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Development of a first order integrated moving average model corrupted with
a Markov modulated convex combination of autoregressive moving average
errors
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Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria

ABSTRACT
With a view to providing a tool to accurately model time series processes which may be cor-
rupted with errors such as measurement, round-off and data aggregation, this study developed
an integrated moving average (IMA) model with a transition matrix for the errors resulting in
a convex combination of two ARMA errors. Datasets on interest rates in the United States and
Nigeria were used to demonstrate the application of the formulated model. Basic tools such as
the autocovariance function, maximum likelihood method, Newton–Raphson iterative method
and Kolmogorov–Smirnov test statistic were employed to examine and fit the formulated spec-
ification to data. Test results showed that the proposed model provided a generalisation and a
more flexible specification than the existing models of AR error and ARMA error in fitting time
series processes in the presence of errors.

ARTICLE HISTORY
Received 30 January 2018
Revised 21 February 2019
Accepted 20 March 2019

KEYWORDS
Structural relationship;
measurement error;
correlated errors;
autocovariance function

1. Introduction

In the study on structural relationships, a question of
practical interest to researchers is how to describe rela-
tionships when concerned variables are measured with
errors. This investigation started with early influen-
tial studies such as Lindley (1947), Madansky (1959),
Kendall and Stuart (1961) and Barnett (1967). More
recent studies include Schneeweiss and Shalabh (2007)
and Rudelson and Zhou (2017) among others. Exten-
sion to time series models was also discussed in Eni,
Ogban, Ekpenyong, and Atsu (2007), who developed
a model for autoregressive process (AR) which was
observed with measurement errors suspected to be
MA(1) correlated. Follow-up study by Eni and Mah-
mud (2008) formulated a first order integrated mov-
ing average, IMA(1) model for a process in which the
error is uniformly AR(1) correlated. For an IMA pro-
cess observed with error which may not follow an AR
process, Eni (2013) proposed an IMA(1) model cor-
rupted with ARMA(1,1) error. We acknowledge that in
real life situations, an otherwise naturally IMA process
may as a result of certain errors (such as measurement
and round-off) be corrupted in form of disturbance
by a combination of several processes such that the
error pattern varies, say between AR and ARMA pro-
cesses within a specified period, arising from the vary-
ing dynamics of the process to be observed. Thus in the
present paper, we focus on situations when an IMA(1)
process is observed with measurement error which fol-
lows a convex combination of AR(1) and ARMA(1,1)

errors. We assumed that the transition from one error
pattern to another at a specified time is governed by a
Markov modulated process.

In technical terms, consider an integrated moving
average model (Box & Jenkins, 1976):

(1 − L)xt = εt + (θ − 1)εt−1 (1)

where xt is the output variable, εt is white noise process
with 0 mean and constant variance σ 2

ε and θ , a weight
parameter, L is a backward shift operator. If xt is not
directly observable but instead we observe wt = xt +
bt , where bt is an error component introduced by faulty
measurement or observation process, Model (1) then
becomes

zt = (1 + φL)εt + (1 − L)bt (2)

where zt = (1 − L)wt and φ = θ − 1. This study
intends to develop an integrated moving average
model (1) for the case in which bt is a Markov mod-
ulated mixture of AR(1) and ARMA(1,1).

Themotivation behind this study is simple to under-
stand: In applications, dynamic time series processes
usually undergo some ‘discontinuities’ so that the
assumption that their underlying processes are con-
stant over time may not be realistic. Examples may
be constructed on how such ‘discontinuities’ manifest:
The financial crisis of 2008, for instance, provides
a good example on how financial markets experi-
ence variations in the states of their liquidity over
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time. Exchange rate movements may alternate between
two states of appreciation and depreciation (Engel
& Hamilton, 1990) or among the three states of ‘stag-
nation’, appreciation and depreciation (Ayodeji, 2016)
over time. Furthermore, Akay and Yilmazkuday (2008)
noted that business cycles may vary among the three
states of recession, low and high growth states. Garcia
and Perron (1996) also made a similar submission
for interest rates. In the same vein, the distribution
of error pattern in time series processes may vary
over time. In time series analysis, we are not con-
cerned just about modelling variable of interest, but
if (and when) such variables are subject to ‘instabil-
ity’ over time, then such instability must be taken into
consideration.

