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ABSTRACT
Tang et al. (2003. Analysis of multivariate missing data with nonignorable nonresponse.
Biometrika, 90(4), 747–764) and Zhao & Shao (2015. Semiparametric pseudo-likelihoods in gen-
eralized linear models with nonignorable missing data. Journal of the American Statistical Asso-
ciation, 110(512), 1577–1590) proposed a pseudo likelihood approach to estimate unknown
parameters in a parametric density of a response Y conditioned on a vector of covariate X, where
Y is subjected tononignorable nonersponse,X is always observed, and thepropensity ofwhether
or not Y is observed conditioned on Y and X is completely unspecified. To identify parame-
ters, Zhao & Shao (2015. Semiparametric pseudo-likelihoods in generalized linear models with
nonignorable missing data. Journal of the American Statistical Association, 110(512), 1577–1590)
assumed that X can be decomposed into U and Z, where Z can be excluded from the propensity
but is related with Y even conditioned on U. The pseudo likelihood involves the estimation of
the joint density of U and Z. When this density is estimated nonparametrically, in this paper we
apply sufficient dimension reduction to reduce the dimension of U for efficient estimation. Con-
sistency and asymptotic normality of the proposed estimators are established. Simulation results
are presented to study the finite sample performance of the proposed estimators.
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1. Introduction

Missing data or nonresponse is common in various
statistical applications such as sample surveys and
biomedical studies. Let Y be a univariate response vari-
able subject to nonresponse, X be a vector of covari-
ates that is always observed, and R be the indicator of
whether Y is observed. When the propensity P(R =
1 |Y ,X) = P(R = 1 |X), missing data are ignorable
and there is a rich literature on methodology of han-
dling nonresponse (Little & Rubin, 2014). In many
applications, however, Y cannot be excluded from the
propensity P(R = 1 |Y ,X) and missing data are non-
ignorable. With nonignorable nonresponse, it is chal-
lenging to estimate unknown characteristics in the con-
ditional distribution of Y given X or the unconditional
distribution of Y.

Throughout we use p(· | ·) or p(·) as a generic nota-
tion for the conditional or unconditional probability
density with respect to an appropriate measure. When
nonresponse is nonignorable and both p(Y |X) and
P(R = 1 |Y ,X) are nonparametric, p(Y |X) is not iden-
tificable (Robins & Ritov, 1997). When both p(Y |X)

and P(R = 1 |Y ,X) have parametric forms, maxi-
mum likelihood methods have been developed (Baker
& Laird, 1988; Greenlees, Reece, & Zieschang, 1982).
Since parametric methods are sensitive to model
violations, efforts have beenmadeunder semiparametric

models. Qin, Leung, and Shao (2002) and Wang,
Shao, and Kim (2014) imposed a parametric model
on P(R = 1 |Y ,X) but allowed p(Y |X) to be nonpara-
metric. Assuming P(R = 1 |Y ,X) = P(R = 1 |Y), i.e.,
the entire covariate vector X can be excluded from the
propensity, Tang, Little, and Raghunathan (2003) pro-
posed a pseudo likelihood method in which P(R =
1 |Y) is nonparametric and p(Y |X) is parametric:

p(Y |X) = p(Y |X; θ), (1)

where θ is an unknown parameter vector and p(y | x; θ)

is a conditional density which is known when θ is
known. Zhao and Shao (2015) extended the pseudo
likelihood method to the case where part of X can be
excluded from the propensity, i.e.,

P(R = 1 |Y ,X) = P(R = 1 |Y ,U), (2)

whereX = (U,Z) and the covariateZ, termed as instru-
mental variable, cannot be excluded from p(Y |X; θ)

in (1). Here is a brief description of what has been done
under (1)–(2). Under (1)–(2) and the Bayes formula,

p(Z |Y ,U,R = 1) = p(Z |Y ,U)

= p(Y |U,Z; θ)p(U,Z)∫
p(Y |U, z; θ)p(U, z) dz

. (3)

Let (yi, xi, ri), i = 1, . . . , n, be n independent and iden-
tically distributed observations from (Y ,X,R). Based
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on (3), if p(U,Z) is known, then we can estimate θ by
maximising the following likelihood:∏

i:ri=1

p(yi | ui, zi; θ)p(ui, zi)∫
p(yi | ui, z; θ)p(ui, z) dz

∝
∏
i:ri=1

p(yi | ui, zi; θ)∫
p(yi | ui, z; θ)p(ui, z) dz

. (4)

Usually p(U,Z) is unknown. Substituting p(ui, zi) in (4)
by its estimate results in a pseudo likelihood. For
example, Zhao and Shao (2015) assumed a para-
metric model p(U |Z; η) for p(U |Z) and replaced∫
p(yi | ui, z; θ)p(ui, z) dz in (4) by

∫
p(yi | ui, z; θ)

p(ui | z; η̂) d̂F(z), where η̂ is an estimator of η based on
(ui, zi), i = 1, . . . , n, and F̂ is the empirical distribution
of zi, i = 1, . . . , n. To avoid model misspecification on
p(U |Z), Zhao and Shao (2015) also suggested a non-
parametric kernel estimator p̂(u, z) to replace p(u, z)
in (4).

However, kernel estimation is unstable when the
dimension of X = (U,Z) is not small. The purpose of
our work is to propose an alternative way to handle∫
p(yi | ui, z; θ)p(ui, z) dz in (4), which adopts dimen-

sion reduction techniques to improve the resulting
pseudo likelihood estimator of θ . Our main idea is
described in the next section, along with the proposed
pseudo likelihood and estimator of θ . Under typical
conditions for kernel estimation, our proposed pseudo
likelihood estimator is asymptotically normal with con-
vergence rate n−1/2. We also perform some simulations
to examine the finite sample properties of our proposed
estimator.

