
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tstf20

Statistical Theory and Related Fields

ISSN: 2475-4269 (Print) 2475-4277 (Online) Journal homepage: https://www.tandfonline.com/loi/tstf20

Efficient Robbins–Monro procedure for
multivariate binary data

Cui Xiong & Jin Xu

To cite this article: Cui Xiong & Jin Xu (2018) Efficient Robbins–Monro procedure
for multivariate binary data, Statistical Theory and Related Fields, 2:2, 172-180, DOI:
10.1080/24754269.2018.1507384

To link to this article:  https://doi.org/10.1080/24754269.2018.1507384

Published online: 07 Aug 2018.

Submit your article to this journal 

Article views: 38

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tstf20
https://www.tandfonline.com/loi/tstf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24754269.2018.1507384
https://doi.org/10.1080/24754269.2018.1507384
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2018.1507384
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2018.1507384
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2018.1507384&domain=pdf&date_stamp=2018-08-07
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2018.1507384&domain=pdf&date_stamp=2018-08-07


STATISTICAL THEORY AND RELATED FIELDS
2018, VOL. 2, NO. 2, 172–180
https://doi.org/10.1080/24754269.2018.1507384

Efficient Robbins–Monro procedure for multivariate binary data

Cui Xiong and Jin Xu

School of Statistics, East China Normal University, Shanghai, People’s Republic of China

ABSTRACT
This paper considers the problem of jointly estimating marginal quantiles of a multivariate
distribution. A sufficient condition for an estimator that converges in probability under a mul-
tivariate version of Robbins–Monro procedure is provided. We propose an efficient procedure
which incorporates the correlation structure of the multivariate distribution to improve the esti-
mation especially for cases involving extreme marginal quantiles. Estimation efficiency of the
proposedmethod is demonstrated by simulation in comparisonwith a generalmultivariate Rob-
bins–Monro procedure and an efficient Robbins–Monro procedure that estimates the marginal
quantiles separately.
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1. Introduction

Let M(x) be the distribution function of a random
variable X. Robbins and Monro (1951) introduced a
stochastic approximationmethod to find theα-quantile
θ = M−1(α) (assuming it is unique) through a sequen-
tial search given by

xn+1 = xn − an(yn − α), (1)

where x1 is an arbitrary initial guess of θ , yn is the binary
response with expected value M(xn) and an is a pre-
specified sequence of positive constants. They showed
that when an satisfies

∑∞
n=1 an = ∞ and

∑∞
n=1 a

2
n <

∞, xn converges to θ in probability. Applications of
this procedure include quantal response curve estima-
tion in sensitivity experiments, dose-finding in clini-
cal trials and sequential learning, to just name a few
(Cheung, 2010; Duflo, 1997; Wu, 1985).

It is known that the procedure is asymptotically
efficient when an = {nṀ(θ)}−1, where Ṁ is the first
derivative of M (Chung, 1954; Sacks, 1958). Various
variants of Robbins–Monro procedure of (1) and other
model-based approaches were proposed to improve the
finite sample performance (Chaloner & Larntz, 1989;
Chaudhuri & Mykland, 1993; Dror & Steinberg, 2006,
2008; Hung & Joseph, 2014; Lai & Robbins, 1979;
Neyer, 1994; Ruppert, 1988; Wu, 1985, 1986; Wu
&Tian, 2014). It is also known that the Robbins–Monro
procedure does not perform well for extreme values
of α (Wetherill, 1963; Young & Easterling, 1994). To
improve the convergence performance in this case,
Joseph (2004) proposed an efficient Robbins–Monro
procedure which modifies (1) by

xn+1 = xn − an(yn − bn), (2)

where bn is a sequence of constants in (0, 1) converging
to α. The sequences an and bn are chosen in a way such
that the conditional mean square error is minimised
under a Bayesian framework. The explicit forms of an
and bn under normal approximation are derived and
showed to work for generalM as well.

In this paper, we consider a multivariate extension
of this estimation problem. Let M(x) be the distri-
bution function of a p-dimensional random vector
x = (x1, . . . , xp)� with finite second moments. Denote
its jth marginal distribution by Mj. Given a con-
stant vector α = (α1, . . . ,αp) in (0, 1)p, we are inter-
ested in jointly estimating the marginal quantiles θ =
(M−1

1 (α1), . . . ,M−1
p (αp)), assuming that M−1

j (αj) is
unique for each j. We also assume that Ṁj(θj) > 0
for all j = 1, . . . , p. Suppose that given each factor xj,
we observe an independent binary response yj with
E(yj | xj) = Mj(xj). Such situation arises in different
fields of researches. For instance, in sensitivity exper-
iment study, several sensitivity experiments are con-
ducted in parallel. In each experiment, stimulus level
of one factor is tested with dichotomous outcome,
response or non-response, and the factors considered
across experiments are highly correlated. It is of inter-
est to coordinate the designs for individual factor for
more efficiency. In oncology dose-finding clinical tri-
als, several agents are considered at the same time. For
each agent, a trial is conducted to search for the level
of maximum tolerated dose, which corresponds to the
25% or 30% quantile of a unknown distribution. Across
the agents, various binary responses representing dif-
ferent types of adverse events are observed. The joint
marginal dose levels are used for evaluation of possible
combination agent trials. Apparently, θ can be esti-
mated by applying the Robbins–Monro procedure or
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the efficient version to each component of x. However
since x1, . . . , xp are correlated, these methods may lose
efficiency when estimating themarginal quantiles sepa-
rately. This motivates us to seek a sequential procedure
that estimates θ jointly.