The study therefore has three main objectives; first,
to formulate an IMA model corrupted with a combi-
nation of ARMA errors using the concepts of convex
mixture and Markov processes; second, to estimate the
parameters of the formulated model using the maxi-
mum likelihood method incorporating the autocovari-
ance function approach; and third, to demonstrate the
usage of the proposed model in application to interest
rates in the United States and Nigerian financial insti-
tution. We will also validate our model by comparing
empirical results with those from pure ARMA pro-
cesses using the Kolmogorov–Smirnov test and some
graphical analysis.

Two major advantages accrue from this study:
first, a more flexible and realistic model to describe
time series process observed with measurement error;
and second, a generalisation of the models provided
in Eni and Mahmud (2008) and Eni (2013). The
plan of the study is as follows: Section 2 builds up
IMA(1) model corrupted with a Markov modulated
convex combination of ARMA(1,1) errors, Section 3
presents some theoretical results and fits the pro-
posed model to a set of data on interest rates. Some
comparison measures were also employed to evalu-
ate the adequacy of the proposed model with respect
to existing models of IMA(1) with AR and ARMA
errors. Some concluding remarks were provided in
Section 4.

2. Methodology

Suppose the error bt in Equation (2) is a Markov mod-
ulated mixture of AR(1) and ARMA(1,1), so that when
bt is AR(1) correlated,

bt = et
1 − α1L

, (3)

and when it is ARMA(1,1) correlated,

bt = (1 + βL)et
1 − α2L

. (4)

LetA be the transitionmatrix for bt between AR(1) and
ARMA(1,1), that is,

A =
(

p 1 − p
1 − q q

)
;

where

p = pr{bt = AR(1)|bt−1 = AR(1)},
1 − p = pr{bt = ARMA(1, 1)|bt−1 = AR(1)},

q = pr{bt = ARMA(1, 1)|bt−1 = ARMA(1, 1)}, and
1 − q = pr{bt = AR(1)|bt−1 = ARMA(1, 1)},

0 < p, q < 1. Let

π1 = pr{bt = AR(1)}
π2 = pr{bt = ARMA(1, 1)}. (5)

For convex combination condition to be satisfied, it is
required that

πi ≥ 0, (i = 1, 2)

and

π1 + π2 = 1. (6)

At steady state,

π1 = pπ1 + (1 − q)π2

or,

π1 = 1 − q
2 − p − q

, (7)

and

π2 = 1 − π1

= 1 − p
2 − p − q

, (8)

so that a convex combination of bt can be written as

bt =
(

et
1 − α1L

) (
1 − q

2 − p − q

)
+ (1 + βL)

1 − α2L
et

(
1 − p

2 − p − q

)
. (9)

Updating Equation (2) with (9) gives

zt = (α1 + α2) zt−1 − α1α2zt−2

+ εt + (φ − α1 − α2) εt−1

− (α1φ + α2φ − α1α2) εt−2 + α1α2φεt−3

+ et −

⎛⎜⎜⎝
2 − p − q + α1 + α2

−α1p − α2q − β + pβ
2 − p − q

⎞⎟⎟⎠ et−1
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+

⎛⎜⎜⎝
α1 + α2 + α1βp + βp

−α1β − α2q − α1p − β

2 − p − q

⎞⎟⎟⎠ et−2

+
(

α1β − α1βp
2 − p − q

)
et−3, (10)

where et is a white noise process uncorrelated with εt .
Our next task is to estimate the parameters φ in zt ,

α1, α2, β , p and q in the error term bt . For simplicity, we
note that the observed process (10) may be identified as
ARMA(2,3):

zt = β1zt−1 − β2zt−2 + Ut − 	1Ut−1

+ 	2Ut−2 − 	3Ut−3, (11)

where Ut is a white noise process. Comparing Equa-
tions (10) and (11) we make the following correspon-
dence:

β1 = α1 + α2 (12)

β2 = α1α2 (13)

