the power of the proposed approach increases when ρT
is far from the testing value ρ0 = 0 or n is larger. For
instance, when H0 : ρ = 0 while ρT = 0.8, for n=5,
the relative frequency of rejecting H0 is approximately
equal to 79.46% for d∗ = log(10), to 35.32% for d∗ =
log(100), and to 6.56% for d∗ = log(1000); for n=20,
this relative frequency significantly increases to 100%,
99.84% and 98.68%, respectively.Wemay thus conclude
that the power of the proposed solution increases with
n and that the performance of the proposed solution is
quite satisfactory for the problems of hypothesis test-
ing and point estimation of ρ in the intraclass model
in (1).

Given that there are two objective priors: the ref-
erence prior (πR) or the Jeffreys prior (πJ), which
of them is preferable for the proposed solution in
practical applications? Numerical evidence from the

above simulation studies showed that the Bayesian
estimations under πR outperform the ones under πR.
Additionally, πR is also a second-order matching prior
if ρ is the parameter of interest. We thus have a pref-
erence to recommend the use of πR in the analysis of
the ICC.

4.2. An illustrative example

We use a real data example to illustrate the practical
application of the proposed solution. The orthodontic
data set is present in Table 4 and obtained from Chap-
ter 5.2 of Frees (2004): 27 individuals including 16 boys
and 11 girls were measured for distances from the pitu-
itary to the pteryomaxillary fissure in millimetres, at
ages 8, 10, 12 and 14. We consider the intraclass model
of the form

yi = β0j4 + β1Ai + β2Gij4 + εi, i = 1, . . . , 27,

where yi = (yi1, yi2, yi3, yi4)T with yij being the dis-
tance for individual i measured at age j, Ai =
(8, 10, 12, 14)T is a 4 × 1 vector of ages and Gi rep-
resents the gender (1 for male and 0 for female),

and εi
iid∼ N(04, σ 2�) with � = (1 − ρ)I4 + ρJ4. We

observe from Figure 4(a) that the marginal posterior
densities for ρ under two objective priors are quite nor-
mal in shape. Table 5 provides the point estimators
for ρ under different procedures. We here analyse the
results under πR for simplicity. The intrinsic estima-
tor ρ∗ = 0.622 is close to the posterior median equal to
0.620, whereas both are slightly different from theMLE
equal to 0.597. According to the non-rejection regions
with d∗ ∈ {log(10), log(100), log(1000)} presented in
Figure 4(b), we somehow doubt that the true value
of ρ is outside Rlog(10) = (0.423, 0.773); we seriously
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Figure 3. Sampling distribution of d(ρ | D) underH0 obtained from5000 simulationswithρT ∈ {−0.3, 0.3, 0.8} for different sample
sizes when testing H0 : ρ = 0.

doubt that ρ is outside Rlog(100) = (0.304, 0.833), and
we are almost sure that the true correlation value ρ is
not outside Rlog(1000) = (0.211, 0.870).

On the other hand, the proposed solution can be
used for the hypothesis testing of ρ = ρ0 ∈ (−1/3, 1).
If we are interested in testing H0 : ρ = ρ0 = 0 versus
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Table 4. The orthodontic data from Frees (2004).

Age of girls Age of boys

Number 8 10 12 14 8 10 12 14

1 21 20 21.5 23 26 25 29 31
2 21 21.5 24 25.5 21.5 22.5 23 26.5
3 20.5 24 24.5 26 23 22.5 24 27.5
4 23.5 24.5 25 26.5 25.5 27.5 26.5 27
5 21.5 23 22.5 23.5 20 23.5 22.5 26
6 20 21 21 22.5 24.5 25.5 27 28.5
7 21.5 22.5 23 25 22 22 24.5 26.5
8 23 23 23.5 24 24 21.5 24.5 25.5
9 20 21 22 21.5 23 20.5 31 26
10 16.5 19 19 19.5 27.5 28 31 31.5
11 24.5 25 28 28 23 23 23.5 25
12 21.5 23.5 24 28
13 17 24.5 26 29.5
14 22.5 25.5 25.5 26
15 23 24.5 26 30
16 22 21.5 23.5 25

H1 : ρ �= ρ0, we can numerically verify that the intrin-
sic statistic under πR is

d(ρ0 | D) =
∫ 1

−1/3
δ(ρ0, ρ)π(ρ | D) dρ

≈ 14.2747 ≈ log(1582791),

which indicates that the expected value of the aver-
age of the log likelihood ratio against H0 is about
14.2747, showing that the likelihood ratio is expected
to be about 1,582,791. Thus we may conclude that
the data provide very strong evidence against H0 and
that the null hypothesis is opposed to the observable
data. Due to the invariance property of the proposed
solution, if the parameter of interest is ρ3, then its
intrinsic estimator is simply (ρ∗)3 ≈ 0.6223, and the
corresponding non-rejection regions are simply given

Table 5. Estimations of ρ for the orthodontic data from
Frees (2004).