Multivariate Robbins–Monro procedures that aim
to find the root of a multivariate continuous func-
tion f : Rp → R

p through a regression E(y) = f(x)
have been studied (Duflo, 1997). For example, Rup-
pert (1985) proposed a multivariate Newton–Raphson
version which is in a way similar to multivariate
Kiefer–Wolfowitz procedure to minimise ‖ f(x) ‖2.
Wei (1987) proposed a multivariate Robbins–Monro
procedure which employs a Venter-type estimate of the
Jacobian of f . The method we propose here is primarily
for binary responses.

The remainder of the paper is organised as follows.
In Section 2, we first present a general multivariate
Robbins–Monro procedure under which the sequential
estimator converges in probability. Second, we develop
an efficient version which is optimal under a crite-
rion that is naturally extended from the univariate case.
Section 3 contains simulation studies to demonstrate
the superiority of the proposed method over a gen-
eral multivariate Robbins–Monro procedure and an
efficient Robbins–Monro procedure that estimates the
marginal quantiles separately. All proofs are gathered
in Appendix.

2. Main results

First, we extend (1) to a multivariate version as follows:

xn+1 = xn − An(yn − α), (3)

where yn = (y1n, . . . , ypn)� contains p binary responses
observed at xn and each yjn has the expected value
Mj(xjn), An is a sequence of p × p constant matrices
whose (j, k)th element is denoted by ajk,n. The following
theorem gives a sufficient condition for xn to converge
to θ in probability.

Theorem 2.1: Suppose that An satisfies the following
conditions:

ajj,n > 0,
∞∑
n=1

ajj,n = ∞,
∞∑
n=1

a2jj,n < ∞,

for j = 1, . . . , p,

|ajk,n/ajj,n| → 0, for k �= j.

(4)

Then, xn in (3) converges to θ in probability as n → ∞.

When ajk,n = 0 for all j �= k, Theorem 2.1 reduces
to p univariate Robbins–Monro procedures. It indicates
that when the diagonal elements of An are of O(n−1)

and dominate the off-diagonal elements in magnitude,
the sequential estimator converges regardless of the

exact values of ajk,n. Clearly, this arbitrariness of An
can lead to inefficiency in estimation as showed by
simulation in Section 3.

In light of Joseph (2004) to improve the convergence
in case of extreme quantile, we propose an efficient ver-
sion of (3) by replacing α by a vector sequence bn in
(0, 1)p, i.e.

xn+1 = xn − An(yn − bn). (5)

Additional condition on bn to guarantee the conver-
gence is provided in the following theorem.

Theorem 2.2: Suppose that An satisfies (4) and bn sat-
isfies

∞∑
n=2

n−1∑
s=1

1�
p | A�

s An(α − bn) |e< ∞, (6)

where 1p is a p × 1 vector of ones, | · |e stands for the
operator that takes element-wise absolute value of a
vector or a matrix. Then, xn in (5) converges to θ in
probability as n → ∞.

Here the idea of introducing a varying sequence bn
is to create a balanced step length in early stage when α

contains extreme values. As n gets large, bn converges
to α and its effect diminishes. Again, there are many
sequences of An and bn satisfying the conditions of
Theorem2.2.Wenow seek a pair of them that is optimal
in a way that is naturally extended from the univariate
case.

Assume thatM is from a location familywith param-
eter θ . Hereafter, we denote M(x) by M(x − θ). Sup-
pose the initial guess x1 is obtained with some prior
information of θ , to be specific, a prior distribution of
θ with E(θ) = x1 and cov(θ) = �1.

Let zn = xn − θ . Then, (5) becomes

zn+1 = zn − An(yn − bn), (7)

where yjn is a binary variable with expected value
Mj(zjn). Denote mn = (m1n, . . . ,mpn)

� = (M1(z1n),
. . . ,Mp(zpn))� and �n = cov(zn) = (σjk,n). As a natu-
ral extension of the univariate case in Joseph (2004), we
propose to choose An and bn such that tr{cov(zn+1)} is
minimised subject to the condition that E(zn+1) = 0.
By (7), this condition implies

E(zn) − An{E(mn) − bn} = 0.

Since (A1, b1), . . . , (An−1, bn−1) are chosen such that
E(z2) = · · · = E(zn) = 0, we have bn = E(mn), which,
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together with (7), leads to

�n+1 = �n − AnE(mnz�
n ) − E(znm�

n )A�
n

+ Ancov(yn)A�
n .

Minimising tr{cov(zn+1)}with respect toAn by solving
∂tr�n+1/∂An = 0, we obtain

An = E(znm�
n )cov−1(yn),

and

�n+1 = �n − E(znm�
n )cov−1(yn)E(mnz�

n ). (8)

The components of cov(yn) can be expressed as

var(yjn) = E(mjn){1 − E(mjn)}, j = 1, . . . , p,

cov(yjn, ykn) = E(mjnmkn) − E(mjn)E(mkn), j �= k.
(9)

The expectations of E(mjn), E(zjnmkn) and E(mjnmkn)

in (8) and (9) depend on the unknown distribution
M and the distribution of zn. (Note that cov(yn) is
invertible unless some xj and xk are identical.)