2. Methodology and theory

As pointed out in the previous section, the main con-
tribution of this paper is to estimate

∫
p(Y |U, z; θ)

p(z,U) dz in the denominator of (4) in a more effi-
cient way, especially when the covariate U is of high
dimension. Often times, the dimension of the instru-
ment variable Z is small, while the covariateU contains
a lot of variables (demographic variables for instance),
and its dimension p is not small. A straightforward idea
is to split p(U,Z) as p(U,Z) = p(Z |U)p(U), instead
of p(U,Z) = p(U |Z)p(Z) as in Zhao and Shao (2015).
Since p(U) does not involve θ , the likelihood in (4) is
equivalent to∏

i:ri=1

p(yi | ui, zi; θ)∫
p(yi | ui, z; θ)p(z | ui) dz , (5)

and ourmain task is to estimate the denominator in (5),
i.e., the integral

δ(y, u; θ) =
∫

p(y | u, z; θ)p(z | u) dz

= E
{
p(y | u,Z; θ) |U = u

}
(6)

for arbitrarily given θ , y and u. Since the real form
of p(Z |U) is not our main concern, for robustness,
we adopt a nonparametric kernel regression, called
Nadaraya-Watson (NW) estimation (Nadaraya, 1964;
Watson, 1964), to estimate the conditional expectation
in (6). The way we split p(U,Z), along with the non-
parametric estimation, actually frees ourselves from
parameterising or modelling the relationship between
Z and U.

Before building our estimators, we introduce a
generic notation Kh for a kernel with an appropriate
dimension and bandwidth h, i.e., Kh appeared in differ-
ent placesmay be different. Inwhat followsKh is chosen
to be a product kernel of dimension s and orderm ≥ 2
in the sense that Kh(x) = h−s ∏s

j=1 κ(xj/h), where xj
is the jth component of the s-dimensional x and κ(·)
is a bounded and Lipschitz continuous univariate ker-
nel having a compact support and satisfying

∫
κ(t) dt

= 1,
∫
tmκ(t) dt is finite and nonzero, and

∫
tlκ(t) dt

= 0 for all 0< l<m. The NW estimator of δ(y, u; θ)

in (6) is

δ̃(y, u; θ) =
∑n

j=1 Kh(uj − u)p(y | u, zj; θ)∑n
j=1 Kh(uj − u)

. (7)

Substituting this estimator into (5) leads to a maximum
pseudo likelihood estimator of θ ,

θ̃ = argmax
θ∈�

∏
i:ri=1

p(yi | ui, zi; θ)

δ̃(yi, ui; θ)
. (8)

Although p, the dimension ofU, does not exert a direct
influence on the convergence rate of θ̃ as shown in
Theorem 2.1, it is well known in the literature that ker-
nel estimators do not performwell when p is very large.
For example, their convergence requires a very large
sample size n.

Fortunately, there is awell-developed nonparametric
method called Sufficient Dimension Reduction (SDR)
(Cook & Weisberg, 1991; Li & Wang, 2007; Li, 1991;
Ma & Zhu, 2012; Xia, Tong, Li, & Zhu, 2002), which
helps to reduce the dimension of predictors by finding
a p × d matrix B with the smallest possible d ≤ p such
that Z ⊥⊥ U |BTU, meaning that Z is only related to U
via BTU, where BT is the transpose of B. It is common
that d<p and we are able to improve the estimation
in (7) and (8) by applying NW estimation directly to Z
and B̂TU with B̂ being an SDR estimator of B. Starting
from sliced inverse regression (SIR) (Li, 1991), research
has been done in the literature to develop SDR estima-
tors of B, including sliced average variance estimation
(SAVE) (Cook & Weisberg, 1991), directional regres-
sion (DR) (Li & Wang, 2007), (conditional) minimum
average variance estimation (MAVE ) (Xia et al., 2002),
semiparametric approach to dimension reduction (Ma
& Zhu, 2012) and etc. We adopt SIR method developed
by Li (1991) to estimate B in our simulation studies in
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Section 3 because it is easy to implement and works out
well in practice.

When Z ⊥⊥ U |BTU, δ(y, u; θ) in (6) is equal to
E{p(y | u,Z; θ) |BTU = BTu}, which can be estimated
by a new kernel estimator

δ̂(y, B̂Tu; θ) =
∑n

j=1 Kh(̂BTuj − B̂Tu)p(y | u, zj; θ)∑n
j=1 Kh(BTuj − B̂Tu)

.

Then, a new maximum pseudo likelihood estimator
of θ ,

θ̂ = argmax
θ∈�

∏
i:ri=1

p(yi | ui, zi; θ)

δ̂(yi, B̂Tui; θ)
. (9)

In the rest of this section we establish asymptotic con-
sistency and normality of our proposed estimator θ̃

in (8) and θ̂ in (9).We first introduce some notation. Let
wi = (yi, zi, ui, ri) and ∇θ (·) be the first derivative with
respect to θ . For the estimator without SDR, denote

γ (y, u; θ) =
(

γ1(y, u; θ)

γ2(y, u; θ)

)
=

(
E
{
p(y |Z, u; θ) |U = u

}
p(u)

E
{∇θp(y |Z, u; θ) |U = u

}
p(u)

)
, (10)

and the kernel estimator of γ is denoted by

γ̃ (y, u; θ) =
(

γ̃1(y, u; θ)

γ̃2(y, u; θ)

)

=
(

n−1 ∑n
j=1 p(y | zj, u; θ)Kh(u − uj)

n−1 ∑n
j=1 ∇θp(y | zj, u; θ)Kh(u − uj)

)
. (11)

Therefore, maximising the pseudo likelihood in (8) is
the same as maximising the pseudo log-likelihood

l(θ , γ̃1) = 1
n

n∑
i=1

H(wi; θ , γ̃1),

H(wi; θ , γ̃1)

= ri
{
log(p(yi | zi, ui; θ)) − log(γ̃1(yi, ui; θ))

}
.