Ut − 	1Ut−1 + 	2Ut−2 − 	3Ut−3

= εt + et + (φ − α1 − α2) εt−1

+

⎛⎜⎜⎝
2 − p − q + α1 + α2

−α1p − α2q − β + pβ
2 − p − q

⎞⎟⎟⎠ et−1

− (α1φ + α2φ − α1α2) εt−2

+

⎛⎜⎜⎝
α1 + α2 + α1βp + βp

−α1β − α2q − α1p − β

2 − p − q

⎞⎟⎟⎠ et−2

+ α1α2φεt−3 +
(

α1β − α1βp
2 − p − q

)
et−3. (14)

Grouping the white noise process in Equation (14)
according to time t−i, i = 0, 1, 2, 3 we have

Ut = εt + et , (15)

	1Ut−1 = (φ − α1 − α2) εt−1

+

⎛⎜⎜⎝
2 − p − q + α1 + α2

−α1p − α2q − β + pβ
2 − p − q

⎞⎟⎟⎠ et−1 (16)

	2Ut−2 = − (α1φ + α2φ − α1α2) εt−2

+

⎛⎜⎜⎝
α1 + α2 + α1βp + βp

−α1β − α2q − α1p − β

2 − p − q

⎞⎟⎟⎠ et−2 (17)

	3Ut−3 = −α1α2φεt−3 +
(

α1β − α1βp
2 − p − q

)
et−3.

(18)

We solve Equation (11) through the maximum likeli-
hood estimation method to obtain estimates of β1, β2,
	1, 	2 and 	3 and consequently, α1 and α2. To esti-
mate the remaining unknowns, φ, β , p and q, we must
obtain variances σ 2

ε and σ 2
e of the white noise processes

εt and et , respectively. Barnett (1967) has shown that
if σ 2

ε and σ 2
e are known (the so-called over-identified

case), then the maximum likelihood of relevant param-
eters can be obtained by solving directly the likelihood
equation. Moran (1971) also demonstrated that if the
ratio (σ 2

ε /σ 2
e ) is known instead, the desired parameters

are identifiable. In this case, however, σ 2
ε and σ 2

e are
not known, neither is their ratio. We therefore adopt
the autocorrelation function approach as described in
Eni (2013). The following theorems, remarks and corol-
laries give the relevant expressions.

3. Main results

Define the following quantities,

E(ztzt) = v0, E(ztzt−1) = v1, E(ztzt−2) = v2.

By Box and Jenkins (1976),

E(εtεt−i) =
{

σ 2
ε for i = 0

0 i �= 0.

E(etet−i) =
{

σ 2
e for i = 0

0 i �= 0.

Also,

E(εtet−1) = 0 : εt and et are independent,

E(ztεt) = σ 2
ε : Multiply Equation (10) by εt and

take expectations,

E(ztet) = σ 2
e : Multiply Equation (10) by et and

take expectations, and

E(ztUt) = σ 2
u : Multiply Equation (10) by Ut and

take expectations.

Lemma 3.1: The variances σ 2
ε and σ 2

e of the white noise
process εt and et are

σ 2
ε = XS(β , p, q) − YQ(β , p, q)

P(φ)S(β , p, q) − R(φ)Q(β , p, q)
. (19)

σ 2
e = XR(φ) − YP(φ)

P(φ)S(β , p, q) − R(φ)Q(β , p, q)
, (20)

where

X = v0 − (α1 + α2)v1 + α1α2v2, (21)

P(φ) = (1 + φ2 − α1φ − α2φ), (22)
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Q(β , p, q) = 1 −

⎛⎜⎜⎝
2 − p − q + α1 + α2

−α1p − α2q − β + pβ
2 − p − q

⎞⎟⎟⎠

×

⎛⎜⎜⎝
α1 + α2 − α1q

−α2p − 2 + p + q + β − pβ
2 − p − q

⎞⎟⎟⎠

+

⎛⎜⎜⎝
α1 + α2 + α1βp + βp

−α1β − α2q − α1p − β

2 − p − q

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝

α2
1 + α2

2 − α1 − α2
−α2

1q − α2
2p + α1q + α2p

+α2β − α2pβ + pβ − β

2 − p − q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

(
α1β − α1βp
2 − p − q

)
⎛⎜⎜⎜⎜⎜⎜⎜⎝

α3
1 + α3

2 − α3
1q − α3

2p − α2
1

−α2
2 + α2

1q + α2
2p + α2

2β

−α2
2pβ + α2pβ − α2β

2 − p − q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (23)

