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We thank five discussants for their thoughtful comments. All have made significant contributions to the general theme
raised in our paper. We will try our best to answer each of points that five discussers have made.

1. Response to Dr. Fang and Ni

We agree with the assessment of Fang and Ni that our
work mainly focuses on low-dimensional data anal-
ysis and feature screening with missing data has not
been well addressed. Fang and Ni presented several
literatures on feature screening with response miss-
ing at random, and noted that there are two possible
research topics for feature screening with missing data
such as screening with non-ignorable missing response
that is rather challenging, and screening with missing
covariates.

For feature screening with missing categorical
response Y at random that has R (R>2) classes
{y1, y2, . . . , yR}, if we define Y∗ = Y if Y is observed
and Y∗ = R + 1 if Y is missing, and τr(X,Y) =
EX{Fr(X)} − 1/2 that is a dependencemeasure between
I(Y = yr) for given r = 1, . . . ,R and continuous covari-
ate X, where Fr(x) = Pr(X ≤ x|Y = yr), thus one can
pursue feature screening by investigating the relation-
ship between τr(X,Y) and τr(X,Y∗). Also, similar to
Cui, Li, and Zhong (2015), when there is missing data,
one can consider the following index MV(X,Y) =
EX[varY{Fr(X)}]. When categorical response Y is miss-
ing at random, one can consider the relationship
betweenMV(X,Y) andMV(X,Y∗). When continuous
responseY ismissing at random, a quantile association-
based index for measuring the dependence between
Y and X can be developed to identify the important
covariates. If continuous response Y is missing at ran-
dom and X is continuous, one can use the following
index

ω = E[δF(X)F(Y)

+ (1 − δ)F(X)E{F(Y)|X, δ = 1}] − 1/4

to measure the dependence between X and Y, where
F(x) = P(X ≤ x) and F(y) = P(Y ≤ y) are the

distribution functions of X and Y, respectively, and δ
is the missing data indictor for Y, i.e. δ = 1 if Y is
observed and δ = 0 if Y is missing.

For feature screening with missing covariates, Fang
and Ni only considered a special case: response Y
is binary and covariates are categorical, and pro-
posed considering the relationship between IV(X∗,Y)
and IV(X,Y), where the screening index ‘information
value’ is defined as

IV(X,Y) =
J∑

j=1
{P(X = j|Y = 2)− P(X = j|Y = 1)}

× log
P(X = j|Y = 2)
P(X = j|Y = 1)

in whichX is a categorical covariate with values 1, 2, . . .,
and X∗ = X if the missing data indicator δX = 1 (i.e.
X is observed) and X∗ = J + 1 if δX + 0 (i.e. X is
missing). In addition, they also presented an available
case (AC) method and a two-step screening proce-
dure. These methods are useful for screening impor-
tant features under the considered case. However, when
response Y is not binary but categorical or continuous,
or covariate X is continuous, it is rather challenging to
develop a new feature screening procedurewithmissing
data.

On the other hand, their method may cause several
problems in practical applications. First, the first step of
their two-step screening proceduremay lead to a biased
estimator. Second, under some strong conditions, a rel-
atively high proportion of missing data and unbalanced
categorical data, it is rather difficult to guarantee the
accuracy of estimation in the second step. To wit, it
follows from P(Uk = j,Y = r) = ∑

υ P(VSk = υ,Y =
r)P(Uk = j|VSk = υ,Y = r, δk = 1) that the condi-
tion probability P(Uk = j|VSk = υ,Y = r, δk = 1) is
strong condition, where U = (U1, . . . ,Up) and V =
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(V1, . . . ,Vq) correspond to covariates with andwithout
missing values, respectively, δk is the missing data indi-
cator for Y , Sk is a small subset of {1, . . . , q} andVSk =
{Vl : l ∈ Sk}.