(12)

Differentiating l(θ , γ̃1) with respect to θ , we obtain the
score function

S(θ , γ̃ ) =
n∑
i=1

g(wi; θ , γ̃ ),

g(wi; θ , γ̃ ) = ri
{∇θp(yi | zi, ui; θ)

p(yi | zi, ui; θ)
− γ̃2(yi, ui; θ)

γ̃1(yi, ui; θ)

}
.

(13)
Thus, θ̃ can also be obtained by solving S(θ , γ̃ ) = 0.

We use the same notation γ as in (10) for the estima-
tor with SDR,

γ (y, u; θ ,B) =
(

γ1(y, u; θ ,B)

γ2(y, u; θ ,B)

)
=

(
E
{
p(y |Z, u; θ) |BTU = BTu

}
p(BTu)

E
{∇θp(y |Z, u; θ) |BTU = BTu

}
p(BTu)

)
.

(14)

Its kernel estimator is

γ̂ (y, u; θ , B̂) =
(

γ̂1(y, u; θ , B̂)

γ̂2(y, u; θ , B̂)

)

=

⎛⎜⎜⎜⎜⎜⎝
n−1

n∑
j=1

p(y | zj, u; θ)Kh(̂BTu − B̂Tuj)

n−1
n∑
j=1

∇θp(y | zj, u; θ)Kh(̂BTu − B̂Tuj)

⎞⎟⎟⎟⎟⎟⎠ .

(15)

The pseudo log-likelihood and score function of the θ̂

can be obtained by replacing γ̃ in (12) and (13) by γ̂ .
As the structure of two etimators are alike, we only

provide the sufficient conditions for θ̃ in Assump-
tions 2.1–2.2 where γ is defined as in (10). For θ̂ ,
however, Assumptions 2.1–2.2 need to be modified by
replacing (10) by (14), (11) by (15) and p by d. In addi-
tion, in order for θ̂ to convergewith rate n−1/2, B̂ should
also possess some asymptotic properties as indicated in
Assumption 2.3 with γ defined in (14). In fact, SDR
estimator B̂ and kernel estimators γ̃ and γ̂ all have
good asymptotic performances (Bierens, 1987; Li, 1991;
Nadaraya, 1964; Watson, 1964).

Throughout, θ0 denotes the true but unknown value
of θ .

Assumption 2.1: There exists a constant c>0 such
that infy,u p(y, u) ≥ c. The function γ (y, u, θ0) has
bounded mth derivative with respect to u. There exists
a q>1 such that n1−1/qhp/ log n → ∞ as n → ∞
and E{(p2(y |Z, u; θ0) + ∥∥∇θp(y |Z, u)∥∥2)q |U = u} is
bounded.

Let || · ||∞ be the sup-norm. Under Assumption 2.1,
‖γ̃ − E(γ̃ )‖∞ = Op((log n/nhp)1/2) and ‖E(γ̃ )−γ ‖∞
= Op(hm), whichmeans that the estimator γ̃ converges
uniformly to γ at a certain rate, i.e., ‖γ̃ − γ ‖∞ =
Op((log n/nhp)1/2 + hm) (Hansen, 2008; Newey &
McFadden, 1994).

Assumption 2.2: (i) There exists ε1 > 0 such that

lim
n→∞ sup

θ ,‖γ̄1−γ1‖∞<ε1∣∣∣∣∣1n
n∑

i=1
H(wi; θ , γ̄1) − E{H(wi; θ , γ̄1)}

∣∣∣∣∣ = 0,

where H(wi; θ , γ1) is defined in (12).
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(ii) E{∥∥∇θp(Y |Z,U; θ0)
∥∥} < ∞, E{‖(γ2(Y ,U; θ0)/

γ1(Y ,U; θ0))p(Y |Z,U; θ0)‖} < ∞, for ‖ν‖ < ε2
with small enough ε2 > 0, E{‖(γ2(Y ,U + ν; θ0)/
γ1(Y ,U + ν; θ0))‖2} < ∞, and EZ |U
{∥∥∇θp(y |Z, u + ν; θ0)

∥∥2 |U = u} and EZ |U{p2
(y |Z, u + ν; θ0) |U = u} are bounded as functions
of y and u.

(iii) For small enough ‖γ̃ − γ ‖∞ , g(w; θ , γ̃ ) is con-
tinuously differentiable in θ on a neighbour-
hood of θ0, where g(w; θ , γ̃ ) is defined in (13).
There exists a b(w) with E{b(W)} < ∞ such that∥∥∇θg(w; θ , γ̃ ) − ∇θg(w; θ0, γ )

∥∥ ≤ b(w)(‖γ̃
− γ ‖ε∞ + ‖θ − θ0‖ε) for an ε > 0. E{∇θg(W; θ0,
γ0)} exists and is nonsingular.

(iv)
√
n(log n/nhp) → 0 and

√
nh2m → 0 as n → ∞.

Assumptions 2.1–2.2 together guarantee that θ̃ is
consistent for θ0. As to θ̂ , there is an extra step of SDR
estimation requiring Assumption 2.3.

Assumption2.3: Let
 = {(y, z, u, B̄) : y ∈ R, z ∈ R
p∗
,

u ∈ R
p, ‖B̄ − B‖ ≤ cn−1/n for some c > 0}, where p∗ is

the dimension of z, and γ is as defined in (14).

(i) Uniformly in
, Themth derivatives of γ1(y, u; θ , B̄)

and γ2(y, u; θ , B̄) on B̄ are locally Lipschitz-
continuous as functions of B̄Tu. E{p2(y |Z, u; θ) |
B̄TU = B̄Tu} and each entry in the matrices
E{∇θp(y |Z, u; θ)∇T

θ p(y |Z, u; θ) | B̄TU = B̄Tu}
are locally Lipschitz-continuous and bounded from
above as a functions of B̄Tu.

(ii) B̂ → B in probability as n → ∞, and
√
n(̂B −

B) = ∑n
i=1 π(zi, ui)/

√
n + op(1), where

E{π(zi, ui)} = 0.
(iii) The bandwidth h = O(n−τ ) for 1/(4m) < τ <

1/(2d).

