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ABSTRACT
In this paper, we consider the statistical analysis for the dependent competing risks model in the
constant stress accelerated life testing (CSALT) with Type-II progressive censoring. It is focused
on two competing risks from Lomax distribution. The maximum likelihood estimators of the
unknownparameters, the acceleration coefficients and the reliability of unit areobtainedbyusing
the Bivariate Pareto Copula function and the measure of dependence known as Kendall’s tau.
In addition, the 95% confidence intervals as well as the coverage percentages are obtained by
using Bootstrap-p and Bootstrap-tmethod. Then, a simulation study is carried out by the Monte
Carlo method for different measures of Kendall’s tau and different testing schemes. Finally, a real
competing risks data is analysed for illustrative purposes. The results indicate that using copula
function to deal with the dependent competing risks problems is effective and feasible.

1. Introduction

In reliability life testing, it is quite common that var-
ious competing failure causes may be present at the
same time. This problem is known as the compet-
ing risks/failure model, which involves multiple failure
modes, while only the smallest failure time and the asso-
ciated failure mode are observed. In practice, compet-
ing risks data appears in engineering, biological, social
science, medical statistics and other fields; see Bey-
ersmann, Schumacher, and Allignol (2012). Recently
years, the statistical inference of competing risks model
has been widely studied by many scholars. Sarhan,
Hamilton, and Smith (2010) considered the statistical
inference for the unknown parameters in the compet-
ing risks models. Mazucheli and Achcar (2011) applied
the Lindley distribution to competing risks lifetime
data. Wu and Shi (2016) discussed the Bayes estima-
tion for the competing risks model under progressively
hybrid censoring with binomial removals. Xu and Zhou
(2017) considered the Bayesian analysis of series sys-
temwhose failure time is assumed to follow aMarshall–
Olkin bivariate Weibull distribution. In accelerated life
testing (ALT), Balakrishnan and Han (2008), Han and
Balakrishnan (2010) combined simple step-stress ALT
and competing risks model. The inference for a simple
step-stress model with progressively censored compet-
ing risks data fromWeibull distribution was considered
by Liu and Shi (2017).

It can be seen that previous studies have usually
considered the causes of failure to be independent,
even when the interpretation of the causes implies

CONTACT Xuchao Bai baixuchao@.com; Yimin Shi ymshi@nwpu.edu.cn

dependency. Naturally, once independence between
risks has been established, it is reasonable to consider
a univariate distribution for the lifetimes. However, in
fact, the competing risk modes are usually dependent.
Thus, the univariate distribution model is not applica-
ble yet. The copula function provides a means to exam-
ine the dependence structure betweenmultiple random
variables, so it attracts more and more attentions from
scientists and technicians engaged in the study of relia-
bility. Muliere and Scarsini (1987) discussed some char-
acterisations of a class of Marshall–Olkin type distri-
butions and introduced the copula of the bivariate dis-
tributions functions. Yi and Wei (2007) studied on the
reliability of dependent parts vote unit based on copula
functions. The reliability of k-out-of-n:G supply chain
unit and dependent failure units based on copula were
discussed by Jia and colleagues (Jia & Cui, 2012; Jia,
Wang, & Wei, 2014). Dimitrova, Haberman, and Kai-
shev (2013) expressed the dependence of lifetimes using
multivariate copula function and studied the depen-
dent competing risks model of human mortality. Many
papers about copulas can be referred, such as Aristidis
(2013), Cheng, Zhou, Chen, andZhuang (2014), Grothe
and Hofert (2015) and so on.

Recently, the copula theory has become a hot topic in
ALT to research the characters of products with depen-
dent competing risks model, but related literatures are
very few. Xu and Tang (2012) researched the statisti-
cal analysis of competing failure modes in ALT base on
copulas. The statistical inference of ALT with depen-
dent competing failures based on copula theory can
refer to Zhang, Shang, Chen, Zhang, and Wang (2014).
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Wu, Shi, andZhang (2017) discussed the statistical anal-
ysis of dependent competing risks model in ALT using
copula function based on progressively hybrid censored
data. Although some papers have discussed the statis-
tical inference for estimating parameters from differ-
ent lifetime distributions based on dependent compet-
ing risks model, the dependent competing risks model
about Pareto type distribution in ALT has not been con-
sidered yet.

The Pareto type distribution was proposed by Pareto
(1896), which was used to model the unequal distri-
bution of personal income and wealth. Many scholars
have discussed the applications of Pareto type distribu-
tion in reliability. Sarhan and El-Gohary (2003) devel-
oped the maximum likelihood and Bayes estimators for
the parameters in Pareto reliability model with masked
data. The latest papers can refer to Bourguignon, Saulo,
and Fernandez (2016), Dixit and Nooghabi (2010), Fer-
nández (2014) and so on. There is a hierarchy of Pareto
distributions known as Pareto Type I, II, III and IV,
where the Lomax distribution is a special case of Pareto
Type II distribution and its support begins at zero. The
Lomax distribution has a long heavy tail and a wide
application in economics, business, insurance, reliabil-
ity, engineering, finance and related fields. The Lomax
distribution has been studied by many scholars, such as
Cramer and Schmiedt (2011), Helu, Samawi, andRaqab
(2015), Yang, Wei, and Fan (2014), etc.

