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ABSTRACT
In this paper, methods based on ranks and signs for estimating the parameters of the
first-order integer-valued autoregressive model in the presence of additive outliers are pro-
posed. In particular, we use the robust sample autocorrelations based on ranks and signs
to obtain estimators for the parameters of the Poisson INAR(1) process. The effects of
additive outliers on the estimates of parameters of integer-valued time series are exam-
ined. Some numerical results of the estimators are presented with a discussion of the
obtained results. The proposed methods are applied to a dataset concerning the number
of different IP addresses accessing the server of the pages of the Department of Statis-
tics of the University of Würzburg. The results presented here give motivation to use the
methodology in practical situations in which Poisson INAR(1) process contains additive
outliers.
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1. Introduction

Time series of count occur in many contexts, often
as counts of events, objects or individuals in con-
secutive intervals or at consecutive points in time.
Integer-valued time series data or count data arise
naturally in many areas including finance (Brännäs,
Hellströ, & Nordström, 2002), health science (Kachour
& Yao, 2009), medicine (Franke & Seligmann, 1993),
epidemiology (Zeger & Qaqish, 1988), economics
(Freeland &McCabe, 2004) and others. In recent years,
several models for the analysis of time series of count
have been developed. For a review of models for analy-
sis of time series of count, see Weiß (2008) and Scotto,
Weiß, and Gouveia (2015).

In practical situation, it is quite common to have
samples that have discrepant observations and they
usually occur as a result of measurement errors, an
influence of exogenous variables, a unexpected phe-
nomenon among others situations. Such atypical obser-
vations are usually called as outliers (Fox, 1972). There
are different class of outliers which have quite different
impacts on an estimate (Denby & Martin, 1979). How-
ever, the most common types considered in the litera-
ture are: innovation outliers which produces an effect
in all subsequent observations, additive outlier (AO)
which affects only the level of the contaminated obser-
vation or replacement outliers, which have no effect on
subsequent observations.

Several classes of robust estimators for ARMA
models have been proposed (Martin & Yohai, 1985).
Recently, the influence of outliers in time series has

been the focus of much research (Fajardo, Reisen,
& Cribari-Neto, 2009; Sarnaglia, Lévy-Leduc, & Reisen,
2010). For a review of robust estimation for ARMA
models, see Martin and Yohai (1985). However, the
study of robustness in time series of counts has not
received much attention so far in the literature. Ispány,
Barczy, Pap, Scotto, and Silva (2010,2011) consider con-
ditional least squares (CLS) estimation of the param-
eters of the INAR(1) model contaminated, at known
time periods, with innovational and additive outliers,
respectively. The problem of detecting outliers in Pois-
son INAR(1) process has been investigated by Silva
and Pereira (2015). Li, Lian, and Zhu (2016) consid-
ered the closed-form estimator for the INGARCH(1, 1)
model and then robustify the closed-form estimator by
replacing sample mean and autocorrelations by robust
estimators of them, respectively. Silva and Silva (2018)
considered the problem of detecting outliers, additive
or innovational, single, multiple or in patches, in count
time series modelled by Poisson INAR(1) process using
wavelets. The motivation for studying integer-valued
time series with atypical observations can be the fact
that are quite common in many fields of application.
Hence, it is an interesting research area in which to
work. Furthermore, the robust procedures for estimat-
ing the parameters of the Poisson INAR(1) process has
not yet been addressed in the literature. This paper
aims to give a contribution in this direction. In this
paper, robust estimators for the parameters of the Pois-
son INAR(1) process in the presence of additive outliers
are obtained by replacing the classical autocovariance in
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the Yule–Walker (YW) equations by the robust autoco-
variance based on ranks and signs.

The rest of the paper unfolds as follows. In Section 2,
the Poisson INAR(1) process is introduced, some of its
basic properties are outlined and estimation methods
for the model parameters is described. The impact of
outliers on the correlation structure and estimation of
the Poisson INAR(1) process is derivedin Section 3. In
Section 4, we describe the robust procedures for esti-
mating the autocorrelation function (ACF) and robust
estimators for the parameters of the Poisson INAR(1) is
proposed. Section 5 discusses some simulation results
for the estimation methods. An application to real data
is performed in Section 6. Some concluding remarks are
addressed in Section 7.

2. Background: the Poisson INAR(1) process

In this section we provide a brief background of the
Poisson INAR(1) process and the estimation of the
unknown parameters.