Y = (1 + α1α2)v1 − (α1 + α2)v0, (24)

R(φ) = φ − α1 − α2 − α1φ
2 − α2φ

2 + α1α2φ,
(25)

S(β , p, q) =

⎛⎜⎜⎝
α1 + α2 + α1βp

+βp − α1β − α2q − α1p − β

2 − p − q

⎞⎟⎟⎠
⎛⎜⎜⎝

α1 + α2 − α1q
−α2p − 2 + p + q + β − pβ

2 − p − q

⎞⎟⎟⎠

−

⎛⎜⎜⎝
2 − p − q + α1 + α2

−α1p − α2q − β + pβ
2 − p − q

⎞⎟⎟⎠
+

(
α1β − α1βp
2 − p − q

)
⎛⎜⎜⎜⎜⎜⎜⎜⎝

α2
1 + α2

2 − α1
−α2 − α2

1q − α2
2p + α1q + α2p

+α2β − α2pβ + pβ − β

2 − p − q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(26)

Proof: Multiply Equation (10) by zt and take expecta-
tions to obtain

v0 = (α1 + α2)v1 − α1α2v2 + σ 2
ε

+ (φ − α1 − α2)E(ztεt−1)

− (α1φ + α2φ − α1α2)E(ztεt−2)

+ α1α2φE(ztεt−3) + σ 2
e

−
(
2 − p − q + α1 + α2 − α1p − α2q − β + pβ

2 − p − q

)
E(ztet−1)

+
(

α1 + α2 + α1βp + βp − α1β − α2q−α1p−β

2 − p − q

)
E(ztet−2) +

(
α1β − α1βp
2 − p − q

)
E(ztet−3). (27)

To complete the proof, it is required to obtain esti-
mates for E(ztεt−1), E(ztεt−2), E(ztεt−3), E(ztet−1),
E(ztet−2) and E(ztet−3). These are obtained by multi-
plying Equation (10) by εt−1, εt−2, εt−3, et−1, et−2, and
et−3 individually, and taking expectations to obtain

E(ztεt−1) = φσ 2
ε , (28)

E(ztεt−2) = 0, (29)

E(ztεt−3) = 0, (30)

E(ztet−1) =

⎛⎜⎜⎝
α1 + α2 − α1q − α2p
−2 + p + q + β − pβ

2 − p − q

⎞⎟⎟⎠ σ 2
e , (31)

E(ztet−2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α2
1 + α2

2 − α1 − α2 − α2
1q

−α2
2p + α1q + α2p + α2β

−α2pβ + pβ − β

2 − p − q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
σ 2
e , (32)

E(ztet−3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α3
1 + α3

2 − α3
1q − α3

2p − α2
1

−α2
2 + α2

1q + α2
2p + α2

2β

−α2
2pβ + α2pβ − α2β

2 − p − q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
σ 2
e .

(33)

Substituting Equations (28)–(33) into (27) and re-
arranging gives

v0 − (α1 + α2)v1 + α1α2v2

= (1 + φ2 − α1φ − α2φ)σ 2
ε

+
(
1−

(
2−p−q+α1+α2−α1p−α2q−β+pβ

2 − p − q

)
×

(
α1 + α2 − α1q − α2p − 2 + p + q + β − pβ

2 − p − q

)
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+
(

α1 + α2 + α1βp + βp − α1β − α2q − α1p − β

2 − p − q

)
(α2

1 + α2
2 − α1 − α2 − α2

1q − α2
2p + α1q + α2p

+α2β − α2pβ + pβ − β

2 − p − q

)
+

(
α1β − α1βp
2 − p − q

)
( α3

1 + α3
2 − α3

1q − α3
2p − α2

1 − α2
2

+α2
1q + α2

2p + α2
2β − α2

2pβ + α2pβ − α2β

2 − p − q

))
σ 2
e .