Priors Intrinsic Mean Median Mode

πJ 0.603 0.598 0.601 0.608
πR 0.622 0.616 0.620 0.627

by R̃log(10) = (0.076, 0.462), R̃log(100) = (0.028, 0.578)
and R̃log(1000) = (0.009, 0.659), respectively.

5. Concluding remarks

In this paper, we first derived two objective priors for
the unknown parameters in the intraclass model in (1)
andproved that both result in proper posterior distribu-
tions.Within a Bayesian decision-theoretic framework,
we then proposed an objective Bayesian solution to
both hypothesis testing and point estimation problems
of the ICC ρ. The proposed solution has an appealing
invariance property under one-to-one reparametrisa-
tion of the quantity of interest, which is not shared by
some commonly used estimators, such as the posterior
mean.

It deserves mentioning that the proposed solution
can be directly applied to the balanced one-way ran-
dom effect ANOVA model, since it is a special case
of the intraclass model in (1) if we let σ 2 = σ 2

a + σ 2
e

and ρ = σ 2
a /σ

2 ∈ (0, 1), where σ 2
a and σ 2

e stand for the
treatment and error variances, respectively. This obser-
vation motivates a possible extension of the proposed
solution to the unbalanced model with different num-
ber of observations in each class, which is currently
under investigation and will be reported elsewhere.
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Figure 4. The marginal posterior density for ρ based on two objective priors (left), and the intrinsic statistic with the non-rejection
regions corresponding to the threshold values d∗ ∈ {log(10), log(100), log(1000)} (right) for the orthodontic data in Frees (2004):
(a) marginal posterior distribution and (b) intrinsic statistic.
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Appendix

In the appendix, we prove that the posterior distribution is
proper under πR in (5), since the case for πJ is exactly the
same and thus omitted for simplicity. We first provide a very
useful lemma, which plays an important role in determining
the tail behaviour of the key terms of the marginal posterior
distribution πR(ρ | D).

Lemma A.1: The marginal posterior distribution πR(ρ |
D) in (6) is a continuous function in (−1/(k − 1), 1)
and their terms are such that |X′�−1X|−1/2 = O((1 −
ρ)p/2) and S(ρ) = O((1 − ρ)−1) as ρ → 1, and such that
|X′�−1X|−1/2 = O((1 + ρ(k − 1))p/2) and S(ρ) = O((1 +
ρ(k − 1))−1) as ρ → −1/(k − 1).

Proof: Direct inspection shows that πR(ρ | D) in (6) is a
continuous function in (−1/(k − 1), 1). We consider the
behaviour of its two key terms as (i) ρ → 1 and (ii) ρ →
−1/(k − 1).

(i) Let η1 = ρ/(1 − ρ), which tends to infinity as ρ → 1.
Given that � = (1 − ρ)Ik + ρJk = (1 − ρ)[Ik + ρ/(1
− ρ)Jk], we have

�−1 = (1 − ρ)−1
(
Ik − η1

1 + η1k
Jk

)
.

http://orcid.org/0000-0002-0249-1849
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Then it follows that

X′�−1X =
n∑

i=1
X′
i�

−1Xi

= (1 − ρ)−1
n∑
i=1

(
X′
iXi − η1X′

iJkXi

1 + η1k

)
.

(A1)

As η1 → ∞, we have∣∣∣∣∣
n∑

i=1

(
X′
iXi − η1X′

iJkXi

1 + η1k

)∣∣∣∣∣ = O(1),

which show that |X′�−1X| = O((1 − ρ)−p), and thus

|X′�−1X|−1/2 = O((1 − ρ)p/2).