2.1. The Poisson INAR(1)model

The INAR(1) model is based on the probabilistic oper-
ation of binomial thinning. Let the thinning opera-
tion ‘◦′, introduced by Steutel and Van Harn (1979)
and let α ∈ [0, 1]. If X is anynon-negative integer-
valued random variable, α ◦ X is defined as α ◦ X =∑X

j=1 Zj, where {Zj}Xj=1 are independent and identically
distributed (i.i.d) random variables, independent of X,
with Pr(Zj = 1) = 1 − Pr(Zj = 0) = α, i.e. {Zj}Xj=1 is
an i.i.d. Bernoulli random sequence.

A discrete-time integer-valued stochastic process
{Yt}t∈Z is said to be a first-order integer-valued autore-
gressive [INAR(1)] process if it satisfies the following
equation

Yt = α ◦ Yt−1 + εt , t ∈ Z, (1)

where α ∈ [0, 1], {εt}t∈Z is a sequence of independent
and identically distributed non-negative integer-valued
random variables not depending on present and past
values of Yt . It is also assumed that the Bernoulli vari-
ables that define α ◦ Yt−1, that is, the Bernoulli vari-
ables from which Yt are obtained, are independent of
the Bernoulli variables from which other values of the
series are calculated. Like for the first-order autoregres-
sive process with normally distributed innovations, the
conditional expectation of Yt is linear inYt−1.

In this paper, it is assumed that {εt}t∈Z is an i.i.d.
sequence of Poisson distributed variables with mean
λ ∈ R+ and that, for all t, this sequence is mutually
independent of all Bernoulli random variables that
define α ◦ Yt . Also, we denote by Po(λ), with λ ∈
R+, and that {Yt}t∈Z has the marginal distribution
Po(λ/(1 − α)). Furthermore, the stationarity condi-
tion of the Poisson INAR(1) process is equivalent to

that of the AR(1) process, i.e. if α < 1, then the integer-
valued autoregressive process of order 1 is stationary.
Many new results on it have been obtained in recent
years to Poisson INAR(1) model. For example, Park
and Oh (1997) studied the asymptotic properties of
YWestimators,Hellström (2001) focused on the testing
of a unit root, Freeland and McCabe (2005) obtained
asymptotic properties of CLS estimators, Weiß (2011)
proposed several asymptotic simultaneous confidence
regions for the two parameters.

It is easy to verify that the ACF at lag k is given by

Corr(Yt ,Yt+k) = ρY(k) = αk, k ≥ 1, (2)

which obviously is restricted to be positive. Equation (2)
shows that the autocorrelation function, ρ(k), decays
exponentially with lag k as happens in the classical
AR(1) model.

2.2. Estimation of the unknown parameters

In practice, the true values of the model parameters α

and μ are not known but have to be estimated from
given time series data. There are several ways to esti-
mate the parameters of Poisson INAR(1) process.

From a sample Y1, . . . ,YT of a stationary process
{Yt}t∈Z, the sample ACF is given by

ρ̂(k) = γ̂ (k)
γ̂ (0)

=
∑T−k

t=1 (Yt − Y)(Yt+k − Y)∑T
t=1(Yt − Y)2

,

where Y = 1/T
∑T

t=1 Yt denotes the sample mean. It
is well-known that the estimators above are strongly
consistent (Du & Li, 1991). The YW estimators of α

and λ are based upon the sample ACF ρ̂(k), using
that ρY(1) = α, and the first moment of Yt , which is
E(Yt) = λ/(1 − α). They are given by

α̂YW = ρ̂(1) =
∑T−1

t=1 (Yt − Y)(Yt+1 − Y)∑T
t=1(Yt − Y)2

,

λ̂YW = (1 − α̂YW)Y . (3)

Al-Osh and Alzaid (1987) and Brännäs (1994) sug-
gested the use of the conditional maximum likeli-
hood (CML) estimation to obtain the estimates. How-
ever, the CML estimators do not have closed-form
expressions. The CLS estimation method was also
considered in Freeland and McCabe (2005). Freeland
and McCabe (2005) showed that the CLS estimators
have the same asymptotic distribution as the YW esti-
mators.

Weiß (2012) and Bourguignon and Vasconcel-
los (2015) suggested estimating the parameters of pro-
cess using the squared difference (SD) estimator given
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by

λ̂SD = 1
2(T − 1)

T∑
t=2

(Yt − Yt−1)
2, α̂SD = 1 − λ̂SD

Y
.

The alternative estimators discussed in the literature
(YW, CML and CLS) feature perform much worse in
terms of bias and mean square error than SD esti-
mator (Bourguignon & Vasconcellos, 2015). For a
good discussion of estimation in the Poisson INAR(1)
process, the reader is referred to (Jung, Ronning,
& Tremayne, 2005) and Bourguignon and Vasconcel-
los (2015).