2. Response to Dr. Wang

Longitudinal data are commonly encountered in clini-
cal trials, medicine and social sciences. In longitudinal
studies, dropout data invariably occur, that is, some
participants might dropout of the study or be lost to
follow-up due to some reasons, which leads to the
loss of their outcome measurements. In these cases,
there are two types of dropout mechanisms: ignorable
dropout (i.e. the probability that a participant dropouts
the study only depends on the observed data) and
non-ignorable dropout (i.e. the probability that a par-
ticipant dropouts the study depends the missing val-
ues possibly except for the observed data). Generally,
there are two types of dropout patterns: monotone and
non-monotone dropout data. Non-monotone dropout
data occur when study participants intermittently miss
scheduled visits, while monotone dropout data can be
from discontinued participation, loss to follow-up, and
mortality.

Longitudinal data analysis with dropout data is not
a new topic, and has been studied by many authors.
For example, see Hedeker and Gibbons (2006) and
Tseng, Elashoff, Li, and Li (2016). Recently, Wang, Qi,
and Shao (2018) discussed longitudinal data analy-
sis with non-ignorable dropout by incorporating the
idea of instrument variables and estimating equations
and a parametric dropout propensity score, presented a
two-step generalised method of moments (GMMs) to
estimate unknown parameters in the considered para-
metric propensity score, and investigated asymptotic
properties of the proposed GMM estimator. However,
they did not consider dropout patterns, whichmay lead
to new approaches for handling dropout data.

On the other hand, considering dropout patterns
may improve the efficiency of GMM estimators given
in Wang et al. (2018) and solve the optimal estima-
tion issue you concerned. Also, to address the opti-
mal estimation issue, one can make use of all possible
information included in responses and covariates and
dropout study in constructing estimating equations.
Wang et al. (2018) considered a parametric propensity
score model for each of non-ignorable dropout data yt
by incorporating history response data {y1, . . . , yt−1}
and time-independent covariates U. However, the con-
sidered parametric propensity score model has the
following several problems. First, there are too many
parameters, which may lead to the identifiable issue
even if Wang et al. (2018) considered instrument vari-
ables, when the sample size is small and T is relatively
large. Second, it may lead to the well-known ill-posed
issue when T is growing with the sample size n, i.e. a

slow convergence rate in evaluating GMM estimates of
parameters. Third, some of interactions of covariates
may have a large effect on participant’s dropout. Forth,
it is impossible to test the plausibility of the posited
parametric propensity score model. To address the
aforementioned issues, one may consider a sequence of
one-dimensional parametric propensity score models
as done in Equation (19) of our paper, which can be
used to construct estimating equations and select the
important variables that have a large effect on partici-
pant’s dropout via penalty method.

Although a semiparametric model can be adopted
for dropout data analysis, there is the well-known
‘curve of dimensionality’ when T is large. In this case,
one may consider an additive model for y1, . . . , yt−1.

3. Response to Dr. Zhao

We agree with your valuable assessment that one intrin-
sic complication of missing data analysis is that it is
quite difficult to verify its underlying truth in practical
applications because of missing values involved, and it
is interesting to develop versatile statistical procedures
that are robustness to the misspecification of dropout
mechanism model. In this discussion, you considered
two types of missingness data mechanismmodels: con-
ditional independence mechanism and statistical chro-
matography mechanism, and then discussed model
identification, point estimation, hypothesis testing and
high-dimensional variable selection. Conditional inde-
pendence assumption for dropout data utilises the con-
cept ofnon-response instrument, the resultant statisti-
cal inference on model parameter of interest can be
carried out without the need of estimating missingness
data mechanism, hence it has received a lot of attention
in recent years. For example, see Zhao and Shao (2015)
andZhao and Shao (2017). But thismethod only utilises
the observed data information when covariates serve
as non-response instrument variables. Moreover, when
the considered model is rather complicated, for exam-
ple, our considered exponential family nonlinear struc-
ture equation models, Zhao and Shao (2015) involved
intractable high-dimensional integrals. Under non-
ignorable dropout assumption, a possible improvement
for Zhao and Shao’s (2015) method is to estimate
unknown parameters θ in p(Y|X) = p(Y|X, θ) via the
conditional likelihood of p(X|Y , δ = 0), where δ is the
missing data indicator for response variableY, i.e. δ = 1
if Y is observed and 0 otherwise.