(34)

Taking into account Equations (21)–(23), Equation (34)
can be written compactly as

X = P(φ)σ 2
ε − Q(β , p, q)σ 2

e . (35)

Again,multiplying Equation (10) by zt−1, taking expec-
tations and re-arranging we have

(1 + α1α2)v1 = (α1 + α2)v0 + (φ − α1 − α2)σ
2
ε

− (α1φ + α2φ − α1α2)E(zt−1εt−2)

+ α1α2φE(zt−1εt−3)

−
(
2 − p − q + α1 + α2 − α1p − α2q − β + pβ

2 − p − q

)
σ 2
e

+
(

α1+α2+α1βp+βp−α1β−α2q−α1p−β

2 − p − q

)
E(zt−1et−2) +

(
α1β − α1βp
2 − p − q

)
E(zt−1et−3), (36)

which taking into account Equations (24)–(26) can also
be written compactly as

Y = R(φ)σ 2
ε − S(β , p, q)σ 2

e . (37)

We may then solve Equations (35) and (37) simul-
taneously to obtain the desired estimates of σ 2

ε and
σ 2
e . �

Remark 3.2: Given Model (11), the variance of the
observed process Ut is

σ 2
u = X(R(φ) + S(β , p, q)) − Y(P(φ) + Q(β , p, q))

P(φ)S(β , p, q) − R(φ)Q(β , p, q)
.

(38)

Now that the variances σ 2
ε and σ 2

e have been esti-
mated, we estimate the remaining unknowns, φ, β , p
and q, using the following iterative technique developed
below:

Theorem 3.3: Given the IMA(1) process (10) corrupted
with convex combination of AR(1) and ARMA(1,1) pro-
cesses. The parameters φ, β, p and q can be estimated

using the Newton–Raphson iterative formula

ξi+1 = ξi −
(
f ′(ξi)

)−1 f (ξi), (39)

where

ξ = (φ,β , p, q)

f (ξ) = C(P(φ)S(β , p, q) − R(φ)Q(β , p, q)) − D(X(R(φ)

+ S(β , p, q)) − Y(P(φ) + Q(β , p, q))) (40)

C = v0 − β1v1 + β2v2, (41)

D = 1 − 	1(β1 − 	1) + 	2(β1(β1 − 	1)

+ (	2 − β2)) − 	3β1((β1(β1 − 	1)

+ (	2 − β2)) − β2(β1 − 	1) − 	3), (42)

and X,Q,S,Y and S are as defined earlier in Equa-
tions (21)–(26).

Proof: From Equation (11),

E(ztzt) = v0 = β1v1 − β2v2 + σ 2
u − 	1E(ztUt−1)

+ 	2E(ztUt−2) − 	3E(ztUt−3). (43)

To obtain expressions for E(ztUt−1), E(ztUt−2) and
E(ztUt−3), we again multiply Equation (11) by Ut−1,
Ut−2 and Ut−3, respectively, and take expectations to
obtain

E(ztUt−1) = (β1 − 	1)σ
2
u , (44)

E(ztUt−2) = (β1(β1 − 	1) + (	2 − β2))σ
2
u , (45)

E(ztUt−3) = β1((β1(β1 − 	1) + (	2 − β2))

− β2(β1 − 	1) − 	3)σ
2
u . (46)

Updating Equation (43) with (44)–(46) and re-arran-
ging, we obtain

v0 − β1v1 + β2v2 = (1 − 	1(β1 − 	1)

+ 	2(β1(β1 − 	1) + (	2 − β2))

− 	3β1((β1(β1 − 	1) + (	2 − β2))

− β2(β1 − 	1) − 	3))σ
2
u . (47)

By Equations (41) and (42), Equation (47) may be writ-
ten compactly as

C = Dσ 2
u .

Substituting for σ 2
u (see Equation (38)),

C = D
(
X(R(φ)+S(β , p, q))−Y(P(φ)+Q(β , p, q))

P(φ)S(β , p, q) − R(φ)Q(β , p, q)

)
,

or

f (ξ) = C(P(φ)S(β , p, q) − R(φ)Q(β , p, q))

− D(X(R(φ) + S(β , p, q)) − Y(P(φ)

+ Q(β , p, q))). (40)

�
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We expect the values of β ,φ, p and q to be such that
f (φ,β , p, q) ≈ 0 at the point of convergence.

Remark 3.4: The starting point for the iterative
equation (39) can be obtained as

φ0 = α1α2 − α1 + 2	1 − 1 − 2	2 − 2	3 − α2

α1α2 + α1 + α2 − 1
.