Note that B is a matrix except when d=1, and when
it comes to the calculation of derivatives or norms,
we are treating B as vec(B), which denotes the vector
formed by concatenating the columns of B. For simplic-
ity, we are still using B to represent vec(B). Similarly, we
denote vec(̂B) as B̂.

Theorem 2.1: (i) If Assumptions 2.1–2.2 hold. Then,
as n → ∞, θ̃ → θ0 in probability and

√
n(θ̃ − θ0)

d−→ N(0,G−1
G−T),

where d−→ means convergence in distribution, and

G = E
{∇θg(W; θ0, γ0)

}
,

G−T = (G−1)T ,


 = Var
{
g(W; θ0, γ ) − A(Z,U; θ0)

}
,

A(Z,U; θ0) = E
{
g(W; θ0, γ ) |Z,U}

.

(ii) If Assumptions 2.1–2.2 hold with (10), (11) and p
replaced by (14), (15) and d, respectively, and if
Assumption 2.3 also holds. Then, as n → ∞, θ̂ →
θ0 in probability and

√
n(θ̂ − θ0)

d−→ N(0,G−1
BG−T),

where


B = Var{g(W; θ0, γ ) − A(Z,U; θ0,B)

− ρ(W; θ0,B)},
A(Z,U; θ0,B) = EU |BTU {A(Z,U; θ0)} ,

ρ(W; θ0,B) = E{R∇B[γ2(Y ,U; θ0,B)/

γ1(Y ,U; θ0,B)]}π(Z,U).

It follows fromTheorem2.1 that the asymptotic vari-
ance of θ̂ may or may not be smaller than that of θ̃ ,
partly due to the variability of SDR estimation. Owing
to SDR, the dimension of kernel estimation is reduced
from p to d, which is the main advantage of θ̂ over θ̃ ,
although they have the same convergence rate. A prob-
lemwith a not so small p is the selection of bandwidth h
for kernel estimation. Specifically, if h = O(n−τ )with a
τ > 0, then from Assumptions 2.1 and 2.2(iv), τ must
be between 1/(4m) and min{1/(2p), (1 − 1/q)/p} for
θ̃ , wherem is the order of kernel.When p is not so small,
the upper bound min{1/(2p), (1 − 1/q)/p} is pretty
small, and we may need to increase the kernel order
m in order to find such τ satisfying the constraints.
If m>2, the kernel takes negative values, which may
reduce the stability of kernel estimation. For example, if
q=2 in Assumption 2.1, then we must have 1/(4m) <

τ < 1/(2p) and we cannot use m=2 when p>3; if
p=8, then we must use a kernel of order m=5. On
the other hand, if we reduce U to B̂TU with dimen-
sion d, the upper bound increases to min{1/(2d), (1 −
1/q)/d}, allowing enough flexibility in choosing τ to
be larger than the lower bound 1/(4m), which results
in a low-order kernel. If q=2, then we may use m=2
whend ≤ 3.

Although both θ̃ and θ̂ have convergence rate n−1/2,
θ̂ may still have an edge over θ̃ in finite sample perfor-
mance, because of smaller dimension and order used in
the kernel estimation. This is supported by the simula-
tion results in Section 3.

3. Simulation studies

We study the finite-sample performance of the pro-
posed pseudo likelihood estimators in two simula-
tion studies. Four estimators are compared: the esti-
mator based on full data assuming no missing data
(θ̂full), the estimator based on complete case anal-
ysis (θ̂cc), the maximum pseudo likelihood estima-
tor without dimensional reduction (θ̃ defined in (8)),
and the maximum pseudo likelihood estimator with
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Table 1. Simulation results of experiment 1.

Estimator Standard Deviation

θ̂full θ̂cc θ̃ θ̂ θ̂full θ̂cc θ̃ θ̂

d= 1 β0 = 1 0.9935 1.8226 1.5812 0.9523 0.1526 0.2002 0.2429 0.2567
β1 = 1 1.0017 0.8448 0.8462 1.0133 0.0842 0.0950 0.1072 0.1042
β2 = 1 1.0005 0.8417 0.8285 1.0031 0.0819 0.0946 0.1094 0.1066
β3 = 1 1.0046 0.8449 0.8331 1.0065 0.0850 0.0957 0.1062 0.1086
β4 = 1 1.0016 0.8448 0.8403 1.0161 0.0818 0.0942 0.1031 0.1060
β5 = −1 −1.0008 −0.9620 −0.9230 −0.9979 0.0416 0.0469 0.0612 0.0530
σ 2 = 2 1.9725 1.7240 1.9107 1.9991 0.1415 0.1442 0.1854 0.2265

d= 2 β0 = 1 0.9995 1.8152 1.3759 0.9347 0.1654 0.2637 0.2453 0.2402
β1 = 1 0.9959 0.7565 0.9055 1.0319 0.0910 0.1231 0.1164 0.1226
β2 = 1 0.9960 0.7596 0.9031 1.0323 0.0906 0.1240 0.1186 0.1271
β3 = 1 1.0001 0.7629 0.9090 1.0340 0.0907 0.1240 0.1189 0.1283
β4 = 1 1.0020 0.7630 0.9079 1.0362 0.0914 0.1201 0.1163 0.1206
β5 = −1 −0.9983 −0.8816 −0.9408 −1.0077 0.0436 0.0588 0.0623 0.0647
σ 2 = 2 1.9750 1.7556 1.9051 2.0024 0.1429 0.1479 0.1884 0.2170

dimensional reduction (θ̂ defined in (9)). The NW esti-
mations are computed using a Gaussian kernel K(u) =
exp(−u2/2)/(2π)1/2. The bandwidths are selected by
rule of thumb proposed by Silverman (1986), i.e.,
h = (4/3)̂σn−1/5, where σ̂ is the estimated stan-
dard deviation of U. For SDR, we apply SIR in
Li (1991) with the number of slices = 5. All results are
based on 1000 simulation replications and sample size
n=400.