To facilitate the evaluation of these expectations, we
first approximateM(z) by

G(z) = �p (a + Bz; 0,R) , (10)

where �p(.;μ,�) is the distribution function of p-
dimensional normal vector with mean μ and covari-
ance �, a = (�−1(α1), . . . ,�−1(αp))

�, B = diag
(β1, . . . ,βp) with βj = Ṁj(0)/φ{�−1(αj)}, � and φ

are respectively the distribution function and density
of the standard normal variable, R = (ρjk) with ρjk =
corr(zj, zk). Then, the marginal distribution of G, given
by Gj(z) = �(�−1(αj) + βjz), coincides withMj(z) in
both the value and the derivative at 0, i.e.Gj(0) = Mj(0)
and Ġj(0) = Ṁj(0). In this way, G captures the local
behaviour ofM at the point of interest. Further let gn =
(g1n, . . . , gpn)� = (G1(z1n), . . . ,Gp(zpn))�.

Second, denote the density of zn by fn. Observe that
fn+1 can be obtained recursively by

fn+1(z) =
∑

s1,...,sp=0,1
P(y1n = s1, . . . , ypn

= sp | zn)fn[z + An{(s1, . . . , sp)� − bn}],

which is rather complicated. Again, we choose to
approximate the distribution of zn by another multi-
variate normal distribution �p(z; 0,�n) as their first
two moments agree.

It is worth pointing out that neither the first-order
approximation by G nor the moment agreement by
�p(z; 0,�n) guarantees the overall closeness to the dis-
tribution. Such approximations are not unique or opti-
mal. Themain advantages of usingmultivariate normal
approximations are computational ease and sufficiency
for the desired convergence, as we show next.

Now, based on these two approximations, we can
estimate E(mjn), E(zjnmkn) and E(mjnmkn) respectively
by E(gjn), E(zjngkn) and E(gjngkn), where the expec-
tations are taken with respect to �p(z; 0,�n). Their
expressions are obtained as follows:

E(gjn) = E{�(�−1(αj) + βjzjn)}

= �

{
�−1(αj)

(1 + β2
j σjj,n)

1/2

}
, (11)

E(zjngkn) = E{zjn�(�−1(αk) + βkzkn)}

= βkσjk,n

(1 + β2
kσkk,n)

1/2φ

{
�−1(αk)

(1 + β2
kσkk,n)

1/2

}
,

(12)

E(gjngkn) = E{�(�−1(αj) + βjzjn)�(�−1(αk)

+ βkzkn)}
= �2

{
(�−1(αj),�−1(αk))

�; 0, I2 + �̃jk,n

}
,

(13)

where

�̃jk,n =
(

β2
j σjj,n βjβkσjk,n

βjβkσjk,n β2
kσkk,n

)
.

At last, we obtain the sequences of An and bn in the
efficient procedure of (5) or (7) as

An = E(zng�
n )cov−1(yn), bn = E(gn), (14)

with

�n+1 = �n − E(zng�
n )cov−1(yn)E(gnz�

n ), (15)

where the components of E(zng�
n ), cov(yn) and bn are

given in (11)–(13). Note that An and bn are sequences
that can be specified before the experiment once �1 is
provided. When �1 is diagonal, i.e. the components of
x1 are uncorrelated, the component-wise coefficients of
An and bn in (14) reduce to an and bn respectively in (2)
given by Joseph (2004).

The following theorem gives the convergence prop-
erty of the proposed sequential design whenM is mul-
tivariate normal.

Theorem 2.3: Suppose that the distribution of z is given
by (10). Then, for the procedure in (7) with coefficient
sequences in (14), �n → 0, bn → α, as n → ∞.

Theorem 2.3 implies that zn converges to 0 and
hence xn converges to θ in probability. The next
theorem shows that the result in fact holds for general
M.

Theorem 2.4: For the procedure in (7) with coefficient
sequences in (14), zn → 0 in probability, as n → ∞.
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We call the sequential design in (5) with coefficients
in (14) efficient multivariate Robbins–Monro proce-
dure. A couple of points are worthy to be noted. (i)
Themost important impact of the procedure lies on the
sequence bn for which each of its component is between
αj and 0.5 for the early stage to avoid unnecessary large-
scale oscillation of the search steps as pointed out by
Joseph (2004). (ii) The contribution of the correlation
structure of x is implemented through the procedure
in (14) to minimise tr{cov(zn)}.

In the end, we would like to comment on two practi-
cal issues in carrying out the procedure. First, as seen
from (5), the starting value of �1 plays a key role in
the construction of An and bn. In reality it is usually
unknown to the experimenter. A plausible solution is
to estimate it from a moderate sample of x. It is possi-
ble and less expensive since no response of y is needed.
Second, for the unknown coefficients βj which also
depends on the unknownMj, it can be estimated adap-
tively from the data by fitting a parametric model like
in Anbar (1978) and Lai and Robbins (1979). We will
demonstrate the effect of these approximations through
simulation in the next section.