Considering the above-mentioned papers, in this
paper, we analyse the lifetime datawith dependent com-
peting risks model in constant stress accelerated life test
(CSALT) under Type-II progressive censoring based on
copula theory. The failure time of the unit due to one
of the failure modes follows to a Lomax distribution.
The joint distribution function is expressed bymarginal
functions and Bivariate Pareto Copula. The rest of this
paper is organised as follows. In Section 2, the copula
theory and their characters are introduced. The depen-
dent competing risks model under CSALT Type-II cen-
soring is constructed, and the basic assumptions and the
maximum likelihood estimators (MLEs) of the model
parameters are presented in Section 3. Bootstrap-p and
Bootstrap-t methods are used to construct the confi-
dence intervals (CIs) formodel parameters in Section 4.
We carry out several numerical simulations for illustra-
tive purposes in Section 5. An analysis about competing
risks data using the proposedmodel is shown in Section
6. Some conclusions appear in Section 7.

2. Copula theory

2.1. Bivariate copula function

Theorem2.1 (Sklar’s theorem) (Nelsen, 2006): Let H be
a joint distribution function with marginal functions F
and G. Then there exists a copula function C such that

for all x, y in R̄,

H(x, y) = C(F(x),G(y)). (2.1)

If F and G are continuous, then C is unique; other-
wise, C is unique on RanF × RanG, where RanF(x) is
the domain of function F(x). Conversely, if C is a cop-
ula, F and G are distribution functions, then the func-
tion H defined by Equation (2.1) is a joint distribution
with marginal functions F and G.

Let C(u, v ) be a bivariate copula for u, v in, if use
to replace C, u, v, then the function is called survival
copula and meets the following formulas:

Ĉ(u, v ) = u + v − 1 +C(1 − u, 1 − v ),

H̄(x, y) = Ĉ(F̄(x), Ḡ(y)).
(2.2)

Let C̄ be the joint survival function of C, then we
have

C̄(u, v ) = 1 − u − v +C(u, v ) = Ĉ(1 − u, 1 − v ).

(2.3)
More properties about copula please refer to Balakr-

ishnan and Lai (2009) and Nelsen (2006).

2.2. Archimedean copula

In some situations, there is a function ϕ that satisfies

ϕ(C(u, v )) = ϕ(u) + ϕ(v ),

then the copula function with the above expression is
called Archimedean copula. To solveC, we need to find
an appropriately defined ‘inverse’ function ϕ[−1], such
that

C(u, v ) = ϕ[−1](ϕ(u) + ϕ(v )).

If ϕ(t ) = t−1/θ − 1, θ ≥ 1, then

Cθ (u, v ) = (u−1/θ + v−1/θ − 1)−θ , (2.4)

Equation (2.4) is called Bivariate Pareto Copula (BPC).

2.3. Measure of association

There are many kinds of copulas, and different copulas
have different parameters; hence, these copulas are not
comparable. In order to compare them, theKendall’s tau
can be considered. In the meaning of copula, Kendall’s
tau can be written as:

τ = 4
∫ 1

0

∫ 1

0
C(u, v )c(u, v )dudv = 4E[C(U,V )] − 1,

(2.5)
If C is an Archimedean copula, then Equation (2.5)

is rewritten as

τ = 4
∫ 1

0
ϕ(t )/ϕ′(t )dt + 1. (2.6)

Thus, the Kendall’s tau of BPC is τ = 1/(2θ + 1).
To illustrate the dependent relationship of BPC, the

scatter plots of BPC with different Kendall’s tau are
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Figure . Scatter plots of BMP with different Kendall’s tau.

shown in Figure 1. From Figure 1, we conclude that
the dependency becomes higher when theta tends to be
zero.

3. Maximum likelihood estimations

In this section, we analyse the data with dependent
competing risks by using an assumed copula function
in CSALT under Type-II progressive censoring scheme
(PCS). Under a k constant stress levels ALT, s1 < s2 <

· · · < sk are accelerated stress levels and s0 is the nor-
mal stress level. The Type-II PCS can be described as: at
each stress level si, i = 1, 2, . . . , k, suppose there are ni
identical units are put into the life test with PCS. When
the first failure time ti1 is observed,Ri1 survivals are ran-
domly removed from the remaining ni − 1 units. At the
second failure time ti2 is observed, Ri2 survivals are ran-
domly removed from the remaining ni − Ri1 − 2 units.
And so on, until the rith failure time tiri is observed, all
of the remaining ni −

∑ri−1
j=1 Ri j − ri units are removed

and the testing is terminated. Thenwe obtain the failure
data (ti1, ci1), (ti2, ci2), . . . , (tiri, ciri ), where ti1 ≤ ti2 ≤
· · · ≤ tiri and cil take any number in the set of {1, 2},
and cil = j, j = 1, 2 indicates that the failure is caused
by failure mode j.

3.1. Basic assumptions

A1. Only one of the two competing risk modes causes
the unit failure. The dependence of two competing risk

modes and their survival copula function are given in
Equation (2.4), and their lifetimes are T1andT2, respec-
tively. So the lifetime of a unit is T = min(T1,T2).