3.1. Experiment 1

In the first experiment, U = (U1,U2,U3,U4,U5,U6),
where Uj ∼ N(1, 1) and Cov(Uj,Uj′) = 0. Hence, the
dimension p equals 6. To evaluate the performance
of SDR, two models of p(Z |U) are studied: Z |U ∼
N(U1 + U2 + U3 + U4 + U5 + U6 − 2, 1) andZ |U ∼
N((U1 + U2)

2/3 + (U3 + U4)
2/3, 1), where d equals

1 and 2, respectively. The response Y is gener-
ated as Y |X ∼ N(β0 + β1U1 + β2U2 + β3U3 + β4U4
+ β5Z, σ 2), where θ = (β0,β1,β2,β3,β4,β5, σ 2) =
(1, 1, 1, 1, 1, 1,−1, 2). The propensity P(R = 1 |Y ,U)

= (1 + exp{5 − (Y + U1 + U2 + U3 + U4 + U5 +
U6)})−1, resulting in unconditional response rates 73%
and 74% in two cases, respectively. Table 1 reports the
estimators and their standard deviations.

The simulation results can be summarised as follows.
First, θ̂ is nearly unbiased for θ no matter d equals 1 or
2. Second, the bias of θ̃ may not be negligible and, in
some cases, the bias is comparable to θ̂cc that is biased
in theory. As we discussed in Section 2, compared with
θ̂ , the assumptions are harder to satisfy for θ̃ . Third, the
standard deviations of θ̃ and θ̂ are quite close and, in
some cases, θ̃ has slightly smaller standard deviation
than that of θ̂ .

3.2. Experiment 2

In the second experiment, we consider a binary out-
come Y . Covariate U is generated the same as that in
the first experiment, Z |U ∼ N(log(U1 + U2 + U3 +
U4)

2 − 1, 1), or Z |U ∼ N(log(U1 + U2)
2 + log(U3 +

U4)
2 − 1, 1). The binary Y is generated according to

P(Y = 1 |X) = (1 + exp{−(β0 + β1U1 +β2U2+β3U3
+ β4U4 + β5Z)})−1, where θ = (β0,β1,β2,β3,
β4,β5) = (−1, 1, 1, 1, 1,−1). The propensity P(R =
1 |Y ,U) = (1 + exp{− 1

3Y(U1 + U2 + U3 + U4+U5+
U6 − 2)})−1, resulting unconditional response rates
71% or 72%. The simulation results are reported in
Table 2. The conclusions are quite similar to those for
experiment 1, but the bias of θ̃ is more serious: the bias
of θ̃ are even larger than the bias of θ̂cc. Meanwhile, θ̂ is
still nearly unbiased.

Table 2. Simulation results of experiment 2.

Estimator Standard Deviation

θ̂full θ̂cc θ̃ θ̂ θ̂full θ̂cc θ̃ θ̂

d= 1 β0 = −1 −1.0369 −0.9579 −3.7354 −0.9329 0.3671 0.5210 0.5141 0.5301
β1 = 1 1.0307 1.1445 1.8894 0.9512 0.1858 0.2649 0.2733 0.2544
β2 = 1 1.0245 1.1253 1.8723 0.9524 0.1911 0.2626 0.2849 0.2657
β3 = 1 1.0236 1.1281 1.8988 0.9612 0.1883 0.2711 0.2782 0.2648
β4 = 1 1.0283 1.1376 1.9018 0.9577 0.1854 0.2623 0.2735 0.2613
β5 = −1 −1.0265 −1.0499 −1.1685 −0.9859 0.1498 0.2181 0.2105 0.2120

d= 2 β0 = −1 −1.0307 −0.9436 −4.6084 −1.0587 0.4623 0.6637 0.6068 0.6450
β1 = 1 1.0271 1.1336 1.9316 1.0554 0.2154 0.3046 0.3262 0.3091
β2 = 1 1.0318 1.1401 1.9586 1.0627 0.2085 0.3064 0.3353 0.3147
β3 = 1 1.0227 1.1270 2.0029 1.0553 0.2043 0.2973 0.3217 0.2928
β4 = 1 1.0268 1.1367 1.9532 1.0458 0.2140 0.3070 0.3324 0.3011
β5 = −1 −1.0275 −1.0568 −1.2408 −1.0294 0.1495 0.2176 0.2011 0.2104
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4. Proofs

Proof of Theorem 2.1

We first prove part (i). Here, γ is defined as in (10)
and γ̃ is defined as in (11). When θ = θ0, denote
γ (y, u; θ0) as γ0(y, u) = (γ01(y, u), γ02(y, u))T . Note
that, in Assumption 2.1, we assume that there exists
a constant c>0 such that inf p(y, u) = inf γ01(y, u) ≥
c. Moreover, the univariate kernel κ(·) is bounded,
hence, there exists a constant b>0 such that inf γ̃1(y, u;
θ0) ≥ b.

For the consistency of θ̃ , we only need to verify the
assumptions of Theorem 2(a) in Zhao and Shao (2015).
Note that Assumptions 2.1 and 2.2(i), (iv) guarantee
that γ̃ is consistent. Then,

|γ̃1(yi, ui; θ) − γ1(yi, ui; θ)|
≤ ∥∥γ̃1(yi, ui; θ) − γ1(yi, ui; θ)

∥∥∞
= op(1).

Hence,

|H(wi, θ , γ̃1) − H(wi; θ , γ1)|
= | − ri

{
log(γ̃1(yi, ui; θ)) − log(γ1(yi, ui; θ))

} |

=
∣∣∣∣ − ri

{
log

γ̃1(yi, ui; θ)

γ1(yi, ui; θ)

} ∣∣∣∣
≤

∣∣∣∣ log γ̃1(yi, ui; θ)

γ1(yi, ui; θ)

∣∣∣∣
=

∣∣∣∣ log γ1(yi, ui; θ) + op(1)
γ1(yi, ui; θ)

∣∣∣∣.
Since inf γ1(yi, ui; θ) ≥ c, |H(wi, θ , γ̃1) − H(wi; θ , γ1)|
→ 0 in probability as n → ∞. Therefore,

E {H(wi, θ , γ̃1) − H(wi; θ , γ1)} → 0 inprobability.