3. Simulations

In this section, we conduct simulations to compare
the performance of the following four procedures for
jointly estimating the marginal quantiles: (i) the mul-
tivariate Robbins–Monro procedure in (3), denoted
by MRM; (ii) the proposed efficient version in (5),
denoted by eMRM; (iii) the procedure that estimates
the marginal quantiles separately by (1), denoted by
RM; (iv) the efficient procedure that estimates the
marginal quantiles separately by (2), denoted by eRM.

3.1. Set up

Consider three bivariate distributions given in the first
column of Table 1, where (i) MVN(0,�) is bivariate
normal distribution with mean 0 and � = (

σ11 σ12
σ21 σ22

) =( 1 0.9
0.9 1

)
, (ii) MVT(0,�, 4) is bivariate t distribu-

tion with location parameter 0, scale matrix � and
degrees of freedom four (Kotz & Nadarajah, 2004),
(iii) MSN(0,�, s) is a bivariate skew-normal distribu-
tion with location parameter 0, scale matrix �, shape
parameter s = (1, 1)� (Azzalini, 1998). The covariance
matrices of these three distributions are respectively

�, 2�, and � − μsμ
�
s , (16)

where μs = (2/π)1/2(1 + s��s)−1/2�s =
(0.692, 0.692)�, all indicating a strong positive cor-
relation. The marginal distribution of Mj(zj) under
these models are given in the second column of
Table 1, where (i) t(., f ), t−1(., f ) and dt(., f ) are respec-
tively the distribution function, quantile and den-
sity of a t random variable with degrees of freedom

Table 1. Three bivariate distributions and their marginal distri-
butions.

M(x) Mj(zj) βj

MVN(0,�) �(�−1{αj) + zj} 1

MVT(0,�, 4) t{t−1(αj , 4) + zj , 4} dt{t−1(αj ,4),4}
φ{�−1(αj)}

MSN(0,�, s) sn{sn−1(αj ; 0, 1, s̄j) + zj ; 0, 1, s̄j} dsn{sn−1(αj ;0,1,s̄j);0,1,s̄j}
φ{�−1(αj)}

f, (ii) sn(.;μ,ω, s), sn−1(.;μ,ω, s) and dsn(.;μ,ω, s)
are the distribution function, quantile and den-
sity of a (univariate) skew-normal random variable
with location parameter μ, scale parameter ω and
shape parameter s. In addition, the corresponding
βj under these models are given in the third col-
umn of Table 1, where s̄1 = s̄2 = (s1 + σ−1

11 σ12s2)/(1 +
s�2 σ22.1s2)1/2 = 1.742,σ22.1 = σ22 − σ21σ

−1
11 σ12 = 0.19

(Azzalini, 2014).
Since we are mainly concerned with the estimation

performance under moderate sample size, we com-
pare the efficiency of these estimations by the sum of
marginal square root of the mean square error (RMSE)
of zn after 20, 30 and 50 iterations, respectively.

3.2. Comparisonwith true�1

First, we consider the comparison with x1 to be the true
value or equivalently z1 = 0 and �1 to be its corre-
sponding true value given in (16).

For MRM, we let

An =
( {nṀ1(0)}−1

(n + 1)−2{Ṁ1(0)Ṁ2(0)}−1/2

(n + 1)−2{Ṁ1(0)Ṁ2(0)}−1/2

{nṀ2(0)}−1

)
, (17)

which satisfies the conditions in (4). For eMRM, An is
given in (14) with �1 to be the true value. For RM,
we set an to be the optimal value {nṀj(0)}−1 for the
jth margin. And for eRM, the sequences an and bn are
obtained by (5) with �1 replaced by diag(�1). Then,
we use (3) and (5) to obtain sequences for MRM and
eMRM respectively and use (1) and (2) to obtain RM
and eRM respectively. For all procedures, the binary
responses yjn, j = 1, . . . , p, are obtained as Bernoulli
variables with success probabilities Mj(xjn), respec-
tively.

Tables 2–4 respectively report the sum of marginal
RMSEs of z21, z31 and z51 obtained by the four proce-
dures under various values of α1 and α2 and the three
models in Table 1. (The simulation size is 1000 through-
out.) The sequential design of zn corresponds to simul-
taneous estimates of two (α1 andα2)marginal quantiles
of an unknown bivariate distribution. For example, one
wants to simultaneously estimate the 30th percentiles
of two dose response curves based on two possibly
correlated agents.
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Table 2. Sum of marginal RMSEs of z21 obtained by the four procedures.