(48)

β0 = K
M

. (49)

q0 = L
M

, (50)

where

K = 2α2
1	1α2 − α2α

2
1 + α1α

2
2 + 2α2	3 − α3

1α2

− 2α2
1α2	2 − 2	3α

2
2 + 2α2

1	3 + α3
1α

2
2 − α2

1α
3
2

− 2α1	3 + α1α
3
2 − 2α2

2α1	1 + 2	2α1α
2
2

L = −(4	3 − 2α1α2p + 3α1α2 − 2	3p + 4α1α2	1p

− 2	2pα1 − 2	2pα1α2 + 2α2
1	1p + 2α2

1	1pα2)

− (α2
1 − 8α1α2	1 − 4α2α

2
1p − 2α1α

2
2p + 8α2α

2
1

+ 5α1α
2
2 − 4α2	3 + α2

1α
2
2 + 3α3

1 + 3α3
1α2)

− (2α2	3p + 4	2α1 + 4	2α1α2 − 4α2
1		1

− 4α2
1	1α2 − 2α3

1p − 2α3
1pα2),

M = −α1α2 − 2	3 + 4α2α1	1 − 2	2α1 − 2	2α1α2

+ 2α2
1	1 + 2α2

1	1α2 − α2
1 − 4α2α

2
1 − 3α1α

2
2

+ 2α2	3 − α2
2α

2
1 − α3

1 − α3
1α2.

Proof: Along the line of Eni (2013), set εt = et so that
Equations (15)–(18) respectively become

Ut = 2εt or Ut−1 = 2εt−1 (51)

2	1εt−1 = (α1 + α2 − φ)εt−1

+
(
2 − p − q + α1 + α2 − α1p − α2q − β + pβ

2 − p − q

)
× εt−1 (52)

2	2εt−2 = −(α1φ + α2φ − α1α2)εt−2

+
(

α1 + α2 + α1βp + βp − α1β − α2q − α1p − β

2 − p − q

)
× εt−2 (53)

2	3εt−3 = −α1α2φεt−3 −
(

α1β − α1βp
2 − p − q

)
εt−3.

(54)

Next, the coefficients in Equations (52)–(54) are
compared and then solved for β , φ and q simultane-
ously to obtain the desired starting point φ0, β0 and
q0. �

Remark 3.5: In summary, an algorithm may be devel-
oped for the estimation of IMA (1) model corrupted
with convex combination of ARMA errors as follows:

(i) Estimate the first three autocovariance values of zt
for a given set of data. Will be computed using

vi = 1
N − 1

N−1∑
i=1

(zt − μ)(zt−1 − μ), i = 0, 1, 2

(55)
where

μ = 1
N

N∑
i=1

zt .

(ii) Obtain the maximum likelihood estimate of βi’s
and 	i’s in Equation (11). May use the ‘maximum
likelihood estimate’ library in MINITAB.

(iii) Estimate the remaining parameters φ, β , p and q
using the iterative formula (39).

(iv) Estimate the variance of the observed process Ut
through Equation (38).

Corollary 3.6: Eni (2013) results correspond to the case
p=0 and q=1 in Equation (9).

Proof: Set p=0 and q=1 in Equation (9) to get

bt = (1 + βL)et
1 − αL

, (56)

then substitute for bt in Equation (2) to obtain

zt = αzt−1 + εt − (α + φ)εt−1 + αφεt−2 + et
− (1 − β)et−1 − βet−2, (57)

which corresponds to Eni’s (2013) Equation (4). �

Corollary 3.7: Eni and Mahmud (2008) results corres-
pond to the case p=1 and q=0 in Equation (9).

The proof is easily obtained by setting p=1 and
q=0 in Equation (9) and following similar procedure
as highlighted in Corollary (3.6).