Statistical chromatography model for dropout data:
Pr(δ = 1|X,Y) = s(X)t(y) is an unspecified missing
data mechanism, and corresponds to various missing
data mechanisms by taking different forms of s(X) and
t(y). Based on statistical chromatography model, using
the idea of the conditional likelihood and decompos-
ing the observed Yi’s as its rank statistic and order
statistic, considering the likelihood conditional on the
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order statistic, Liang and Qin (2000) developed an
approach to estimate model parameters in θ . But Liang
and Qin (2000) only utilises the fully observed data,
which indicates that their method may lead to biased
estimator when missing proportion is high and may
be not robust to the misspecification of the considered
model. More importantly, their method requires spec-
ifying the distribution of response variable, which may
limit its applications. In particular, when the consid-
ered model is quite complicated, for example, gener-
alised linear model with non-canonical link function,
or involves latent variables, such as our considered
exponential family nonlinear structural equation mod-
els, this method requires handling high-dimensional
integrals.

For generalised linear model with canonical link
function, i.e. p(y|x, θ) = exp[φ−1{yη − b(η)} + c(y;φ)]
with η = α + βTx, one can obtain the estimation
of γ = φ−1β by minimising the objective function:∑

1≤i≤j≤m log[1 + exp{−(yi − yj)(xi − xj)Tγ }], where
the first m subjects are fully observed without of gen-
erality, but it is impossible to obtain the estimation of
dispersion parameter φ and intercept parameter α via
the method of Liang and Qin (2000). It is interesting to
develop an efficient approach to estimate all the param-
eters in β , φ and α based on statistical chromatography
mechanism.

4. Response to Dr. Morikawa and Professor
Kim

We agree with Dr. Morikawa and Professor Kim’s com-
ment on the semiparametric estimation of mean func-
tionals, which is a good supplement to our presented
estimation procedure for mean functionals in the pres-
ence of non-ignorable missing data. Dr. Morikawa and
Professor Kim proposed a new approach to restore
Wilks’ phenomenon in empirical likelihood inference
withnon-ignorable missing values. A remarkable fea-
ture of Morikawa and Kim’s method is that the result-
ing profile empirical log-likelihood ratio statistic can
be directly used to construct confidence interval of
parameter of interest. However, Morikawa and Kim’s
empirical likelihood approach has a very limited appli-
cation scope because it only works for response mean
or a single parameter. Let θ ∈ Rp be a vector of
parameters of interest, and θ0 be the true value of θ .
Here θ0 is uniquely defined via generalised estimat-
ing equations of the form E{ψ(X,Y , θ0)} = 0, where
ψ(X,Y , θ0) is a vector of r (≥ p) functions, vari-
ables X and Y follow some unknown joint distribution
F(X,Y , θ), and E{·} represents the expectation taken
with respect toF(X,Y , θ). Generalised estimating equa-
tions encompass a large class of statistical models. For
example, ψ(X,Y , θ) = Y − θ for mean functionals of
responses, which is studied by Kim and Yu (2001). Let
δ be themissing data indicator, taking 1 if Y is observed

and 0 if Y is missing. It is assumed that X = (UT ,ZT)

are fully observed, and Z is an instrument variable and
missing data mechanism is specified by a semiparamet-
ric propensity score function Pr(δ = 1|X,Y) = Pr(δ =
1|U ,Y) = π(U ,Y , γ ) = π(γ ). Define ξ̂i(θ , γ ) = δiψ