A2. Under stress level si, the failure time of the
unit due to risk mode j, denoted by Ti j, which fol-
lows a Lomax distribution Lo(mij, τi j) with shape
parameter mij and scale parameter τi j. The probabil-
ity density function and survival function are given as
follows:

fi j(t;mij, τi j) = (mij/τi j)(1 + t/τi j)−(mij+1),

t > 0, τi j > 0,mij > 0.
Si j(t;mij, τi j) = (1 + t/τi j)−mij ,

t > 0, τi j > 0,mij > 0.

A3. The failure mechanisms are the same under dif-
ferent stress levels. As the shape parameters reflect the
failure mechanism, so we assume the shape parameters
are equal, that is, mij = mj(i = 0, 1, . . . , k; j = 1, 2).
In practical tests, to ensure the failure mechanism is
constant, the highest stress level sk should be less than
the extreme stress level smax which cannot change the
failure mechanism of the units.

According to A1–A3, we can obtain the sur-
vival function of the unit under stress si as
follows:

Si (t ) = [
(1 + t/τi1)m1/θ + (1 + t/τi2)m2/θ − 1

]−θ
.

(3.1)
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A4. Under stress level si, the accelerated life equation
of the jth failure mechanism

log τi j = a j + b jϕ (si) , i = 0, 1, . . . , k; j = 1, 2,
(3.2)

where a j, b j are unknown coefficients and ϕ(s) is a
given function of the stress level s.

3.2. Maximum likelihood estimation

Under stress level si, let qi j denote the failure number
caused by jth failure mode, namely

qi j =
ri∑
l=1

δ j(cil ), δ j(cil ) =
{
1, cil = j,
0, cil �= j. , (3.3)

when δ1(cil ) = 1, til is the failure time caused by failure
mode 1, and when δ2(cil ) = 1, til is the failure time due
to failure mode 2. Thus, the likelihood function under
stress level si is

Li =
ri∏
l=1

{[
∂C(u, v )

∂u

∣∣∣∣ u=Si1(til )
v=Si2(til )

fi1(til )
]δ1(cil )

×
[
∂C(u, v )

∂v

∣∣∣∣ u=Si1(til )
v=Si2(til )

fi2(til )
]δ2(cil )

Si(til )Ril

}
,

(3.4)

Based on Equations (2.4), (3.1) and (3.3), Li can be writ-
ten as

Li =
ri∏
l=1

[(
m1

τi1

)(
1 + til

τi1

)m1
θ

−1
]δ1(cil )

×
[(

m2

τi2

)(
1 + til

τi2

)m2
θ

−1
]δ2(cil )

×
[(

1 + til
τi1

)m1
θ

+
(
1 + til

τi2

)m2
θ

− 1

]−θ (Ril+1)−1

,

The full likelihood function is L = ∏k
i=1 Li, and the

log-likelihood function is

log L =
k∑

i=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2∑
j=1

qi j log
mj

τi j
+

ri∑
l=1

2∑
j=1[(mj

θ
− 1

)
δ j(cil ) log

(
1 + til

τi j

)]
−

ri∑
l=1

[θ (Ril + 1) + 1] log[(
1 + til

τi1

)m1
θ +

(
1 + til

τi2

)m2
θ − 1

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By setting the first partial derivative of log L with
respect to the parameters mj, τi j, θ to zero, the
likelihood equations are derived as

∂ log L
∂mj

=
k∑

i=1

(
qi j
mj

+ 1
θ

ri∑
l=1

δ j(cil ) log
(
1 + til

τi j

)

−
ri∑
l=1

[
(Ri + 1) + 1

θ

] (
1 + til

τi j

) mj
θ log

(
1 + til

τi j

)
(
1 + til

τi1

) m1
θ +

(
1 + til

τi2

) m2
θ − 1

⎞
⎟⎟⎠ = 0,

(3.5)

∂ log L
∂τi j

= −qi j
τi j

−
ri∑
l=1

⎛
⎜⎜⎝
(mj

θ
− 1

)
δ j(cil )

1 + til
τi j

til
τ 2
i j

⎞
⎟⎟⎠

+
ri∑
l=1

[θ (Ri + 1) + 1]
(
1 + til

τi j

)mj

θ
− 1 mj

θ

til
τ 2
i j(

1 + til
τi1

)m1

θ +
(
1 + til

τi2

)m2

θ − 1

= 0, (3.6)

∂ log L
∂θ

=
k∑

i=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
θ 2

ri∑
l=1

2∑
j=1

(
mjδ j(cil ) log

(
1 + til

τi j

))
−

ri∑
l=1

(Ril + 1) log

⎡
⎢⎣(1 + til

τi1

)m1

θ +
(
1 + til

τi2

)m2

θ − 1

⎤
⎥⎦

+
ri∑
l=1

[θ (Ril + 1) + 1]
2∑
j=1

(
1 + til

τi j

)mj

θ mj

θ 2 log
(
1 + til

τi j

)

(
1 + til

τi1

)m1

θ +
(
1 + til

τi2

)m2

θ − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 (3.7)

As theMLEs m̂ j, τ̂i j, θ̂ (i = 1, 2, . . . , k; j = 1, 2) are
hard to be solved analytically from Equations (3.5)–
(3.7), numerical methods can be considered, such as
Newton–Raphson iteration method or other iteration
methods.