Following Theorem 2 in Zhao and Shao (2015), with
Assumption 2.2(i), θ̃ → θ0 in probability as n → ∞,
where θ0 is the true value of θ .

For the asymptotic normality of θ̃ , we only need
to verify the assumptions of Theorem 8.11 in Newey
and McFadden (1994).

Step 1. Let wi = (yi, zi, ui, ri), and

G(wi, γ ) = − ri
γ01(wi)

[
γ2(wi) − γ02(wi)

γ01(wi)
γ1(wi)

]
.

We would like to prove

1√
n

n∑
i=1

[
g(wi; θ0, γ̃ ) − g(wi; θ0, γ0) − G(wi, γ̃ − γ0)

]
= op(1).

Note that

√
nE

∥∥[g(wi; θ0, γ̃ ) − g(wi; θ0, γ0) − G(wi, γ̃ − γ0)
]∥∥

≤ √
nE

{
ri

1
γ̃1(wi)γ01(wi)

[
1 +

∥∥∥∥γ02(wi)

γ01(wi)

∥∥∥∥]
‖γ̃ − γ0‖2

}
≤ √

nE
{
ri

1
γ̃1(wi)γ01(wi)

γ01(wi)

c
γ̃1(wi)

b[
1 +

∥∥∥∥γ02(wi)

γ01(wi)

∥∥∥∥] ‖γ̃ − γ0‖2
}

≤ 1
bc
E
{
ri
[
1 +

∥∥∥∥γ02(wi)

γ01(wi)

∥∥∥∥]}[√
n sup ‖γ̃ − γ0‖2

] = op(1), (16)

which follows from the Assumptions 2.1 and 2.2(ii).
Step 2. Let

√
n

[
1
n

n∑
i=1

G(wi, γ̃ − γ0) −
∫

G(wi, γ̃ − γ0) dwi

]

= √
n

[
1
n

n∑
i=1

G(wi, γ̃ − γ̄ )

−
∫

G(wi, γ̃ − γ̄ ) dF(wi)

]

+ √
n

[
1
n

n∑
i=1

G(wi, γ̄ − γ0)

−
∫

G(wi, γ̄ − γ0) dF(wi)

]
= Sn1 + Sn2.

We would like to prove Sn1 = op(1) and Sn2 = op(1).
For Sn1, V-statisticsmethod is applied.We use the result
of Lemma 8.4 by Newey andMcFadden (1994) directly.
In our case,mn(wi,wj) = −(ri/γ01(wi))[∇θp(yi | zj, ui)
− (γ02(wi)/γ01(wi))p(yi | zj, ui)]Kh(ui − uj). Then

E ‖mn(wi,wi)‖

≤ E
∥∥∥∥ ri
γ01(wi)

[∇θp(yi | zi, ui)

−γ02(wi)

γ01(wi)
p(yi | zi, ui)

]
Kh(0)

∥∥∥∥
≤ h−pK(0)E

{
ri
γ01

γ01

c
[∥∥∇θp(yi | xi, ui)

∥∥
+

∥∥∥∥γ02(wi)

γ01(wi)

∥∥∥∥ p(yi | zi, ui)]}
= c−1h−pK(0)E

{
ri
[∥∥∇θp(yi | xi, ui)

∥∥
+

∥∥∥∥γ02(wi)

γ01(wi)

∥∥∥∥ p(yi | zi, ui)]} .
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Let t ∈ 
k, ui ∈ R
p, yi ∈ R, 0 < h̄ ≤ h, then

E
[∥∥mn(wi,wj)

∥∥2]
≤ E

{∥∥∥∥ ri
γ01(wi)

[∇θp(yi | zj, ui)

−γ02(wi)

γ01(wi)
p(yi | zj, uj)

]
Kh(ui − uj)

∥∥∥∥2
}

≤ Rn1 + Rn2,

where

Rn1 = E

{∥∥∥∥ ri
γ01(wi)

∇θp(yi | zj, ui)Kh(ui − uj)
∥∥∥∥2

}

≤ E
{

r2i
γ01(wi)2

γ01(wi)
2

c2
∥∥∇θp(yi | zi, uj)

∥∥2
K2
h(ui − uj)

}
= c−2h−pE[r2i ]

∫
K2(t) dt

× sup
t,yi,ui,h̄

{
EZj |Uj

[∥∥∇θp(yi |Zj, ui)
∥∥2

|Uj = ui + ν
]
p(ui + h̄t)

}
and

Rn2 = E

{∥∥∥∥ ri
γ01(wi)

p(yi | zj, ui)γ02(wi)

γ01(wi)
Kh(ui − uj)

∥∥∥∥2
}

≤ E

{
r2i

γ01(wi)2
γ01(wi)

2

c2

∥∥∥∥p(yi | zj, ui)γ02(wi)

γ01(wi)

∥∥∥∥2
K2
h(ui − uj)

}
= c−2h−pE

{
r2i

∥∥∥∥γ02(wi)

γ01(wi)

∥∥∥∥2
}∫

K2(t) dt

× sup
t,yi,ui,h̄

{
EZj |Uj

[∥∥p(yi |Zj, ui)∥∥2 |Uj = ui + ν
]

× p(ui + h̄t)
}

Then, following Assumption 2.2(ii) and (iv), we obtain
that

√
nE ‖mn(wi,wi)‖ /n = op(1),

√
nE1/2[

∥∥mn(wi,wj)
∥∥2]/n = op(1).