In addition, as η1 → ∞, we observe that each element
of the inverse matrix in the right hand of Equation (A2)
becomes O(1). With a little abuse of notation, as η1 →
∞, we denote[ n∑

i=1

(
X′
iXi − η1X′

iJkXi

1 + η1k

)]−1

= O(1),

which shows that (X′�−1X)−1 = O((1 − ρ)). Note also
that �−1 = In ⊗ �−1 = (1 − ρ)−1In ⊗ (Ik − η1

1+η1k Jk)
= (1 − ρ)−1�−1

1 , where

�−1
1 = In ⊗

(
Ik − η1

1 + η1k
Jk

)
→ In ⊗

(
Ik − 1

k
Jk

)
,

as η1 → ∞. Also, (X′�−1
1 X)−1 = (1 − ρ)−1(X′�−1

X)−1 = O(1). Thus, as ρ → 1, it follows

S(ρ) = Y′(�−1 − �−1X(X′�−1X)−1X′�−1)Y

= 1
1 − ρ

Y′(�−1
1 − �−1

1 X(X′�−1
1 X)−1X′�−1

1 )Y

= O((1 − ρ)−1).

(ii) Let η2 = ρ/(1 + ρ(k − 1)), which tends to infinity as
ρ → −1/(k − 1). Given that

�−1 = (1 − ρ)−1
(
Ik − ρ

1 + ρ(k − 1)
Jk

)

= (1 − ρ)−1(Ik − η2Jk),

it follows that

X′�−1X =
n∑
i=1

X′
i�

−1Xi

= (1 − ρ)−1
n∑

i=1
(X′

iXi − η2X′
iJkXi). (A2)

As η2 → ∞, we have |X′�−1X| = O(ηp2), and thus

|X′�−1X|−1/2 = O(η−p/2
2 ) = O((1 + ρ(k − 1))p/2).

In addition, as η2 → ∞, we observe that (X′�−1X)−1

= O(1) and that �−1 = In ⊗ �−1 = (1 − ρ)−1In ⊗
(Ik − η2Jk)= η2�

−1
2 , where

�−1
2 = 1

1 − ρ
In ⊗

(
Jk − 1

η2
Ik

)
→ k − 1

k
In ⊗ Jk.

Asη2 → ∞, we have (X′�−1
2 X)−1 = η2(X′�−1X)−1 =

O(1), and thus

S(ρ) = Y′(�−1 − �−1X(X′�−1X)−1X′�−1)Y

= η2Y′(�−1
2 − �−1

2 X(X′�−1
2 X)−1X′�−1

2 )Y

= O(η2) = ((1 + ρ(k − 1))−1). �

Proof of Theorem 2.1: We now show that the posterior dis-
tribution under πR is proper. Recall that the corresponding
marginal posterior of ρ is given by

πR(ρ | D) ∝ (1 − ρ)−n(k−1)/2−1(1 + (k − 1)ρ)−n/2−1

× |X′�−1X|−1/2S(ρ)−(nk−p)/2. (A3)

Then the reference prior πR leads to a proper posterior dis-
tribution if and only if

∫ 1

−1/(k−1)
πR(ρ | D) dρ < ∞.

By following Lemma A.1, we observe that ρ → 1, the tail
behaviour of πR(ρ | D) follows

πR(ρ | D) ∝ (1 − ρ)−n(k−1)/2−1(1 + (k − 1)ρ)−n/2−1

× |X′�−1X|−1/2S(ρ)−(nk−p)/2

= O((1 − ρ)n/2−1),

and that ρ → −1/(k − 1), the tail behaviour of πR(ρ | D)
follows

πR(ρ | D) ∝ (1 − ρ)−n(k−1)/2−1(1 + (k − 1)ρ)−n/2−1

× |X′�−1X|−1/2S(ρ)−(nk−p)/2

= O((1 + ρ(k − 1))n(k−1)/2−1).

