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First of all, I wholeheartedly congratulate Tang and Ju
(referred to as TJ hereafter) on a well-written compre-
hensive review paper that surveys cutting-edge statis-
tical theory and methodology relevant to estimation,
influence analysis and model selection in regression
models with missing data.

TJ begins their presentation from the missing data
mechanism, a fundamental concept in the missing data
literature (Kim and Shao, 2013; Little and Rubin, 2002;
Molenberghs et al., 2014; Tsiatis, 2006). In their
Section 2, TJ presents a detailed explanation of this
definition and underlines its importance to develop-
ing downstream statistical methodology. To facilitate
this discussion, I adopt the same notation as follows.
Consider a regression model where Y is a response
variable and X is a p-dimensional explanatory variable,
and {(xi, yi) : i = 1, . . . , n} are n independent and iden-
tically distributed realisations of (X,Y). Assume X is
always fully observed but Y is subject to missingness.
Let δ be the missing data indicator for Y, that is, δ = 0
if Y is missing, and δ = 1 otherwise. Then the miss-
ing data mechanism is the conditional distribution of
δ given X and Y, i.e.

π(x, y) = pr(δ = 1 | x, y). (1)

One intrinsic complication of the missing data mecha-
nism is that, only except for a few scenarios
(d’Haultfoeuille, 2010; Little, 1988), its underlying truth
is difficult to verify. The reason due to its plausible
dependence on Y, an incompletely observed variable.
This issue pronounces more clearly when one moves
forward to real application, where the investigators
would be more satisfied if a statistical method could
make the assumption of the mechanism less strin-
gently so that it is able to be flexibly applied to various
scenarios.

My discussion, motivated by the need of develop-
ing versatile statistical procedures that would provide
robust protection to certainmechanismmisspecification,
showcases the up-to-date statistical treatments where
the mechanism model assumption is only imposed at
a minimum level. The discussion concentrates on brief
introduction of two types of these assumptions and
spans diverse statistical topics including model identi-
fication, point estimation, hypothesis testing and high
dimensional variable selection.

One distinct feature of the methods in this discus-
sion is that the mechanism model would be treated as
a nuisance, hence all the methods could be carried out
without the need of estimating the mechanism.

1. Mechanism based on conditional
independence

The instrumental variable is a well-studied method
in econometrics, epidemiology and related disciplines.
The key step of applying this method is certain require-
ment about the conditional independence among vari-
ables. Zhao and Shao (2015) proposed to take advantage
of the nonresponse instrument Z, a component ofX, to
analyse missing data, especially nonignorable missing
data. The concept of nonresponse instrument shares the
similar spirit to the instrumental variable. To be more
specific, Zhao and Shao (2015) assumed that

pr(δ = 1 | x, y) = pr(δ = 1 | u, y), (2)

where x = (uT, zT)T. Some further requirement, e.g.
p(y | x) �= p(y | u), is also needed for model identifica-
tion purpose.

When X by itself serves as the nonresponse instru-
ment, Tang, Little, andRaghunathan (2003) studied this
special situation and proposed to estimate the unknown
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parameter θ in p(y | x) = p(y | x; θ) through the condi-
tional likelihood of p(x | y, δ = 1):

n∏
i=1

{
p(yi | xi; θ)∫

p(yi | x; θ)g(x)dx

}δi=1
,

where g(x) represents the unspecified probability den-
sity function of X. Then the objective becomes to a
semiparametric function:

l(θ , g) =
n∑
i=1

ri
{
log p(yi | xi; θ)

− log
∫

p(yi | x; θ)g(x)dx
}
.

To solve for θ , an estimator of g(x) is needed. Three
straightforward g(x) estimators could be considered:
the true g(x); a parametric g(x) = g(x;α) with α esti-
mated as α̂ through full data likelihood method; a
nonparametric g(x) with its cumulative distribution
function estimated by its empirical version. These three
alternatives lead to three different pseudolikelihood
estimators of θ : θ̂PL0, θ̂PL1 and θ̂PL2. At first sight,
one would believe that θ̂PL0 is superior to the other
two in terms of estimation efficiency. However, Tang
et al. (2003) showed that θ̂PL0 is always less efficient than
θ̂PL1. In a recent paper, Zhao and Ma (2018) further
proved that θ̂PL1 is always less efficient than θ̂PL2 and
there is no other method which could lead to a more
efficient estimator than θ̂PL2, hence θ̂PL2 is optimal.