3. The impact of AO in the Poisson INAR(1)
process

The model contaminated by additive outliers is defined
here as

Zt = Yt + ω δt , (4)

where ω ∈ N is the magnitude of the outliers (fixed
and unknown parameter), δt ’s are i.i.d. random vari-
ables, mutually independent of Yt , with P(δt = 1) =
1 − P(δt = 0) = p, with p ∈ (0, 1), i.e. {δt}t∈N is an i.i.d.
Bernoulli random sequence with mean p and variance
p(1 − p). The product T p is the expected number of
outliers in the data. Note that from Equation (4) the
outlier contribution in {Zt}t∈N is random which is a
reusable assumption since, in general, the occurrence of
atypical observations in time series is not deterministic.

As previously discussed, outliers can affect the corre-
lation structure of a time series and, consequently, the
estimation of the model. The proof of Proposition 3.1
and Proposition 3.2 are given in the Appendix.

Proposition 3.1: Suppose that {Zt}t∈N follows process
(4)

γZ(k) =
{

γY(0) + ω2p(1 − p), if k = 0;
γY(k), if k �= 0.

(5)

From this result, it can be seen that the AO increases
the variance of {Zt}t∈N which provokes a reduction of
the ACF of the process. In addition, for all positive k,

ρZ(k) ≤ ρY(k) and lim
ω→∞ ρZ(k) = 0. (6)

Equation (6) shows that additive outliers introduce
memory loss in the process {Zt}t∈N. This leads to
estimates with significant negative bias, as shown in
Section 5.

Proposition 3.2: Let Z1,Z2, . . . ,ZT be generated from
model (4) with one outlier with magnitude ω. It follows
that:

(i) The SD estimator for λ is given by

λ̂ZSD = λ̂YSD + ω2 ∑T
t=2 δt(δt − δt−1)

T − 1
.

(ii) The SD estimator for α is given by

α̂Z
SD = 1 − λ̂ZSD

Z
,

where Z = (1/T)
∑T

t=1 Zt = (1/T)
∑T

t=1(Yt +
ω δt) = Y + (ω/T)

∑T
t=1 δt is the sample mean of

{Zt}Tt=1.

Corollary 3.1: Assume that {Zt}t∈N is a stationary pro-
cess with additive outliers as described in Equation (4).
Then,

(i) limω→0 λ̂ZSD = λ̂YSDand limω→0 α̂Z
SD = α̂Y

SD.
(ii) α̂Z

SD ≤ α̂Y
SD.

(iii) λ̂ZSD ≥ λ̂YSD.
(iv) Bias(̂λZSD) = ω2p(1 − p).

Corollary 3.1 shows that additive outliers intro-
duce significant positive bias in the SD estimator for
λ parameter and significant negative bias in the SD
estimator for α parameter, as shown in Section 5.

Propositions 3.1 and 3.2 show that the additive out-
liers can affect the statistical properties of the parameter
estimates in Poisson INAR(1) process. In this context, it
is necessary to use robust methods for estimating mod-
els of time series with outliers. This is the motivation of
the next section.

3.1. An estimator forω

In practice, the true value of the parameter ω is not
known but have to be estimated from a given time
series data. Let Z1,Z2, . . . ,ZT be generated frommodel
(4) with outliers with magnitude ω. The estimator of
ω is based on the sample mean of {Zt}Tt=1. Thus, the
estimator of ω is given by

ω̂ = ZN − YT−N , (7)

where ZN = (1/N)
∑N

t=1 Zt and N is the number of
outliers in the data, andYT−N = (1/(T − N))

∑T−N
t=1 Yt .

Thus, this estimator defined in (7) is the difference of
mean ofN observations that have outlier and the mean
of T−N observations that have outlier.

Note that ω̂ is an unbiased estimator for ω, i.e.
E(ω̂) = ω. However, ω̂ ∈ R, then, we consider the ver-
sion ‘corrected’ given by

ω̂c = [ω̂],

where [·] represents the nearest integer.
Next, a small Monte Carlo simulation experiment

will be conducted to evaluate the estimation of the
ω in the Poisson INAR(1) process with additive out-
liers. The simulation was performed using the R pro-
gramming language; see http://www.r-project.org. The
number of Monte Carlo replications was 5000. The
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Table 1. Empirical means and MSEs (in parentheses) of the estimates of the parameterω for λ = 1 and some values of T, p andω.

p= 0.01 p= 0.05

T α ω = 4 ω = 7 ω = 10 ω = 4 ω = 7 ω = 10

100 0.2 3.9532 5.4178 7.5030 4.8002 7.1566 10.078
(0.7796) (5.8058) (16.355) (1.3974) (0.8614) (0.9062)