Given that πR(ρ | D) is a continuous function in (−1/(k −
1), 1), the posterior distribution underπR is proper, provided
that k ≥ 2. This completed the proof of Theorem 2.1. �

Proof of Theorem 3.1: Define � = (1 − ρ)Ik + ρJk and �0
= (1 − ρ0)Ik + ρ0Jk. It can be easily verified that

tr(�−1
0 �) = k(1 + (k − 2)ρ0 − (k − 1)ρρ0)

(1 − ρ0)(1 + (k − 1)ρ0)
and

|�−1
0 �| = (1 + (k − 1)ρ)(1 − ρ)k−1

(1 + (k − 1)ρ0)(1 − ρ0)k−1 ,

where tr(M) represents the trace of the matrixM.
Consider that the KL divergence measure of a normal lin-

ear model Nkn(y | Xβ0, σ 2
0 (In ⊗ �0)) from another normal

linear model Nkn(y | Xβ , σ 2(In ⊗ �)) is given by

∫
p(y | Xβ , σ 2(In ⊗ �)) log

p(y | Xβ , σ 2(In ⊗ �))

p(y | Xβ0, σ 2
0 (In ⊗ �0))

dy

= 1
2

{
R0
σ 2
0

+ tr
(
σ 2

σ 2
0
(In ⊗ �0)

−1(In ⊗ �)

)
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− log
∣∣∣∣σ 2

σ 2
0
(In ⊗ �0)

−1(In ⊗ �)

∣∣∣∣ − kn
}

= 1
2

{
R0
σ 2
0

+ tr
(
σ 2

σ 2
0
In ⊗ (�−1

0 �)

)

− log
∣∣∣∣σ 2

σ 2
0
In ⊗ (�−1

0 �)

∣∣∣∣ − kn
}

= 1
2

{
R0
σ 2
0

+ n
σ 2

σ 2
0
tr(�−1

0 �)− nk log
(
σ 2

σ 2
0

)

− n log |�−1
0 �| − kn

}
,

where R0 = (β0 − β)′X′(In ⊗ �0)
−1X(β0 − β). The mini-

mum of the logarithmic divergence above for β0 ∈ Rp and
σ0 > 0 is achieved when

β0 = β and σ0 = σ

√
tr(�−1

0 �)

k
,

and substitution yields

κ(ρ0 | σ 2,β , ρ) = inf
β0∈Rp,σ0>0

1
2

{
R0
σ 2
0

+ n
σ 2

σ 2
0
tr(�−1

0 �)

− nk log
(
σ 2

σ 2
0

)
− n log

∣∣�−1
0 �

∣∣ − kn
}

= n
2

{
k log(tr(�−1

0 �))

− log(|�−1
0 �|)− k log(k)

}
= nk

2
log

{
1 + (k − 2)ρ0 − (k − 1)ρρ0
(1 + (k − 1)ρ0)(1 − ρ0)

}

− n
2
log

{
(1 + (k − 1)ρ)(1 − ρ)k−1

(1 + (k − 1)ρ0)(1 − ρ0)k−1

}
,

which is the same as κ(ρ0 | ρ) in (9).

Similarly, the minimum of the logarithmic divergence
measure of Nkn(y | Xβ , σ 2(In ⊗ �)) from Nkn(y | Xβ0, σ 2

0
(In ⊗ �0)) is given by
∫

p(y | Xβ0, σ
2
0 (In ⊗ �0)) log

p(y | Xβ0, σ 2
0 (In ⊗ �0))

p(y | Xβ , σ 2(In ⊗ �))
dy

= 1
2

{
R
σ 2 + n

σ 2
0
σ 2 tr(�

−1�0)− nk log
(
σ 2
0
σ 2

)

− n log |�−1�0| − kn
}
,

where R = (β0 − β)′X′(In ⊗ �)−1X(β0 − β). The mini-
mum of the divergence measure above for β0 ∈ Rp and σ0 >
0 is achieved when

β0 = β and σ0 = σ

√
k

tr(�−1�0)
,

and substitution yields

κ(ρ, σ 2,β | ρ0) = n
2

{
k log(tr(�−1�0))

− log(|�−1�0|)− k log(k)
}

= nk
2

log
{
1 + (k − 2)ρ − (k − 1)ρ0ρ
(1 + (k − 1)ρ)(1 − ρ)

}

− n
2
log

{
(1 + (k − 1)ρ0)(1 − ρ0)

k−1

(1 + (k − 1)ρ)(1 − ρ)k−1

}

= κ(ρ | ρ0).
Therefore, the intrinsic statistic is given by

δ(ρ, ρ0) = δ(ρ, σ 2,β , ρ0) = min{κ(ρ0 | ρ), κ(ρ | ρ0)}.
It can be easily shown that κ(ρ | ρ0) ≥ κ(ρ0 | ρ) if and
only if ρ ∈ (−1/(k − 1), ρ0]. This completed the proof of
Theorem 3.1. �
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