Other work along this line includes Miao and Tchet-
gen (2016) exploring different types of doubly robust
estimators and Fang, Zhao, and Shao (2018) extend-
ing the idea to missing covariate and proposing some
imputation approach based on estimating equations.

2. Mechanism based on statistical
chromatography

The other unspecified missing data mechanism inves-
tigated in the literature is to assume a decomposable
model

pr(δ = 1 | x, y) = s(x)t(y), (3)

where s(·) and t(·) are two unspecified functions. It is
clear that, MCAR (s = t = constant) and MAR (t =
constant) are special cases of this assumption. When
s = constant, it becomes the case discussed in Section 1
where X on its own serves as the nonresponse instru-
ment.

A pivotal observation following (3) is that, p(y | x)
and p(y | x, δ = 1) could be bridged as

p(y | x, δ = 1) = pr(δ = 1 | x, y)
pr(δ = 1 | x) p(y | x).

Note that pr(δ = 1 | x, y)/pr(δ = 1 | x) preserves to
be a function of x-only multiples a function of y-
only. Using the idea of the conditional likelihood

(Kalbfleisch, 1978), decomposing the observed yi’s as
its rank statistic and order statistic, considering the
likelihood conditional on the order statistic, Liang and
Qin (2000) proposed the following objective function
to estimating θ :

∏
1≤i<j≤m

p(yi | xi; θ)p(yj | xj; θ)

p(yi | xi; θ)p(yj | xj; θ)+
p(yi | xj; θ)p(yj | xi; θ)

, (4)

where the firstm subjects are fully observedwithout the
loss of generality.

The key here is that we model the data at a more
refined granularity of rank and order statistics, so that
sophisticated conditioning arguments could be applied
to separate the parameter of interest θ and other nui-
sance components. Hence we call this procedure statis-
tical chromatography.

We elaborate under the generalised linear model
framework where

p(y | x; θ) = exp
[
φ−1{yη − b(η)} + c(y;φ)

]
with link function structure g(μ(η)) = α + βTx. With
canonical link, to maximise (4) is equivalent to min-
imising

∑
1≤i<j≤m

log
[
1 + exp{−(yi − yj)(xi − xj)Tγ }

]
,

where γ = φ−1β , θ = (α,βT,φ)T. Hence to compen-
sate for missing data, we could only estimate γ as
opposed to the whole unknown parameter θ . Although
only γ is estimable, the hypothesis testing β = 0 ver-
sus β �= 0 could still be carried out since the null
hypothesis β = 0 is equivalent to γ = 0. The detailed
Wald type test statistic needs the asymptotic dis-
tribution of the estimator of γ under this scheme
(Zhao and Shao, 2017). With noncanonical link, Zhao
and Shao (2017) showed that, interestingly, the whole
unknown parameter θ is estimable under some situa-
tions.

Finally I would like to point out a regularisation
approach for high-dimensional variable selection with
missing data using this approach. The essential idea is
to identify ‘important’ variables through whether the
corresponding estimator γ̂j equals zero or not. The
penalised likelihood function is

∑
1≤i<j≤m

log
[
1 + exp{−(yi − yj)(xi − xj)Tγ }

]

+
p∑

j=1
pλ(|γj|),

where pλ(·) could be any penalty function, and λ ≥
0 is the tuning parameter. Zhao et al. (2018) proved
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that the validity of the selection consistency allows p
to grow at a rate exponentially fast with n as log p =
o(n1−4κ/(log n)2) with 0 < κ < 1/4. In penalised like-
lihood approach for variable selection, the determina-
tion of the tuning parameter is also critical. Zhao and
Yang (2017) further studied some stability enhanced
tuning parameter selection methods following this
approach.
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