0.5 4.2424 5.3374 6.8268 5.1298 7.4324 10.169
(0.9488) (5.2450) (16.908) (2.3174) (1.8616) (2.7220)

0.8 5.3116 5.9488 6.9822 6.2370 8.3636 11.131
(2.9188) (3.5472) (14.516) (6.6962) (6.0228) (9.561)

300 0.2 3.9672 5.6384 8.1600 4.7512 7.1734 10.077
(0.4484) (3.1436) (7.5712) (0.9491) (0.2806) (0.181)

0.5 4.4028 5.5624 7.4160 5.2552 7.5744 10.2696
(0.5672) (3.0432) (9.4096) (2.0676) (0.9552) (0.8636)

0.8 5.4436 6.2094 7.5316 6.4522 8.8528 11.877
(2.7084) (1.7822) (8.9480) (6.8710) (5.4264) (7.441)

500 0.2 3.9700 5.6536 8.2648 4.7340 7.1686 10.051
(0.3476) (2.5444) (5.7412) (0.8644) (0.1970) (0.0724)

0.5 4.4902 5.5802 7.5264 5.3230 7.5878 10.2634
(0.5538) (2.6610) (7.9940) (2.1174) (0.7746) (0.5354)

0.8 5.4942 6.2918 7.6646 6.4818 8.9434 12.013
(2.6462) (1.3142) (7.4754) (6.7494) (5.0842) (6.523)

sample sizes considered are T=100,300,500. The con-
taminated data were generated from model (4) with
p=0.01 and 0.05 for magnitudes ω = 4, 7 and 10.

Table 1 presents the empirical mean and MSE of the
estimates of theω. From this table, notice that the biases
and the mean square errors decrease as the size of the
sample increases.

4. Robust procedure to estimate parameters
via nonparametric measures

The Kendall, Spearman, quadrant and Gaussian corre-
lation coefficients are commonly used in nonparamet-
ric tests of independence between two variables (Hájek
& Sidak, 1967). In this context it is assumed under the
null hypothesis that the pairs (X1,Y1), . . . , (XT ,YT) are
from a random sample bivariate, i.e. these pairs are i.i.d.
This article is not of interest to test the independence
between variables but estimate the degree of this depen-
dence, this justifies the use of the coefficients in time
series, i.e. here, the Kendall, Spearman, quadrant and
Gaussian correlation coefficients, defined below, will be
considered to estimate the ACF.

The estimator of the Kendall correlation coefficient
ρ̂K(k) (Kendall, 1938), based on the statistic K, is

ρ̂K = 2K
T(T − 1)

,

where

K =
T−1∑
i=1

T∑
j=i+1

Q[(Xi,Yi)(Xj,Yj)]

and

Q[(a, b)(c, d)] =

⎧⎪⎨⎪⎩
1, if (d − b)(c − a) > 0,
0, if (d − b)(c − a) = 0,
−1, if (d − b)(c − a) < 0.

The statistic ρ̂K is known as Kendall’s sample rank cor-
relation coefficient and appropriately assumes values
between −1 and 1, inclusive.

For a series {Yt}t∈Z generated by any process, the ρ̂K
is used to estimate ρ(k) are defined as follows:

ρ̂K(k) = 2K
T(T − 1)

,

where

K =
T−1∑
i=1

T∑
j=i+1

Q[(Yi,Yi+k)(Yj,Yj+k)].

Now, let the pairs (X1,Y1), . . . , (XT ,YT) be a sample
of size T of a random variable bivariate (X,Y), and
(R1, S1), . . . , (RT , ST) the associated pairs of ranks these
observations. The Spearman rank correlation coeffi-
cient (Spearman, 1904) is defined by

ρ̂S = 12
∑T

t=1
[
(Rt − T+1

2 )(St − T+1
2 )

]
T(T2 − 1)

= 1 − 6
∑T

t=1 D
2
t

T(T2 − 1)
,

where Dt = St − Rt . When there are ties values in the
observations X′s and/or Y ′s, the coefficient Spearman
correlation is calculated as follows:

ρ̂S =

T(T2 − 1) − 6
∑T

t=1 D
2
t −

1
2

{∑g
i=1

[
vi(v

2
i − 1)

] + ∑l
j=1

[
uj(u2j − 1)

]}{[
T(T2 − 1) − ∑g

i=1
[
vi(v

2
i − 1)

]][
T(T2 − 1) − ∑l

j=1
[
uj(u2j − 1)