4. Confidence intervals and reliability
estimation of unit

From the above analysis, the exact CIs ofmj, τi j, θ (i =
1, 2, 3; j = 1, 2) are hard to get, so we can consider the
Bootstrap method.
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4.1. Bootstrap-pmethod

Step 1: Given ni, ri, i = 1, 2, . . . , k and progressive
censored sample (Ri1,Ri2, . . . ,Riri ), com-
pute the MLEs m̂ j, τ̂i j, θ̂ of unknown
parameters mj, τi j, θ based on the
Type-II progressive censored data
(ti1, ci1), (ti2, ci2), . . . , (tiri, ciri ).

Step 2: Generate a bootstrap sample
(t∗i1, c∗i1), (t∗i2, c∗i2), . . . , (t∗iri, c

∗
iri ) by using

ni, ri, (Ri1,Ri2, . . . ,Riri ) and m̂ j, τ̂i j, θ̂ .
Obtain the bootstrap estimators ofmj, τi j, θ ,
say m̂∗

j , τ̂
∗
i j, θ̂

∗, by using the bootstrap sam-
ple.

Step 3: Repeat Step 2 N times, N estimators
{m̂∗(v )

j , τ̂
∗(v )
i j , θ̂∗(v )}, v = 1, 2, . . . ,N can

be obtained.
Step 4: Arrange {m̂∗(v )

j , τ̂
∗(v )
i j , θ̂∗(v )}, v =

1, 2, . . . ,N in ascending order to obtain{
m̂∗[1]

j , m̂∗[2]
j , . . . , m̂∗[N]

j ; τ̂
∗[1]
i j , τ̂

∗[2]
i j , . . . ,

τ̂
∗[N]
i j ; θ̂∗[1], θ̂∗[2], . . . , θ̂∗[N]}.

Step 5: The approximate 100(1 − α)% CIs of
mj, τi j, θ are given by

(m̂∗
j,L, m̂

∗
j,U ) = (m̂∗[Nα/2]

j , m̂∗[N(1−α/2)]
j ),

(τ̂ ∗
i j,L, τ̂

∗
i j,U ) = (τ̂

∗[Nα/2]
i j , τ̂

∗[N(1−α/2)]
i j ),

(θ̂∗
L , θ̂∗

U ) = (θ̂∗[Nα/2], θ̂∗[N(1−α/2)]).

4.2. Bootstrap-t method

Step 1: Given ni, ri, i = 1, 2, . . . , k and progressive
censored sample (Ri1,Ri2, . . . ,Riri ), com-
pute the MLEs m̂ j, τ̂i j, θ̂ of unknown
parameters mj, τi j, θ based on the
Type-II progressive censored data
(ti1, ci1), (ti2, ci2), . . . , (tiri, ciri ).

Step 2: Generate a bootstrap sample
(t∗i1, c∗i1), (t∗i2, c∗i2), . . . , (t∗iri, c

∗
iri ) by using

ni, ri, (Ri1,Ri2, . . . ,Riri ) and m̂ j, τ̂i j, θ̂ .
Obtain the bootstrap estimators ofmj, τi j, θ ,
say m̂∗

j , τ̂
∗
i j, θ̂

∗, by using the bootstrap sam-
ple.

Step 3: Compute V̂ (m̂∗
j ) = m̂∗2

j /D∗
j , V̂ (τ̂ ∗

i j)

= τ̂ ∗2
i j /D∗

i j, V̂ (θ̂∗) = θ̂∗2/D∗, where D∗
i j

represents the totally observed failure num-
bers due to failure cause j under the stress
level si, and D∗

j=
∑k

i=1 D
∗
i j,D∗=∑2

j=1 D
∗
j .

Step 4: Let T∗
mj

= (m̂∗
j − m̂ j)/

√
V̂ (m̂∗

j ),T
∗
τi j

=
(τ̂ ∗

i j − τ̂i j)/

√
V̂ (τ̂ ∗

i j),T
∗
θ = (θ̂∗ −

θ̂ )/

√
V̂ (θ̂∗). Repeat Steps 2 and 3

N times, and we can get N values
{T∗(v )

mj ,T∗(v )
τi j

,T∗(v )
θ }, v = 1, 2, . . . ,N.

Step 5: Arrange {T∗(v )
mj ,T∗(v )

τi j
,T∗(v )

θ }, v = 1, 2,
. . . ,N in ascending order, then{

T∗[1]
mj

,T∗[2]
mj

, . . . ,T∗[N]
mj

;T∗[1]
τi j

,T∗[2]
τi j

, . . . ,

T∗[N]
τi j

;T∗[1]
θ ,T∗[2]

θ , . . . ,T∗[N]
θ

}
.