With x1 = θ and true�1 With estimated x1 and�1

(α1,α2) Model eMRM eRM MRM RM eMRM eRM MRM RM

(0.1,0.1) MVN 0.563 0.693 2.517 2.499 0.500 0.692 2.655 2.711
MVT 0.793 0.860 2.670 2.790 0.751 0.883 2.719 2.672
MSN 0.386 0.473 2.574 2.557 0.340 0.485 2.702 2.760

(0.3,0.3) MVN 0.464 0.568 0.690 0.658 0.357 0.550 0.578 0.581
MVT 0.575 0.621 0.852 0.874 0.440 0.630 0.834 0.819
MSN 0.349 0.407 0.465 0.471 0.263 0.420 0.456 0.456

(0.5,0.5) MVN 0.453 0.548 0.578 0.577 0.357 0.550 0.578 0.581
MVT 0.522 0.581 0.632 0.650 0.389 0.599 0.632 0.640
MSN 0.342 0.413 0.423 0.420 0.273 0.425 0.430 0.433

(0.1,0.5) MVN 0.502 0.625 1.543 1.569 0.463 0.603 1.461 1.689
MVT 0.661 0.708 1.667 1.684 0.604 0.735 1.585 1.700
MSN 0.362 0.457 1.297 1.395 0.310 0.460 1.448 1.595

(0.1,0.9) MVN 0.557 0.698 2.318 2.576 0.558 0.694 2.336 2.663
MVT 0.779 0.865 2.457 2.632 0.811 0.907 2.503 2.730
MSN 0.416 0.541 2.214 2.534 0.406 0.541 2.425 2.699

(0.25,0.75) MVN 0.468 0.583 0.775 0.809 0.436 0.575 0.761 0.797
MVT 0.589 0.653 0.967 1.015 0.508 0.665 0.984 1.033
MSN 0.370 0.461 0.605 0.635 0.317 0.460 0.599 0.640

Table 3. Sum of marginal RMSEs of z31 obtained by the four procedures.

With x1 = θ and true�1 With estimated x1 and�1

(α1,α2) Model eMRM eRM MRM RM eMRM eRM MRM RM

(0.1,0.1) MVN 0.488 0.562 2.491 2.201 0.458 0.577 2.449 2.485
MVT 0.694 0.768 2.371 2.473 0.660 0.744 2.676 2.534
MSN 0.341 0.403 2.226 2.371 0.313 0.398 2.567 2.667

(0.3,0.3) MVN 0.405 0.471 0.557 0.558 0.353 0.473 0.558 0.547
MVT 0.496 0.531 0.681 0.689 0.380 0.520 0.678 0.671
MSN 0.291 0.338 0.355 0.351 0.240 0.345 0.357 0.357

(0.5,0.5) MVN 0.394 0.459 0.478 0.468 0.328 0.458 0.463 0.473
MVT 0.452 0.480 0.540 0.516 0.353 0.482 0.520 0.527
MSN 0.304 0.339 0.355 0.352 0.246 0.342 0.349 0.344

(0.1,0.5) MVN 0.436 0.520 1.434 1.407 0.432 0.516 1.402 1.445
MVT 0.569 0.619 1.450 1.555 0.547 0.617 1.566 1.510
MSN 0.322 0.375 1.244 1.346 0.277 0.374 1.351 1.462

(0.1,0.9) MVN 0.474 0.582 1.909 2.424 0.508 0.590 2.274 2.444
MVT 0.697 0.755 2.252 2.530 0.730 0.773 2.184 2.481
MSN 0.376 0.461 1.996 2.260 0.369 0.460 2.181 2.399

(0.25,0.75) MVN 0.420 0.481 0.617 0.642 0.379 0.480 0.629 0.640
MVT 0.512 0.542 0.800 0.840 0.453 0.562 0.818 0.863
MSN 0.321 0.373 0.460 0.479 0.278 0.374 0.455 0.477

Table 4. Sum of marginal RMSEs of z51 obtained by the four procedures.

With x1 = θ and true�1 With estimated x1 and�1

(α1,α2) Model eMRM eRM MRM RM eMRM eRM MRM RM

(0.1,0.1) MVN 0.390 0.465 1.994 2.148 0.401 0.473 2.136 2.181
MVT 0.573 0.629 2.162 2.214 0.582 0.644 2.329 2.223
MSN 0.288 0.329 2.043 1.899 0.259 0.318 2.209 2.217

(0.3,0.3) MVN 0.339 0.375 0.409 0.419 0.292 0.369 0.408 0.420
MVT 0.405 0.421 0.530 0.522 0.332 0.410 0.508 0.510
MSN 0.240 0.265 0.272 0.272 0.209 0.261 0.268 0.268

(0.5,0.5) MVN 0.312 0.350 0.362 0.363 0.275 0.348 0.360 0.367
MVT 0.359 0.381 0.394 0.383 0.296 0.382 0.389 0.402
MSN 0.239 0.266 0.264 0.262 0.210 0.270 0.270 0.262

(0.1,0.5) MVN 0.352 0.401 1.193 1.270 0.361 0.402 1.270 1.303
MVT 0.480 0.501 1.301 1.252 0.467 0.499 1.242 1.351
MSN 0.261 0.283 1.179 1.212 0.237 0.290 1.214 1.269

(0.1,0.9) MVN 0.407 0.459 1.809 2.026 0.439 0.454 1.960 2.227
MVT 0.556 0.626 2.052 2.253 0.620 0.643 2.088 2.400
MSN 0.316 0.360 1.762 2.092 0.319 0.354 1.927 2.240

(0.25,0.75) MVN 0.342 0.377 0.458 0.473 0.325 0.375 0.455 0.471
MVT 0.413 0.450 0.631 0.652 0.386 0.440 0.586 0.634
MSN 0.266 0.291 0.331 0.336 0.239 0.288 0.325 0.339

We summarise the finding as follows. (i) The pro-
posed efficient multivariate Robbins–Monro proce-
dure (5) has significant improvement over the general
multivariate version of (3). The reduction in terms of

the sum of marginal RMSEs is ∼78.7% when the joint
estimators are concern with extreme marginal quan-
tile (the first three cases in Tables 2–4). The reduc-
tion is still remarkable (by ∼15.5%) for the median.
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Figure 1. Sum of marginal RMSEs by eMRM and eRM under the three models.