]]}
,

where in equation g denotes the number of tied X
groups, vi is the size of tied X group i, l is the number
of tied Y groups, and uj is the size of tied Y group j.
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For a series {Yt}t∈Z generated by any process, the ρ̂S
is used to estimate ρ(k) are defined as follows:

ρ̂S(k) = 12
∑T

t=1
[(
Rt − T+1

2 )(St − T+1
2

)]
T(T2 − 1)

,

where (Rt , St) are the ranks of (Yt ,Yt+k).
An estimation procedure can be endowed with

robustness properties by using a rank statistics is the
quadrant correlation coefficient (Blomqvist, 1950)

ρ̂Q(k) = 1
T − k

T−k∑
t=1

sign
[(
Yt − median(Yt)

)
× (

Yt+k − median(Yt)
)]
,

that is the sample correlation coefficient between the
signs of deviations from medians. To obtain a con-
sistent version of the quadrant correlation at the nor-
mal model, we apply the transformation ρ̂CQ(k) =
sin(π ρ̂Q(k)/2) (Croux & Dehon, 2010).

TheGaussian rank correlation (Hájek&Sidak, 1967)
is given

ρ̂G = cT
T∑
t=1


−1
(

Rt
T + 1

)

−1

(
St

T + 1

)
, (8)

Table 2. Empiricalmeans andMSEs (in parentheses) of the esti-
mates of theparameterα forp= 0.02,λ = 1,α = 0.2 and some
values of T andω.

α T Estimator ω = 0 ω = 4 ω = 7

0.2 100 α̂SD 0.1948 (0.0186) 0.0556 (0.0554) −0.2747 (0.3553)
α̂YW 0.1794 (0.0108) 0.1785 (0.0113) 0.1795 (0.0109)
α̂S 0.1718 (0.0105) 0.1780 (0.0105) 0.1923 (0.0097)
α̂K 0.1447 (0.0100) 0.1486 (0.0097) 0.1607 (0.0083)
α̂Q 0.1105 (0.0122) 0.1192 (0.0111) 0.1264 (0.0099)
α̂G 0.1785 (0.0104) 0.1824 (0.0104) 0.1991 (0.0096)

200 α̂SD 0.1981 (0.0092) 0.0555 (0.0377) −0.2729 (0.2882)
α̂YW 0.1902 (0.0053) 0.1902 (0.0057) 0.1901 (0.0055)
α̂S 0.1807 (0.0053) 0.1883 (0.0052) 0.2010 (0.0048)
α̂K 0.1523 (0.0058) 0.1572 (0.0054) 0.1678 (0.0044)
α̂Q 0.1122 (0.0099) 0.1217 (0.0085) 0.1275 (0.0075)
α̂G 0.1885 (0.0051) 0.1934 (0.0052) 0.2092 (0.0049)

300 α̂SD 0.1973 (0.0063) 0.0572 (0.0313) −0.2722 (0.2659)
α̂YW 0.1921 (0.0036) 0.1947 (0.0036) 0.1933 (0.0039)
α̂S 0.1818 (0.0036) 0.1920 (0.0033) 0.2014 (0.0033)
α̂K 0.1531 (0.0045) 0.1603 (0.0038) 0.1682 (0.0033)
α̂Q 0.1114 (0.0093) 0.1223 (0.0075) 0.1259 (0.0070)
α̂G 0.1900 (0.0034) 0.1976 (0.0033) 0.2107 (0.0034)

0.8 100 α̂SD 0.7986 (0.0012) 0.7749 (0.0023) 0.7194 (0.0111)
α̂YW 0.7556 (0.0067) 0.7558 (0.0068) 0.7566 (0.0065)
α̂S 0.7498 (0.0076) 0.7521 (0.0074) 0.7630 (0.0059)
α̂K 0.6288 (0.0337) 0.6287 (0.0337) 0.6424 (0.0288)
α̂Q 0.5420 (0.0742) 0.5510 (0.0699) 0.5704 (0.0606)
α̂G 0.7514 (0.0068) 0.7524 (0.0067) 0.7586 (0.0058)

200 α̂SD 0.7997 (0.0006) 0.7758 (0.0014) 0.7199 (0.0087)
α̂YW 0.7767 (0.0028) 0.7785 (0.0027) 0.7768 (0.0027)
α̂S 0.7671 (0.0036) 0.7710 (0.0032) 0.7792 (0.0025)
α̂K 0.6445 (0.0263) 0.6462 (0.0258) 0.6570 (0.0223)
α̂Q 0.5548 (0.0640) 0.5666 (0.0584) 0.5832 (0.0510)
α̂G 0.7726 (0.0028) 0.7750 (0.0027) 0.7780 (0.0024)