Step 6: The two-sided 100(1 − α)% CIs for param-
etersmj, τi j, θ are given by(
m̂∗

j,L, m̂
∗
j,U

)
= (

m̂ j + T∗[Nα/2]
mj

√
V̂ (m̂∗

j ),

m̂ j + T∗[N(1−α/2)]
mj

√
V̂ (m̂∗

j )
)
,(

τ̂ ∗
i j,L, τ̂

∗
i j,U

)
= (

τ̂i j + T∗[Nα/2]
τi j

√
V̂ (τ̂ ∗

i j),

τ̂i j + T∗[N(1−α/2)]
τi j

√
V̂ (τ̂ ∗

i j)
)
,(

θ̂∗
L , θ̂∗

U

)
= (

θ̂ + T∗[Nδ/2]
θ

√
V̂ (θ̂∗),

θ̂ + T∗[N(1−δ/2)]
θ

√
V̂ (θ̂∗)

)
.

4.3. Reliability estimation of unit

According to A4, the least squares estimators of a j, b j
from the Gauss–Markov theorem are

â j = GHj − IMj

kG − I2
, b̂ j = kMj − IHj

kG − I2
, j = 1, 2, (4.1)

where G = ∑k
i=1 ϕ2(si),Hj = ∑k

i=1 log τ̂i j, I = ∑k
i=1

ϕ(si),Mj = ∑k
i=1 ϕ(si) log τ̂i j.

Hence, under the normal stress level s0, the shape
parameter under failure mode j is

τ̂0 j = exp
{
â j + b̂ jϕ(s0)

}
.

Thus, the reliability estimator of unit is

Ŝ0(t ) =
[(
1 + t/τ̂01

)m̂1/θ̂ + (
1 + t/τ̂02

)m̂2/θ̂ − 1
]−θ̂

.

5. Numerical simulation

Consider a three-level constant stress ALT with two
dependent competing risks modes under Type-II
PCS. Select the temperature as the stress level, and
suppose the normal stress level and the acceler-
ated stress levels are 25, 60, 90 and 120 °C, respec-
tively, namely s0 = 298.15K, s1 = 333.15K, s2 =
363.15K, s3 = 393.15K, and the accelerated func-
tion is ϕ(s) = 1/s. Given the values of parameters
a1 = −3, b1 = 1640, a2 = −4, b2 = 2000,m1 =
2,m2 = 1.8, then we can obtain that the true val-
ues of shape parameters under three stress levels
are τ11 = 6.8395, τ12 = 7.4135, τ21 = 4.5542, τ22 =
4.5148, τ31 = 3.2266, τ32 = 2.9657.

Take the sample sizes under each stress level
si(i = 1, 2, 3) as n1 = 20, n2 = 40, n3 = 80; the
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Table . The pre-fixed sampling scheme.

Case n1 r1 (R11, R12, . . . , R1r1
) n2 r2 (R21, R22, . . . , R2r2

) n3 r3 (R31, R32, . . . , R3r3
)

I   (,,,,,)   (,,,…, ,,)   (,,,…, ,,)
II   (,,,…,,)   (,,,…,,)   (,,,…,,)

numbers of failure are (r1, r2, r3) = (6, 12, 24) and
(r1, r2, r3) = (12, 24, 48). The pre-fixed sampling
schemes �Ri = (Ri1,Ri2, . . . ,Riri ), i = 1, 2, 3 are given
in Table 1.

Considering two competing risks modes and the
dependence structure is determined by BPC. Thus, the
accelerated function under the stress level si based on
Arrhenius formula is

log τi j = a j + b j/si, i = 1, 2, 3; j = 1, 2.

5.1. Data generation and results analysis

The copula function of (U i1,V i2) is BPC C(u, v ); let
cu(v ) = ∂C(u, v )/∂u. Under stress level si, the failure
data can be generated as follows:

Step 1: Generate ni independent uniform (0,1) vec-
tors (U (k)

i1 ,Z(k)
i2 ), k = 1, 2, . . . , ni;

Step 2: Calculate V (k)
i2 = c−1

u (Z(k)
i2 ), then

(U (k)
i1 ,V (k)

i2 ) is the data of C(u, v ), where
c−1
u (·) is the pseudo-inverse of cu(·);

Step 3: Let x(k)
i1 = τi1[(1 −U (k)

i1 )
−1/m1 − 1], x(k)

i2 =
τi2[(1 −V (k)

i2 )
−1/m2 − 1];

Step 4: Obtain (ti j, δi j) = (
min(x(k)

i1 , x(k)
i2 ),

I(x(k)
i1 < x(k)

i2 )
)
, j = 1, 2, . . . , ni;

Step 5: Sort the data (ti j, δi j) by their times ti j in an
increasing order. Choose ri data according to
the characteristic of the Type-II PCS. Then
we can obtain the needed data (til, δil ), l =
1, 2, . . . , ri under the stress level si.

The Kendall’s tau τ = 1/3, 1/5 when given dif-
ferent relation coefficients θ = 1, 2. Based on the
generated competing failure data, the MLEs of the

unknown parameters, the mean square errors (MSEs),
the 95% confidence intervals of Bootstrap-p (BPCIs)
and Bootstrap-t (BTCIs), as well as the coverage per-
centages (CPs) are computed through 1000 times simu-
lations. The numerical simulation results are shown in
Tables 2–5.

From the tables, some conclusions can be obtained
as follows:

(1) TheMLEs of the unknown parameters are better
when the effective sample size is larger.

(2) The MSEs of the unknown parameters are close
to zero when the sample size becomes larger.