The averaged reduction is 49.2% across all 18 cases.
This type of improvement is also seen in comparison
between eRM and RM, as reported by Joseph (2004).
(ii) The proposed eMRM procedure uniformly outper-
forms the eRM in terms of reduction in the sum of
marginal RMSEs by an average (over 18 cases) of 15.5%
for x21, 12.1% for x31 and 9.6% for x51. This exactly
shows the efficiency gained by the joint estimation with
incorporation of the correlation. (The reduction per-
centage gets smaller as n increases since both proce-
dures converge.) (iii) The results of MRM and RM are
comparable since the An we chose in (17) only guaran-
tees the convergence in large sample. This also reflects
the importance of an appropriate selection of coefficient
matrixAn in the sequential designwhen the sample size
is limited.

We continue the sequential experiments up to 100
steps to examine the convergence behaviour of the pro-
cedures. We use the first combination of (α1,α2) =
(0.1, 0.1) as an example to illustrate. Figure 1 shows
the declining trend of the sum of marginal RMSEs
by eMRM and eRM under the three models. (Those
by MRM and RM are significantly larger, thus not
included.) It is seen that the superiority of the joint
estimation prevails with a remarkable difference.

3.3. Comparisonwith estimated�1

The previous simulations are carried out under the per-
fect initial guess and the true M. Now we consider the
situation that these values are unknown. We propose
using a pilot sample of x to estimate them. To be spe-
cific, we (i) estimate the initial value of xj1 by the sample
αj-quantile; (ii) estimate �1 based on a bootstrap sam-
ple (of size 500) of x1; and (iii) approximate Ṁj(0) by its

normal counterpart, i.e.φ(�−1(αj)), henceβj = 1. The
size of the pilot sample depends on the dimension of x.
For the bivariate models considered in Section 3.1, we
set the size to be 20. Noted that this pilot sample does
not need responses of ys so that in reality it is feasible,
as observing responses y can be expensive or time con-
suming. When the dimension increases, the size of the
pilot sample should increase as well. After obtaining x1
and An, we proceed the four competing procedures in
the same way as outlined in Section 3.2.

We carry out the similar comparison under the same
models and obtain results in the last four columns of
Tables 2–4. It is seen that the reduction in the sum of
marginal RMSEs are even larger for eMRM both from
MRM (by 58.9% for x21, by 56.3% for x31 and by 51.9%
for x51) and from eRM (by 26.9% for x21, by 21.1% for
x31 and by 14.6% for x51) in average across all 18 cases.

Certainly larger sample size of the pilot study can
yield more accurate estimation of �1 and hence bet-
ter result in sequential estimation. Here our simulation
shows that a pilot study of a moderate sample (with-
out responses) serves the purpose for providing initial
information of x1 and �1 in practice. On the other
hand, if �1 is mis-specified, e.g. use negative values
for positive correlations, we found the performance of
the sequential estimation of eMRM is worse than those
of the separate eRM procedures, though the sequence
still converges (result not shown). This indicates that
correct estimation of the sign of the correlation is
important.
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Appendices

Appendix 1. Proof of Theorem 2.1

First, by (3), we have

E{(xn+1 − θ)�(xn+1 − θ)}
= E

(
E

[
{xn − θ − An(yn − α)}�

× {xn − θ − An(yn − α)} | xn
])

= E(xn − θ)�(xn − θ) − 2E(xn − θ)�An(mx
n − α)

+ E
{
(yn − α)�A�

n An(yn − α)
}

= E(x1 − θ)�(x1 − θ) − 2
n∑

i=1
E(xi − θ)�Ai(mx

i − α)

+
n∑

i=1
E

{
(yi − α)�A�

i Ai(yi − α)
}

≥ 0,

where the expectations are taken with respect to xn, mx
n =

E(yn | xn) = (M1(x1n), . . . ,Mp(xpn))�. Let ei = (e1i, . . . ,
epi)� = yi − α. Clearly, eji is bounded. Observe that∑n

i=1 E{(yi − α)�A�
i Ai(yi − α)} can be expressed as

p∑
j=1

n∑
i=1

{
E(e2ji)

p∑
s=1

a2sj,i

}
+

∑
j�=k

n∑
i=1

{
E(ejieki)

p∑
s=1

asj,iask,i

}
.

By assumption (4), both series
∑n

i=1{E(e2ji)
∑p

s=1 a
2
sj,i} and∑n

i=1{E(ejieki)
∑p

s=1 asj,iask,i} converge absolutely and hence
converge. Thus, the series

∑n
i=1 E{(yi − α)�A�

i Ai(yi − α)}
converges (to a non-negative value). Therefore,

∑∞
n=1 E{(xn

− θ)�An(mx
n − α)} < ∞.