300 α̂SD 0.7998 (0.0004) 0.7756 (0.0011) 0.7201 (0.0079)
α̂YW 0.7854 (0.0016) 0.7852 (0.0016) 0.7846 (0.0017)
α̂S 0.7743 (0.0023) 0.7769 (0.0021) 0.7859 (0.0016)
α̂K 0.6511 (0.0236) 0.6513 (0.0235) 0.6633 (0.0199)
α̂Q 0.5614 (0.0596) 0.5714 (0.0549) 0.5880 (0.0476)
α̂G 0.7813 (0.0017) 0.7821 (0.0016) 0.7866 (0.0014)

where the constant cT = 1/
∑T

t=1[

−1(t/(T + 1))]2

and 
−1(·) is the quantile function of the standard
normal distribution. For the treatment of ties obser-
vations see Hájek and Sidak (1967). For additional
properties of the Gaussian rank correlation estimator,
see Boudt, Cornelissen, and Croux (2012). Thus, for a
series {Yt}t∈Z generated by any process, the ρ̂G is used
to estimate ρ(k) using Equation (8) with (Rt , St) being
the ranks of (Yt ,Yt+k).

Thanks to the use of ranks and signs, the Kendall,
Spearman, quadrant and Gaussian correlations are
resistant to small amounts of outliers in the data
(Boudt et al., 2012). In this paper, robust estimators
of the Poisson INAR(1) parameters are obtained by
replacing the classical YW estimator in Equation (3)
by the ρ̂S(k), ρ̂K(k), ρ̂Q(k) and ρ̂GR(k) estimators as
follows

(̂αS, λ̂S) = (
ρ̂S(1),Y [1 − ρ̂S(1)]

)
,

(̂αK, λ̂K) = (
ρ̂K(1),Y [1 − ρ̂K(1)]

)
,

(̂αQ, λ̂Q) = (
ρ̂Q(1),Y

[
1 − ρ̂Q(1)

])
,

(̂αG, λ̂G) = (
ρ̂G(1),Y [1 − ρ̂G(1)]

)
.

Table 3. Empiricalmeans andMSEs (in parentheses) of the esti-
mates of the parameterλ for p= 0.02,λ = 1,α = 0.2 and some
values of T andω.

α T Estimator ω = 0 ω = 4 ω = 7

0.2 100 λ̂SD 1.0034 (0.0363) 1.2797 (0.1704) 1.8431 (1.1443)
λ̂YW 1.0228 (0.0248) 1.1096 (0.0444) 1.1679 (0.0696)
λ̂S 1.0322 (0.0244) 1.1097 (0.0422) 1.1482 (0.0574)
λ̂K 1.0666 (0.0252) 1.1502 (0.0497) 1.1941 (0.0707)
α̂Q 1.1087 (0.0276) 1.1885 (0.0555) 1.2414 (0.0846)
λ̂G 1.0239 (0.0241) 1.1040 (0.0414) 1.1388 (0.0547)

200 λ̂SD 1.0011 (0.0188) 1.2777 (0.1220) 1.8273 (0.8970)
λ̂YW 1.0110 (0.0128) 1.0935 (0.0247) 1.1530 (0.0437)
λ̂S 1.0229 (0.0129) 1.0960 (0.0239) 1.1366 (0.0353)
λ̂K 1.0586 (0.0145) 1.1384 (0.0324) 1.1843 (0.0495)
α̂Q 1.1082 (0.0202) 1.1855 (0.0439) 1.2409 (0.0705)
λ̂G 1.0132 (0.0125) 1.0891 (0.0229) 1.1250 (0.0324)

300 λ̂SD 1.0027 (0.0125) 1.2718 (0.1029) 1.8176 (0.8056)
λ̂YW 1.0091 (0.0083) 1.0849 (0.0176) 1.1463 (0.0348)
λ̂S 1.0220 (0.0082) 1.0885 (0.0172) 1.1344 (0.0294)
λ̂K 1.0580 (0.0103) 1.1315 (0.0257) 1.1821 (0.0437)
α̂Q 1.1099 (0.0173) 1.1821 (0.0392) 1.2417 (0.0670)
λ̂G 1.0117 (0.0080) 1.0809 (0.0161) 1.1213 (0.0259)

0.8 100 λ̂SD 0.9986 (0.0306) 1.2101 (0.1037) 1.6161 (0.6162)
λ̂YW 1.2155 (0.1767) 1.3114 (0.2499) 1.3873 (0.3237)
λ̂S 1.2450 (0.2019) 1.3321 (0.2732) 1.3499 (0.2906)
λ̂K 1.8523 (0.8824) 2.0015 (1.1836) 2.0426 (1.2810)
α̂Q 2.2830 (1.8985) 2.4166 (2.3018) 2.4452 (2.4063)
λ̂G 1.2371 (0.1802) 1.3309 (0.2530) 1.3763 (0.2987)