(3) The CPs of the unknown parameters are close to
0.95 when the effective sample size gets larger.

5.2. Reliability analysis of unit

Given the parameters of lifetime distribution functions
and the coefficients of accelerated functions, the true
values and the estimators of reliability function of the
unit at any time t are

S0(t ) = [
(1 + t/τ01)m1/θ + (1 + t/τ02)m2/θ − 1

]−θ
,

SD0 (t ) =
[
(1 + t/τ̂01)m̂1/θ̂ + (1 + t/τ̂02)m̂2/θ̂ − 1

]−θ̂

,

Table . Estimators of acceleration coefficients in two cases
when (a1, a2, b1, b2) = (−3,−4, 1640, 2000), θ = 1.

Testing plan Parameters a1 a2 b1 b2

Case I MLE − . − .  
MSE . .  

Case II MLE − . − .  
MSE . .  

Table . Average MLEs, MSEs, BPCIs, BTCIs and CPs under different stress levels in two cases when (τ11, τ12, τ21, τ22, τ31, τ32) =
(6.8395, 7.4135, 4.5542, 4.5148, 3.2266, 2.9657), (m1,m2) = (2, 1.8), θ = 1.

Testing plan Case I Case II

Parameters MLEs (MSEs) BPCIs CPs BTCIs CPs MLEs (MSEs) BPCIs CPs BTCIs CPs

τ11 . (.) (., .) . (., .) . . (.) (., .) . (., .) .
τ12 . (.) (., .) . (., .) . . (.) (.,.) . (., .) .
τ21 . (.) (., .) . (., .) . . (.) (., .) . (., .) .
τ22 . (.) (., .) . (., .) . . (.) (., .) . (., .) .
τ31 . (.) (., .) . (., .) . . (.) (., .) . (., .) .
τ32 . (.) (., .) . (., .) . . (.) (., .) . (., .) .
m1 . (.) (., .) . (., .) . . (.) (., .) . (., .) .
m2 . (.) (., .) . (., .) . . (.) (., .) . (., .) .
θ . (.) (.,.) . (.,.) . . (.) (.,.) . (.,.) .
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Table . Average MLEs, MSEs, BPCIs, BTCIs and CPs under different stress levels in two cases when (τ11, τ12, τ21, τ22, τ31, τ32) =
(6.8395, 7.4135, 4.5542, 4.5148, 3.2266, 2.9657), (m1,m2) = (2, 1.8), θ = 2.

Testing plan Case I Case II

Parameters MLEs (MSEs) BPCIs CPs BTCIs CPs MLEs (MSEs) BPCIs CPs BTCIs CPs

τ11 . (.) (., .) . (., .) . . (.) (., .) . (., .) .
τ12 . (.) (., .) . (., .) . . (.) (., .) . (.,.) .
τ21 . (.) (., .) . (., .) . . (.) (., .) . (., .) .
τ22 . (.) (., .) . (., .) . . (.) (.,.) . (., .) .
τ31 . (.) (., .) . (., .) . . (.) (., .) . (., .) .
τ32 . (.) (., .) . (., .) . . (.) (., .) . (., .) .
m1 . (.) (., .) . (., .) . . (.) (., .) . (., .) .
m2 . (.) (., .) . (., .) . . (.) (., .) . (., .) .
θ . (.) (.,.) . (.,.) . . (.) (.,.) . (.,.) .

Table . Estimators of acceleration coefficients in two cases
when (a1, a2, b1, b2) = (−3,−4, 1640, 2000), θ = 2.

Testing plan Parameters a1 a2 b1 b2

Case I MLE − . − .  
MSE . .  

Case II MLE − . − .  
MSE . .  

the reliability function of unit when the failure causes
are independent is

SI0(t ) =
2∏
j=1

(1 + t/τ̂0 j)m̂ j/θ̂ .

Figures 2 and 3 give the trends of three reliability
functions over time in Case I and Case II when θ = 1,
respectively.

From Case I of Figure 2, we can find that the
estimators of reliability are close to the true values,
while the values in independent case are far away from
the true values. According to Case II, the curves of
three reliability functions are very close, as time goes

on, the estimators of dependent case close to the true
values, but the values in independent case are far away
from the true values. In this example, the independent
case is lower than the dependent case.

From Figure 3, we can get the same conclusions like
Figure 2. Due to the different correlation coefficients,
it may estimate lower when considering the dependent
competing risks modes as independent in our simula-
tion cases.

6. Illustrative example

In this section, an example is presented to support the
proposed model and methods. The data-set includes
the accelerated failure times and failure causes in
bivariate dependent competing risks model, which
was presented in Wu et al. (2017), and Zhang, Shi,
Bai, and Fu (2017) also analysed this data-set. In
the data-set, the accelerated stress is the tempera-
ture; there are three accelerated stress levels, namely,
s1 = 303K, s2 = 333K and s3 = 363K. The normal
stress level is s0 = 278K. At each stress level

Figure . Comparison of three reliability functions when θ = 1.
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Figure . Comparison of three reliability functions when θ = 2.

Table . MLEs, BPCIs and BTCIs of unknown parameters.