Second, for j = 1, . . . , p, sinceMj is a distribution function
and Ṁj(θj) > 0, there exist positive constants 
j and uj such
that

0 < 
j ≤ Mj(xj) − αj

xj − θj
≤ uj < ∞,
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for all xj. Let 
 = min{
j : j = 1, . . . , p} and u = max{uj : j =
1, . . . , p}. Let aj,n be the jth column of An. Then,

(xn − θ)�An(mx
n − α)

=
p∑

j=1
(xn − θ)�aj,n(xjn − θj)

Mj(xjn) − αj

xjn − θj

≥
p∑

j=1
(xn − θ)�aj,n(xjn − θj)δjn

= (xn − θ)�An�n(xn − θ),

where �n = diag(δ1n, . . . , δpn) with

δjn =
{


, if (xn − θ)�aj,n(xjn − θj) ≥ 0,
u, otherwise.

(A1)

Then, we have
∑∞

n=1 E(xn − θ)�An�n(xn − θ) < ∞. Since
this quantity can be expressed as

p∑
j=1

∞∑
n=1

ajj,nδjnE(xjn − θj)
2

+
∑
j�=k

∞∑
n=1

ajk,nδknE(xjn − θj)(xkn − θk). (A2)

Observe that the second term of (A2) is no greater than

∑
j�=k

∞∑
n=1

1
2
|ajk,nδkn|

{
E(xjn − θj)

2 + E(xkn − θk)
2}

= 1
2

p∑
j=1

∞∑
n=1

E(xjn − θj)
2
∑
k�=j

{|ajk,nδkn| + |akj,nδjn|}.

The assumptions |ajk,n/ajj,n| → 0 when n → ∞ for j �= k
and ajj,n > 0 imply that there exists an integerN such that for
n>N, |ajk,n| < ajj,n/{2c(p − 1)} for all k �= j, where c is some
constant great than u/(2
) and u and 
 are defined in (A1).
Hence, for fixed j
∑
k�=j

|ajk,nδkn| + |akj,nδjn| <
∑
k�=j

{
ajj,nδkn

2c(p − 1)
+ ajj,nδjn

2c(p − 1)

}

<
ajj,nu
c

.

Then, the infinite sum
p∑

j=1

∞∑
n>N

ajj,nδjnE(xjn − θj)
2

+
∑
j�=k

∞∑
n>N

ajk,nδknE(xjn − θj)(xkn − θk)

≥
p∑

j=1

∞∑
n>N

ajj,nδjnE(xjn − θj)
2 − 1

2

p∑
j=1

∞∑
n>N

E(xjn − θj)
2

×
∑
k�=j

{|ajk,nδkn| + |akj,nδjn|}

>

p∑
j=1

∞∑
n>N

(
δjn − u

2c

)
ajj,nE(xjn − θj)

2,

which is positive by the choice of c. This implies that (A2)
is also bounded from below. Thus, the first term of (A2) is

finite. And by (4), E(xjn − θj)
2 must converge to 0 for all j =

1, . . . , p, which implies xn converges to θ in probability.

Appendix 2. Proof of Theorem 2.2

The proof is similar to the proof of Theorem 2.1. First, by (3),
we have

E{(xn+1 − θ)�(xn+1 − θ)}
= E{(x1 − θ)�(x1 − θ)}

− 2
n∑
i=1

E{(xi − θ)�Ai(mx
i − bi)}

+
n∑

i=1
E

{
(yi − bi)�A�

i Ai(yi − bi)
}

≥ 0,

wheremx
n is as defined before. The finiteness of

∑∞
n=1 E[(yn

− bn)�A�
n An(yn − bn)] (showed by the same way as for

the case bn = α in the proof of Theorem 2.1) implies that∑∞
n=1 E{(xn − θ)�An(mx

n − bn)} < ∞.
Second, similar to the proof in Theorem 2.1, we can show

that

(xn − θ)�An(mx
n − α) ≥ (xn − θ)�An�n(xn − θ),

where�n = diag(δ1n, . . . , δpn) and δjn are some positive con-
stants depending on An. Then,

n∑
i=1

E(xi − θ)�Ai(mx
i − bi)

=
n∑

i=1
E{(xi − θ)�Ai(mx

i − α)}

+
n∑
i=1

E{(xi − θ)�Ai(α − bi)}

≥
n∑
i=1

E{(xi − θ)�Ai�i(xi − θ)}

+
n∑
i=1

E{(xi − θ)�Ai(α − bi)}.

Since xn = x1 + ∑n−1
s=1 As(ys − bs) and E(x1) = θ

(by assumption), we have∣∣∣∣∣
n∑
i=1

E{(xi − θ)�Ai(α − bi)}
∣∣∣∣∣

=
∣∣∣∣∣

n∑
i=2

i−1∑
s=1

E{(ys − bs)�A�
s Ai(α − bi)}

∣∣∣∣∣
≤

n∑
i=2

i−1∑
s=1

1� | A�
s Ai(α − bi) |e,

which is finite by the assumption in (6). Thus,
∑∞

n=1 E{(xn −
θ)�An�n(xn − θ)} < ∞. Finally, using the same argument
in the proof of Theorem 2.1, xn converges to θ in probability.

Appendix 3. Proof of Theorem 2.3

First, under the assumption thatM is given by (10), (15) is the
covariance of zn+1. We have

σjj,n+1 = σjj,n − E(zjng�
n )cov−1(yn)E(gnzjn).
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Recall that the expectations are taken with respect to zn with
distribution �p(z; 0,�n).