200 λ̂SD 0.9977 (0.0157) 1.2064 (0.0722) 1.6012 (0.4768)
λ̂YW 1.1116 (0.0687) 1.1902 (0.1049) 1.2682 (0.1497)
λ̂S 1.1598 (0.0873) 1.2308 (0.1269) 1.2542 (0.1384)
λ̂K 1.7736 (0.6667) 1.9053 (0.9029) 1.9516 (0.9936)
α̂Q 2.2203 (1.6051) 2.3324 (1.9136) 2.3683 (2.0245)
λ̂G 1.1322 (0.0697) 1.2097 (0.1080) 1.2614 (0.1364)

300 λ̂SD 0.9986 (0.0102) 1.2116 (0.0647) 1.5970 (0.4326)
λ̂YW 1.0706 (0.0410) 1.1590 (0.0691) 1.2246 (0.1033)
λ̂S 1.1259 (0.0573) 1.2040 (0.0892) 1.2168 (0.0959)
λ̂K 1.7427 (0.5975) 1.8841 (0.8370) 1.9157 (0.8972)
α̂Q 2.1903 (1.4988) 2.3145 (1.8243) 2.3416 (1.9013)
λ̂G 1.0910 (0.0422) 1.1759 (0.0712) 1.2129 (0.0907)
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In next section, a Monte Carlo simulation will be
conducted to evaluate the performance of the estima-
tors discussed in this section.

5. Numerical results

In order to compare the performance of all the robust
methodologies discussed previously, we performed a
simulation study for different sample sizes and for dif-
ferent parameter values. All simulations were carried
out using using the R programming language, which
is freely distributed and available at see http://www.r-
project.org. The data set Y1, . . . ,YT was here generated
from a Poisson INAR(1) process generated according
to model (1) with {εt} being an i.i.d. Poisson sequence
with mean λ = 1. The contaminated data were gen-
erated from model (4) with p=0.02 for magnitudes

ω = 0, 4 and 7. The sample sizes considered were
T=100,200,300 and the values of the α parameter in
the simulation studywereα = 0.2 and 0.8. For each dif-
ferent situation the empirical mean and mean squared
error (MSE) of the estimators were numerically esti-
mated. The values of theMSE are given between paren-
theses. The number ofMonteCarlo replications consid-
ered herewas 5000. The results are presented in Tables 2
and 3.

Initially, the case where the series is not contami-
nated (ω = 0) is analysed. It can be seen that the SD
estimator presentsmuch smaller biases (in absolute val-
ues) than the other estimators, for all cases. Tables 2
and 3 shows that additive outliers introduce signifi-
cant positive bias in the SD estimator for λ parameter
and significant negative bias in the SD estimator for α

parameter.

Figure 1. Box plots from 5 000 simulated estimates of α, λ = 1, p= 0.02 and ω = 7.



212 M. BOURGUIGNON AND K. L. P. VASCONCELLOS

For small sample sizes (T = 100) andω > 0, in gen-
eral, both bias andMSE for the Spearman andGaussian
estimators are smaller than those for the SD, quadrant
andYWmethods. Forω = 7, the bias for Gaussian esti-
mators of α and λ is smaller than those for the SD,
YW, quadrant and Spearman methods. Another result
is related to the size of α. In general, for YW, Gaus-
sian, qradrant and Spearman estimates of λ, increasing
α, the bias and MSE also increase. This indicates that
these four estimation methods of λ are sensitive to a
process that is closer to the non-stationary boundary;
that is, the model is more near a unit root Poisson
INAR(1) process (α = 1). The previous findings are
confirmed by the box plots shown in Figure 1, which
were obtained for sample size T=200 for some sce-
narios. Again, both biases and MSE for the Gaussian
and Spearman estimators are smaller than those for the
other methods.

The empirical investigation here presented suggests
that, in general, when there is no evidence of atypi-
cal observations, SD estimates give satisfactory results.
The empirical study also provides evidence that spe-
cial attention has to be paid when the data possibly
exhibits atypical observations. The robust methodol-
ogy showed that, in general, the estimates are essentially
constant across different parameter values and outlier
magnitudes.

6. Real data example: counts of IP addresses

In this section, we apply the methodology considered
in Section 4 to a real data set. The data set consists

of the number of different IP addresses accessing the
server of the Department of Statistics of the Univer-
sity ofWürzburg on 29November 2005, between 10 am
and 6 pm (241 observations). This series was previ-
ously studied by Weiß (2007), Zhu (2012a,b) and Silva
and Pereira (2015). The required numerical evaluations
for data analysis were here implemented using the R
software.