Parameters MLEs BPCIs BTCIs

τ11  (, ) (, )
τ12  (, ) (, )
τ21  (, ) (, )
τ22  (, ) (, )
τ31  (, ) (, )
τ32  (, ) (, )
m1 . (., .) (., .)
m2 . (., .) (., .)
θ . (., .) (., .)

si, ni = 20 units are put into the life testing for
i = 1, 2, 3. The numbers of failures and removals are
(r1, r2, r3) = (8, 12, 16), �R1 = (12, 0, 0, . . . , 0), �R2 =
(8, 0, 0, . . . , 0) and �R3 = (4, 0, 0, . . . , 0). The acceler-
ated function with ϕ(si) = 1/si is used to extrapolate
the estimators of unknown parameters at normal stress
level s0. From Equations (3.5)–(3.7), the MLEs, BPCIs
and BTCIs of unknown parameters are obtained, and
the dependent coefficient and the results are presented
in Table 6.

Then we can calculate the estimators of the accel-
eration coefficients a1, a2, b1 and b2 by using Equation
(4.1), (â1, â2, b̂1, b̂2) = (3.7389, 1.5579, 1090, 1933).
And the estimators of unknown parameters under
stress level s0 can be obtained as (τ̂01, τ̂02) =
(7.6583, 8.5099).

7. Conclusions

ALT is an important testing scheme to obtain the life-
time data of units. Since the failure causes of the unit
are manifold and the relationship between these failure
causes are not completely independent. Thus, it is very
meaningful to consider the dependent competing risks

modes in ALT. In this paper, we consider the depen-
dent competing risks model with two failure modes,
and some simulations are given under the Type-II cen-
soring ALT. According to the results, we find it advanta-
geous to analyse the failure data of dependent compet-
ing risks modes by using copula theory, which avoids
the reliability estimators of unit too high or too low. The
copula theory provides an effective and feasible basis
in theory to analyse the reliability of components and
units in the future and has some theoretic meaning and
applied values.

Acknowledgments

The authors would like to thank the associate editor and
anonymous reviewers for their valuable comments and sug-
gestions on an earlier version of this manuscript which led to
this improved version.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work is supported by the National Natural Science
Foundation of China [grant number 71571144], [grant num-
ber 71401134], [grant number 71171164], [grant num-
ber 11701406]; Natural Science Basic Research Program of
Shaanxi Province [grant number 2015JM1003]; Program of
International Cooperation and Exchanges in Science and
Technology Funded by Shaanxi Province [grant number
2016KW-033].

Notes on contributors

Xuchao Bai received the BS degree in applied mathematics
in 2014 from Northwestern Polytechnical University, where

STATISTICAL THEORY AND RELATED FIELDS 55



he is a currently working toward the PhD degree in the same
school. His research interests include statistical inference for
accelerated life testing in reliability analysis, competing risks
model.

Yimin Shi is currently a professor in Northwestern Polytech-
nical University. His research interests include reliability the-
ory, nonparametric Bayesian inference, and statistical appli-
cation of financial and economic systems. Professor Shi is an
Executive Director of the Reliability Committee of the Oper-
ations Research Society of China. He is a reviewer for Math-
ematical Reviews.

Yiming Liu received the BS degree in applied mathematics in
2015 from Northwestern Polytechnical University, where he
is a currently working toward the PhD degree in the same
school. His research interests include statistical inference for
stress-strength model in reliability analysis, applied probabil-
ity and statistics.

Bin Liu holds a PhD in appliedmathematics fromNorthwest-
ern Polytechnical University. He is an associate professor in
Taiyuan University of Science and Technology. His research
interests include reliability analysis, analysis of masked data,
and applied probability and statistics.

ORCID

Xuchao Bai http://orcid.org/0000-0002-9860-3154
Bin Liu http://orcid.org/0000-0002-6877-5481

References

Aristidis, K. N. (2013). On the estimation of normal copula
discrete regression models using the continuous exten-
sion and simulated likelihood. Journal of Statistical Plan-
ning and Inference, 143, 1923–1937.

Balakrishnan, N., & Han, D. (2008). Exact inference for a
simple step-stress model with competing risks for failure
from exponential distribution under Type-II censoring.
Journal of Statistical Planning and Inference, 138, 4172–
4186.

Balakrishnan, N., & Lai, C. D. (2009). Continuous bivariate
distributions. New York, NY: Springer Press.

Beyersmann, J., Schumacher, M., & Allignol, A. (2012). Com-
peting risks and multistate models with R. New York, NY:
Springer.

Bourguignon, M., Saulo, H., & Fernandez, R. N. (2016). A
new Pareto-type distributionwith applications in reliabil-
ity and income data. Physica A, 457, 166–175.

Cheng, G., Zhou, L., Chen, X., & Zhuang, J. (2014). Efficient
estimation of semiparametric copula models for bivariate
survival data. Journal of Multivariate Analysis, 123, 330–
344.

Cramer, E., & Schmiedt, A. B. (2011). Progressively Type-II
censored competing risks data from Lomax distributions.
Computational Statistics and Data Analysis, 55(3), 1285–
1303.

Dimitrova, D. S., Haberman, S., & Kaishev, V. K. (2013).
Dependent competing risks: Cause elimination and its
impact on survival. Insurance: Mathematics and Eco-
nomics, 23, 464–477.