Hence, Sn1 = op(1).
As to Sn2, by Chebychev’s Inequality, since

E[Sn2] = 0,

P

(∥∥∥∥∥√n

[
1
n

n∑
i=1

G(wi, γ̄ − γ0)

−
∫

G(wi, γ̄ − γ0) dF(wi)

]∥∥∥∥ > ε

)

= P

(∥∥∥∥∥√n

[
1
n

n∑
i=1

G(wi, γ̄ − γ0)

−
∫

G(wi, γ̄ − γ0) dwi

]∥∥∥∥2 > ε2

)
≤ n2(n − 1) ‖E {G(wi, γ̄ − γ0)

−
∫

G(wi, γ̄ − γ0) dF(ωi)

}∥∥∥∥2 /(n2ε2)

+ n2E {‖G(wi, γ̄ − γ0)

−
∫

G(wi, γ̄ − γ0) dF(wi)

∥∥∥∥2
}/

(n2ε2)

= ε2E {‖G(wi, γ̄ − γ0)

−
∫

G(wi, γ̄ − γ0) dF(wi)

∥∥∥∥2
}

≤ ε2E{‖G(wi, γ̄ − γ0)‖2}

= ε2E
{

r2i
γ 2
01(wi)

∥∥∥∥[1,−γ02(wi)

γ01(wi)

]
[γ̄2 − γ02, γ̄1 − γ01]‖2

}
≤ ε2E

{
r2i

[
1 +

∥∥∥∥γ02(wi)

γ01(wi)

∥∥∥∥2
]}

sup ‖γ̂ − γ01‖2
c2

= op(1),

which follows the Assumptions 2.1 and 2.2(ii).
Step 3. Note that

∫
G(w, γ ) dF(w) =

∫∫∫
− rp(r, y, u)

γ01(w)

×
[
1,−γ02(w)

γ01(w)

] [
γ2(w)

γ1(w)

]
dr dy du.

Let v(r, y, u) = −(rp(r, y, u)/γ01(w))[1,−(γ02(w)/

γ01(w))],

A(z, u) =
∫∫

v

(
r, y, u

[∇θp(y | z, u)
p(y | z, u)

])
dr dy,

and δ(z, u) = A(z, u) − E[A(Z,U)] = A(z, u). Then,

√
n
∫

G(w, γ̂ − γ0) dF(w)

=
∫

G(w, γ̂ ) dF(w)

= √
n
1
n

n∑
j=1

∫∫∫
v(r, y, u)

[∇θp(y | zj, u); p(y | zj, u)
]

Kh(uj − u) dr dy du.
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We would like to prove

√
n

⎛⎝∫
G(w, γ̂ − γ0) dF(w) − 1

n

n∑
j=1

∫∫
v(r, y, uj) =

×
[∇θp(y | zj, uj)

p(y | zj, uj)
]
dr dy

)

= √
n
1
n

n∑
j=1

∫∫ (∫
v(r, y, u)

[∇θp(y | zj, u)
p(y | zj, u)

]

×Kh(uj − u) du − v(r, y, uj)
[∇θp(y | zj, uj)

p(y | zj, uj)
])

dr dy

= √
n
1
n

n∑
j=1

D(zj, uj)

= op(1).

By Chebychev’s Inequality, we only need to prove

P

⎛⎝∥∥∥∥∥∥√n
1
n

n∑
j=1

D(zj, uj)

∥∥∥∥∥∥
2

> ε2

⎞⎠
≤ n

[
n(n − 1) ‖E[D(Z,U]‖2 + nE(‖D(Z,U)‖2)] /

× (n2ε2) → 0.

So we only need to prove
√
n
∥∥E[D(Zj,Uj)]

∥∥ → 0 and
E[
∥∥D(Zj,Uj)

∥∥2] → 0. Let

EZj |Uj=uj[p(y |Zj, u) | uj]p(uj) = γ01(y, u, uj),

EZj |Uj=uj[∇θp(y |Zj, u) | uj]p(uj) = γ02(y, u, uj).

Then,

√
n
∥∥E[D(Zj,Uj)]

∥∥
= √

n
∥∥∥∥∫∫∫ E

{
v(r, y, u)

×
[∇θp(y | zj, u)

p(y | zj, u)
]
Kh(uj − u)

}
dr dy du

−
∫∫

E
{
v(r, y, uj)

[∇θp(y | zj, uj)
p(y | zj, uj)

]}
dr dy

∥∥∥∥
= √

n
∥∥∥∥∫∫∫∫ v(r, y, u)

[
γ02(y, u, u + h̄t)
γ01(y, u, u + h̄t)

]
×K(t) dt dr dy du

−
∫∫∫

v(r, y, uj)
[
γ02(y, uj, uj)
γ01(y, uj, uj)

]
dr dy duj

∥∥∥∥
≤ √

n
∫∫∫∫ ∥∥v(r, y, u)

∥∥ ∥∥∥∥[γ02(y, u, u + h̄t)
γ01(y, u, u + h̄t)

]

−
[
γ02(y, u, u)
γ01(y, u, u)

]∥∥∥∥K(t) dt dr dy du

≤ √
nhm

∫∫∫ ∥∥v(r, y, u)
∥∥ dr dy du

× sup
t,yi,ui,h̄

∥∥∥∥∥ ∂mγ0(y, u, uj)
∂uj

∣∣∣∣
uj=u+h̄t

∥∥∥∥∥
∫

K(t) dt

≤ c−1√nhmE
{
r
[
1 +

∥∥∥∥γ02(w)

γ01(w)

∥∥∥∥]}

× sup
t,yi,ui,h̄

∥∥∥∥∥ ∂mγ0(y, u, uj)
∂uj

∣∣∣∣
uj=u+h̄t

∥∥∥∥∥
∫

K(t) dt,

Therefore, by Assumption 2.2(ii) and (iv),
√
n∥∥E[D(Zj,Uj)]

∥∥ → 0. And

E[
∥∥D(Zj,Uj)

∥∥2]
= EZj,Uj

{∥∥∥∥∫∫ (∫
v(r, y, u)

[∇θp(y | zj, u)
p(y | zj, u)

]
Kh(Uj − u) du − v(r, y,Uj)

[∇θp(y |Zj,Uj)

p(y |Zj,Uj)

])
dr dy

∥∥2}
≤ EZj,Uj

{∥∥∥∥∫∫∫ v(r, y, u)
[∇θp(y | zj, u)

p(y | zj, u)
]

Kh(Uj − u) du dr dy
∥∥2}

+ EZj,Uj

{∥∥∥∥∫∫ v(r, y,Uj)

[∇θp(y |Zj,Uj)

p(y |Zj,Uj)

]
dr dy

∥∥2}
= Qn1 + Qn2.