The summary statistics are the following. All obser-
vations are lying between 0 and 8. The sample mean is
1.315, the sample median is 1 and the sample variance
is 1.392. The lag-1 autocorrelation value is 0.219. Fur-
thermore, We note that the ratio between the sample
variance and the sample mean is 1.059, hence, the data
seem to be equidispersed.We apply the test for overdis-
persion described by Schweer and Weiß (2014) with
significance level at 5%. The p-value for the test being
0.2870 leads to a not rejection of the null hypothesis
of a Poisson INAR(1) process. Consequently, a Poisson
marginal distribution would be appropriate. The series,
sample autocorrelation and sample partial autocorrela-
tion are displayed in Figure 2.

Analysing Figure 2, we conclude that a first-order
autoregressive model may be appropriate for the given
data series, because of the geometric decrease in the
sample autocorrelations (as the lag increases) and the
clear cut-off after lag 1 in the partial autocorrelations.
Furthermore, thebehaviour of the series indicates that
it may be mean stationary. According to Weiß (2007)
and Silva and Pereira (2015), the observation at time
t=224 (Z224 = 8) is a possible occurrence of an outlier
with ω = 7. For this application, the estimates of α and

Figure 2. The time series plot, autocorrelation and partial ACFs for number of different IP addresses.
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Table 4. Estimates of the parameters and RCs for counts of IP
data.

Estimator Counts of IP data Without outlier RC(̂α) RC(̂λ)

(̂αSD, λ̂SD) (0.1796, 1.0792) (0.3424, 0.8458) 90.646 21.627
(̂αYW, λ̂YW) (0.2195, 1.0267) (0.2925, 0.9101) 33.257 11.357
(̂αS, λ̂S) (0.2517, 0.9843) (0.2680, 0.9416) 6.4760 4.2506
(̂αK, λ̂K) (0.2109, 1.0381) (0.2248, 0.9971) 6.5908 3.9495
(̂αQ, λ̂Q) (0.1359, 1.1366) (0.1362, 1.1110) 0.2208 2.2523
(̂αG, λ̂G) (0.2480, 0.9892) (0.2799, 0.9263) 12.863 6.3587

λ were computed from the original data and from the
modified data (without outlier). Therefore, we replaced
the outlier by defining Z224 = 1. As a consequence, the
mean changes to 1.2863, the first-order autocorrelation
to 0.2925, but an analysis of the resulting partial ACF
and of the histogram showed that a Poisson INAR(1)
model is still reasonable (Weiß, 2007).

In the Table 4, we present the estimates of the esti-
mators discussed in this Sections 2 and 4 for the two
series and the relative changes (RCs). The RCs are cal-
culated from RC(θ̂) = |(θ̂ − θ̂o)/θ̂o| × 100%, where θ̂

denotes the estimate of θ using the original data and
θ̂o denotes the estimate of θ using the modified data
(without outlier). From Table 4, in both series, the
robust methods present similar results. In contrast to
the robust methods, the classics SD and YW estimators
gives estimates that dramatically change from original
data to without outlier data, showing that the observa-
tions is a possible outlier. Furthermore, note that the
most important RCs are detected for the estimates of α,
where the largest values are associated with SD and YW
estimators.

7. Conclusions

In this paper, some of the proposals for robust auto-
correlation estimation are borrowed from the usual
estimation of the parameters that index the Poisson
INAR(1) model. Furthermore, this paper investigates
the impact of additive outliers on estimating in the
Poisson INAR(1) model. The number of different IP
addresses data was analysed as an application of the
methodology studied here. The results reveals that the
robust methods (Spearman and Gaussian correlations)
can be used as an alternative estimation for the param-
eters of the Poisson INAR(1) model contain additive
outliers. In future research, the asymptotic properties
of the robust estimators remain to be investigated.
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Appendix

Proof of Proposition 3.1

The proof of Proposition 3.1 is here omitted since it is a
straightforward consequence of a result obtained by Fajardo
et al. (2009).

Proof of Proposition 3.2

It is easy to see that

T∑
t=2

(Zt − Zt−1)
2 =

T∑
t=2

(Yt − Yt−1)
2

+ 2ω2
T∑
t=2

δt(δt − δt−1).

Thus,

λ̂ZSD = 1
2(T − 1)

T∑
t=2

(Zt − Zt−1)
2 = λ̂YSD

+ ω2 ∑T
t=2 δt(δt − δt−1)

T − 1
.
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