Dixit, U. J., & Nooghabi, M. J. (2010). Efficient estimation in
the Pareto distribution. Statistical Methodology, 7, 687–
691.

Fernández, A. J. (2014). Computing optimal confidence sets
for Pareto models under progressive censoring. Jour-
nal of Computational and Applied Mathematics, 258,
168–180.

Grothe, O., & Hofert, M. (2015). Construction and sampling
of Archimedean and nested Archimedean Levy copulas.
Journal of Multivariate Analysis, 138, 182–198.

Han, D., & Balakrishnan, N. (2010). Inference for a sim-
ple step-stress model with competing risks for fail-
ure from the exponential distribution under time con-
straint. Computational Statistics and Data Analysis, 54,
2066–2081.

Helu, A., Samawi, H., & Raqab, M. Z. (2015). Estimation on
Lomax progressive censoring using the EM algorithm.
Journal of Statistical Computation and Simulation, 85(5),
1035–1052.

Jia, X., & Cui, L. (2012). Reliability research of k-out-of-n: G
supply chain unit based on copula. Communications in
Statistics - Theory and Methods, 41(21), 4023–4033.

Jia, X., Wang, L., & Wei, C. (2014). Reliability research of
dependent failure units using copula. Communications
in Statistics - Simulation and Computation, 43(8), 1838–
1851.

Liu, F., & Shi, Y. (2017). Inference for a simple step-stress
model with progressively censored competing risks data
fromWeibull distribution. Communications in Statistics -
Theory and Methods, 46(14), 7238–7255.

Mazucheli, J., & Achcar, J. A. (2011). The Lindley dis-
tribution applied to competing risks lifetime data.
Computer Methods and Programs in Biomedicine, 104,
188–192.

Muliere, P., & Scarsini, M. (1987). Characterization of a
Marshall-Olkin type class of distributions.Annals of Insti-
tute of Statistical Mathematics, 39, 429–441.

Nelsen, B. (2006). An introduction to copulas (2nd ed.). New
York, NY: Springer Press.

Pareto, V. (1896). Cours d’Economie Politique [Political eco-
nomics course]. Droz, Geneva.

Sarhan, A. M., & El-Gohary, A. I. (2003). Estimations of
parameters in Pareto reliability model in the presence of
masked data. Reliability Engineering and Unit Safety, 82,
75–83.

Sarhan, A. M., Hamilton, D. C., & Smith, B. (2010). Statistical
analysis of competing risks models. Reliability Engineer-
ing and Unit Safety, 95, 953–962.

Wu, M., & Shi, Y. (2016). Bayes estimation and expected ter-
mination time for the competing risks model from Gom-
pertz distribution under progressively hybrid censoring
with binomial removals. Journal of Computational and
Applied Mathematics, 300, 420–431.

Wu, M., Shi, Y., & Zhang, C. (2017). Statistical analysis of
dependent competing risks model in accelerated life test-
ing under progressively hybrid censoring using copula
function. Communication in Statistics- Simulation and
Computation, 46(5), 4004–4017.

Xu,A., &Tang, Y. (2012). Statistical analysis of competing fail-
ure modes in accelerated life testing based on assumed
copulas. Chinese Journal of Applied Probability and Statis-
tics, 28, 51–62.

Xu, A., & Zhou, S. (2017). Bayesian analysis of series system
with dependent causes of failure. Statistical Theory and
Related Fields, 1(1), 128–140.

Yang, M., Wei, C., & Fan, Q. (2014). Parameter estimation for
Lomax distribution under Type II censoring. Advanced
Materials Research, 912-914, 1663–1668.

Yi, W., & Wei, G. (2007). Study on the reliability of
dependence-parts vote unit based on copula functions.

56 X. BAI ET AL.

http://orcid.org/0000-0002-9860-3154
http://orcid.org/0000-0002-6877-5481


Journal of Southwest China Normal University (Natural
Science), 32(6), 52–55.

Zhang, X., Shang, J., Chen, X., Zhang, C., & Wang, Y. (2014).
Statistical inference of accelerated life testing with depen-
dent competing failures based on copula theory. IEEE
Transaction on Reliability, 63(3), 764–780.

Zhang, C., Shi, Y., Bai, X., & Fu, Q. (2017). Inference for
constant-stress accelerated life tests with dependent
competing risks from bivariate Birnbaum–Saunders
distribution based on adaptive progressively hybrid
censoring. IEEE Transactions on Reliability, 66(1),
111–122.

STATISTICAL THEORY AND RELATED FIELDS 57


	Abstract
	1.Introduction
	2.Copula theory
	2.1.Bivariate copula function
	2.2.Archimedean copula
	2.3.Measure of association

	3.Maximum likelihood estimations
	3.1.Basic assumptions
	3.2.Maximum likelihood estimation

	4.Confidence intervals and reliability estimation of unit
	4.1.Bootstrap-p method
	4.2.Bootstrap-t method
	4.3.Reliability estimation of unit

	5.Numerical simulation
	5.1.Data generation and results analysis
	5.2.Reliability analysis of unit

	6.Illustrative example
	7.Conclusions
	Acknowledgments
	Disclosure statement
	Funding
	References