Note that,

Qn1 ≤ EZj,Uj

{∫ ∥∥∥∥∫∫ v(r, y,Uj + h̄t)

×
[∇θp(y | zj,Uj + h̄t)

p(y | zj,Uj + h̄t)

]
dr dy

∥∥∥∥2 K(t)2 dt

}

≤ CK2(0) sup
‖ν‖<ν0

∫∫∫ ∥∥v(r, y, uj + ν)
∥∥2 duj dr dy

× sup
y,uj,t,h̄

{
EZj |Uj

[∥∥∥∥[∇θp(y | zj, uj + h̄t)
p(y | zj, uj + h̄t)

]∥∥∥∥2
|Uj = uj

]
p(uj)

}
≤ CK2(0)c−2 sup

‖ν‖<ν0

∫∫∫
r2

[
1 +

∥∥∥∥γ02(y, u + ν)

γ01(y, u + ν)

∥∥∥∥]2
p2(r, y, u + ν) dr dy du
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× sup
y,uj,t,h̄

{
EZj |Uj

[∥∥∥∥[∇θp(y | zj, uj + h̄t)
p(y | zj, uj + h̄t)

]∥∥∥∥2
|Uj = uj

]
p(uj)

}
< ∞

for some constant C, and

Qn2 ≤
∫∫∫ ∥∥v(r, y, uj)

∥∥2 duj dr dy sup
y,uj{

EZj |Uj

[∥∥∥∥[∇θp(y |Zj,Uj)

p(y |Zj,Uj)

]∥∥∥∥2 |Uj = uj

]
p(uj)

}

≤ c−2 sup
‖ν‖<ν0

∫∫∫
r2

[
1 +

∥∥∥∥γ02(y, u + ν)

γ01(y, u + ν)

∥∥∥∥]2
p2(r, y, u + ν) dr dy du

× sup
y,uj,t,h̄

{
EZj |Uj

[∥∥∥∥[∇θp(y | zj, uj + h̄t)
p(y | zj, uj + h̄t)

]∥∥∥∥2
|Uj = uj

]
p(uj)

}
< ∞.

Since when n is large enought, and t ∈ 
K is bounded,∥∥∥∥v(r, y, uj + h̄t)
[∇θp(y | zj, uj + h̄t)

p(y | zj, uj + h̄t)

]∥∥∥∥
≤

∥∥∥∥v(r, y, uj + ν)

[∇θp(y | zj, uj + ν)

p(y | zj, uj + ν)

]∥∥∥∥
a.s. (r, y, uj).

Then by conditional dominated convergence theorem,∫
v(r, y, u)

[∇θp(y | zj, u)
p(y | zj, u)

]
Kh(uj − u) du − v(r, y, uj)

×
[∇θp(y | zj, uj)

p(y | zj, uj)
]

=
∫

v(r, y, uj + h̄t)
[∇θp(y | zj, uj + h̄t)

p(y | zj, uj + h̄t)

]
K(t) dt − v(r, y, uj)

[∇θp(y | zj, uj)
p(y | zj, uj)

]
→ 0 a.s. (r, y, uj).

By Dominated Convergence Theorem, E[
∥∥D(Zj,Uj)

∥∥2]
→ 0.

Then, we combine Step 1–3, based on Theo-
rems 8.11 and 8.12 in Newey and McFadden (1994),
with Assumption 2.2(iii),

∑n
i=1 g(wi; θ0, γ̃ )/

√
n →d

N(0,
) and
√
n(θ̃ − θ0) →d N(0,G−1
G−T).

Second, we prove part (ii). Here, γ is defined as
in (10) and γ̂ is defined as in (15). We consider the
normality of g(wi; θ0, γ̂ , B̂). When B̂ is replaced by
the true SDR direction B, the proof is exactly the
same as in part (i). Then we could easily get that∑n

i=1 g(wi; γ̂ , θ0,B)/
√
n →d N(0,
d). Now we only

need to consider

1√
n

n∑
i=1

(g(wi; θ0, γ̂ , B̂) − g(wi; θ0, γ̂ ,B))

= 1√
n

n∑
i=1

−ri
(

γ̂2(wi, B̂)

γ̂1(wi, B̂)
− γ̂2(wi,B)

γ̂1(wi,B)

)

= 1√
n

n∑
i=1

−ri
(

γ̂2(wi, B̂)

γ̂1(wi, B̂)
− γ̂2(wi,B)

γ̂1(wi,B)

−γ2(wi, B̂)

γ1(wi, B̂)
+ γ2(wi,B)

γ1(wi,B)

)

+ 1√
n

n∑
i=1

−ri
(

γ2(wi, B̂)

γ1(wi, B̂)
− γ2(wi,B)

γ1(wi,B)

)
.

Based on Lemma 3 in Ma and Zhu (2012), with
Assumption 2.3(i) and (iii),

1√
n

n∑
i=1

−ri
(

γ̂2(wi, B̂)

γ̂1(wi, B̂)
− γ̂2(wi,B)

γ̂1(wi,B)

−γ2(wi, B̂)

γ1(wi, B̂)
+ γ2(wi,B)

γ1(wi,B)

)
= Op(hm + n−1/2h−(q+1) log n) → 0.

And, with Assumption 2.3(ii), we can easily prove the
normality of

1√
n

n∑
i=1

−ri
(

γ2(wi, B̂)

γ1(wi, B̂)
− γ2(wi,B)

γ1(wi,B)

)
.

Then we finish the proof of part (ii).
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