Let

Dn = diag

[
β1σ

1/2
11,n

(1 + β2
1σ11,n)

1/2 φ

{
�−1(α1)

(1 + β2
1σ11,n)

1/2

}
, . . . ,

βpσ
1/2
pp,n

(1 + β2
pσpp,n)

1/2 φ

{
�−1(αp)

(1 + β2
pσpp,n)

1/2

}]
,

ρjk,n = σjk,n/(σjj,nσkk,n)
1/2, ρj,n = (ρj1,n, . . . , ρjp,n)�. Let

γ j,n = γ j,n(σ11,n, . . . , σpp,n) = Dnρj,n (A3)

be a function of σ11,n, . . . , σpp,n. Since γ j,n �= 0 as its jth
element is not zero, we have 0 < 1 − γ �

j,ncov
−1(yn)γ j,n < 1

and

0 < σjj,n+1 = σjj,n{1 − γ �
j,ncov

−1(yn)γ j,n}

= σjj,1

n∏
i=1

{
1 − γ �

j,icov
−1(yi)γ j,i

}
< σjj,n.

Thus, σjj,n is strictly decreasing to a limit σjj. Since σjj satisfies
the equation σjj = σjj{1 − q(σjj)} where q is a non-negative
function of σ11, . . . , σpp. The unique solution is σjj = 0 for all
j = 1, . . . , p. This implies �n → 0 and by (11) bn → α.

Appendix 4. Proof of Theorem 2.4

(i) First, we show that σjj,n = O(n−1) for j = 1, . . . , p. By
Theorem 2.3, we have σjj,n → 0 and cov(yn) → diag{α1(1 −
α1), . . . ,αp(1 − αp)} hence cov−1(yn) → diag[{α1(1 −
α1)}−1, . . . , {αp(1 − αp)}−1]. Then, for sufficiently large n,
there exist positive constants c1, . . . , cp such that

σjj,n = cj
n

for j = 1, . . . , p, and

γ �
j,ncov

−1(yn)γ j,n = 1
n + 1

,

where γ j,n is defined in (A3). It is clear that

γ �
j,ncov

−1(yn)γ j,n = γ j,n

( c1
n
, . . . ,

cp
n

)�

× cov−1(yn)γ j,n

( c1
n
, . . . ,

cp
n

)

< γ j,n

(
c1
n
, . . . ,

cj−1

n
,
2cj
n
,
cj+1

n
, . . . ,

cp
n

)�

× cov−1(yn)γ j,n

(
c1
n
, . . . ,

cj−1

n
,
2cj
n
,
cj+1

n
, . . . ,

cp
n

)
.

(A4)

Now, treat

σjj,n+1 = σjj,n{1 − γ �
j,ncov

−1(yn)γ j,n} = hj(σjj,n)

as a function of σjj,n given σ11,n, . . . , σj−1,j−1,n, σj+1,j+1,n, . . . ,
σpp,n. Observe that ∂hj(σjj,n)/∂σjj,n > 0 when cj/n ≤ σjj,n ≤
2cj/n. Then, we get

cj
n + 1

= hj
( cj
n

)
= hj

(
σjj,n

) ≤ σjj,n+1 < hj
(
2cj
n

)
<

2cj
n + 1

,

where the last inequality is obtained from (A4). By mathe-
matical induction, σjj,n isO(n−1).

Further, by (15) and (A3), we have for j �= k

σjk,n+1 = (σjj,nσkk,n)
1/2

{
ρjk,n − γ �

j,ncov
−1(yn)γ k,n

}
.

Using the fact that cov−1(yn) = diag[{α1(1 − α1)}−1, . . . ,
{αp(1 − αp)}−1] + O(n−1), we express

γ �
j,ncov

−1(yn)γ k,n

=
p∑

s=1
ρjs,nρks,n

β2
s σss,nφ

2{�−1(αs)}
(1 + β2

s σss,n)αs(1 − αs)
+ O(n−1),

which is O(n−1) from the previous result. Thus, if σjk,n is
o(n−1), σjk,n+1 is o(n−1). This can be achieved by properly
choosing the starting value of �1.

(ii) Second, we show that An in (14) satisfies (4). By the
construction in (14), we have

ajk,n = E(zjngkn)
[{αj(1 − αj)}−1 + O(n−1)

]
.

Then, the results in (i) imply that ajk,n is O(n−1) for j= k and
o(n−1) for j �= k.

(iii) Third, we show An together with bn in (14) satis-
fies (6). By (14) and the results in (i), we have each component
of α − bn is O(n−1) and each component of An(α − bn)

�=
�n is O(n−2). Observe that

n−1∑
s=1

1�
p

∣∣∣A�
s An(α − bn)

∣∣∣
e
=

n−1∑
s=1

p∑
k=1

∣∣∣∣∣∣
p∑

j=1
ajk,s
j,n

∣∣∣∣∣∣
≤

p∑
k=1

p∑
j=1

n−1∑
s=1

| ajk,s|.|
j,n|,

which isO(log(n)/n2) after the result in (ii). Then (6) follows.
Combining (ii) and (iii), the result follows after

Theorem 2.2.
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