(Xi,Y i; θ)+ (1 − δi)m̂0
ψ(Xi; γ ) and ξ̂ai (θ , γ ) = δiψ

(Xi,Y i; θ)/πi(γ )+ {1 − δi/πi(γ )}m̂0
ψ(Xi; γ ), where

m̂0
ψ(Xi; γ ) is some consistent estimator of m0

ψ(Xi) =
E{ψ(Xi,Y i; θ)|Xi, δi = 0}. Following the idea of
Morikawa and Kim and using the idea of Shao
and Wang (2016) introduced in the beginning of
Section 3 as the calibration conditions, we define the
following profile empirical log-likelihood ratio func-
tion for (θ , γ ):

�(θ , γ ) = sup

{ n∑
i=1

log(npi)
∣∣ pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

ξ̂i(θ , γ ) = 0,
n∑

i=1
ξ̂ai (θ , γ ) = 0,

n∑
i=1

piMl(Y i,U i, δi, ĝγ , γ ) = 0 for l = 1, . . . , L

}
.

An empirical log-likelihood ratio statistic for testing
hypothesis H0 : θ = θ0 is defined as

Rn(θ0) = 2

{
sup
θ ,γ

�(θ , γ )− sup
γ
�(θ0, γ )

}
.

Under some regularity conditions, it is easily shown
that Rn(θ0) asymptotically follows the chi-squared dis-
tribution with p degrees of freedom, which is a natural
extension of the Wilks’ theorem to a general parameter
case.

Lazar (2003) pointed out that empirical likelihood
can also be used in a posterior inference in place of
the parametric likelihood function in Bayes’ theorem.
Zhang and Tang (2017) extended Bayesian empiri-
cal likelihood to quantile structural equation models.
Given empirical likelihood function �(θ , γ ) and specify
a prior ξ(θ , γ ) for (θ , γ ), we obtain the quasi-posterior
density

p(θ , γ | O) = C0 exp
[
log{ξ(θ , γ )} + �(θ , γ )

]
,

where O = {(Xi,Y i, δi), i = 1, . . . , n} and C0 is a
normalising constant such that

∫∫
p(θ , γ | O)dθdγ =

1. Since it is quite easy to calculate the value of empir-
ical log-likelihood function �(θ , γ ) given θ and γ , the
implement ofMetropolis–Hastings algorithm is feasible
for sampling observations required in making Bayesian
inference on θ from the posterior p(θ , γ | O). Bayesian
empirical likelihood approach is a more flexible and
effective tool in that it not only can calculate point esti-
mates and confidence intervals but also allows incor-
poration of prior information, and can circumvent the
inherent ‘curse of dimensionality’ in evaluating empir-
ical likelihood estimators.
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5. Response to Professor Shao

Professor Shao explores general assumptions for semi-
parametric non-ignorable propensity model and fur-
ther leaves an open question on how to perform the
nonparametric regression analysis in non-ignorable
missing data problems when the semiparametric non-
ignorable propensity is of a general form. The key to
perform nonparametric regression estimation for non-
ignorable missing data is to find a kernel type estimator
of the nonparametric part in a semiparametric non-
ignorable propensity. Motivated by the comments of
Shao, we consider the followingmore general definition
of semiparametric non-ignorable propensity.

LetO(U,Y , γ0) = 1/π(U,Y , γ0)− 1. It can be shown
that

E{δO(U,Y , γ0) | U} = E{1 − δ | U}. (1)

Assume that O(U,Y , γ ) = h{g(U), qγ (Y)}, h(·, ·) is an
arbitrary user-specified function. Such semiparamet-
ric conditional odds model also defines a semipara-
metric non-ignorable propensityπ(U,Y , γ0) = 1/[1 +
h{g(U), qγ (Y)}]. It follows from (1) that the non-
parametric function g(U) can be profiled using the
kernel regression method when the function h(a, b)
is decomposable and has of the forms: h(a, b) =
ϕ(a)b,ϕ(a)/b,ϕ(a)+ b and ϕ(a)− b, among others.
Hereϕ(a) is an arbitrary known function.When h(a, b)
has of a general (implicit) form, developing a kernel
regression estimation of semiparametric non-ignorable
propensity is challenging, and thus remains an open
problem as pointed out by Shao. Therefore, it deserves
further research.
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