4. Empirical results and discussion

The dataset used here are interest rate spread from
financial institutions.1 They therefore inherently contain

1 Readers interested in simulations and estimations of IMA process under the two error patterns of AR and ARMAmay kindly refer to Eni and Mahmud (2008)
and Eni (2013).
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errors due to aggregation and round-off of figures. The
task of an appropriate time series model however is
to produce reliable estimates of the unknown param-
eters. It must be noted that the quality and reliability
of these estimates depend upon the the dataset. The
first set of data used was obtained from World bank
(http://data.worldbank.org/indicator/FR’INR.LNDP).
It comprised 138 data points on quarterly ‘interest
rate spread’ of Nigeria banks from February 1970 to
October 2015. The second data set was on monthly
interest rate in USA from January 1950 to February
2017. It was obtained from Federal Bank of Saint Louis
(https://fred.stlouisfed.org/series/INTDSRUSM193N),
a total of 806 data points. Both data were approximated
to two decimal places.

Table 1 presents the estimates of the parameters v0,
v1, v2 of the autocovariance function (ACF), β1, β2,
	1, 	2, 	3 of the reduced form of IMA(1) model,
that is, the ARMA(2,3) model – See Equation (11); and
the remaining unknowns φ, β , p and q as given in
Equation (10). The computations were carried out via
MAPLE, MINITAB and MATLAB Statistical Packages.

Just as expected, the autocovariances v0, v1 and
v2 presented in Table 1 for both data are all pos-
itive. The estimated autocovariances were used to
obtain the estimates of the parameters of ARMA (2,3)
Model. Given β̂1 and β̂2, α̂1 and α̂2 may be com-
puted by solving Equations (12) and (13) so that
for Nigeria, α̂1 = −0.3933 and α̂2 = 2.1877. Similarly,
for USA, (̂α1, α̂2) = (−0.3671, 2.1566). The remain-
ing parameters φ, β , p and q were obtained as dis-
cussed earlier in Theorem 3.3. By Remark 3.4, the set
of starting values (φ0, β0, p0, q0) for (φ, β , p, q) is
(0.4657, 2.7658, 0.55, 1.389) and (0.6529, 1.3941, 0.65,
1.3772) for Nigeria and USA, respectively. Recall from
Equation (1) that the invertibility parameter θ = φ +
1; so that for Nigeria, θ = 1.8806 and for USA, θ =
1.2451. Since θ > 1 in both cases, our interest that the
IMA(1) model be non-invertible is satisfied in both
datasets.

Thus, the proposed IMA(1) model corrupted with a
convex combination ofARMAerrors for both countries
are

Table 1. Estimates of the relevant parameters.

Estimate

Function Parameter Nigeria USA

Autocovariance v0 2.55 2.71
v1 1.55 1.68
v2 0.67 0.83

Reduced IMA (1): ARMA (2,3) β1 1.7944 1.7895
β2 −0.8604 −0.7918
	1 0.9006 0.4271
	2 0.5055 0.0067
	3 −0.7513 0.0950

Other Parameters of IMA (1) φ 0.8806 0.2451
β 1.8459 1.3519
p 0.5741 0.8025
q 0.7238 0.6441

Nigeria:

zt = 1.7944zt−1 + 0.86042241zt−2 + εt − 0.9138εt−1

− 2.44057105εt−2 − 0.7576879742εt−3 + et
− 5.760529070et−1 + 0.0573028728et−2

− 0.4403933813et−3 (58)

and USA:

zt = 1.7895zt−1 + 0.79168786zt−2 + εt − 1.5444εt−1

− 1.23029431εt−2 − 0.1940426945εt−3 + et
− 6.659254499et−1 + 0.9505732418et−2

− 0.1771156339et−3. (59)

When p=1 and q=0, Equation (10) reduces to Eni
andMahmud (2008) IMA (1)model corruptedwithAR
(1) error.

Nigeria:

zt = 0.6067zt−1 + 0.3933zt−2 + εt − 0.4873εt−1

+ 0.34633998εt−2 + et − et−1 (60)

and USA:

zt = 0.6329zt−1 + 0.3671zt−2 + εt + 0.1220εt−1

+ 0.08997621εt−2 + et − et−1. (61)

Also, when p=0 and q=1, Equation (10) reduces to
Eni (2013) IMA (1) model corrupted with ARMA (1,1)
error.

Nigeria:

zt = 2.1877zt−1 + εt + 3.0683εt−1 + 1.92648862εt−2

+ et + 0.8459et−1 − 1.8459et−2 (62)

and USA:

zt = 2.1566zt−1 + εt + 2.4017εt−1 + 0.52858266εt−2

+ et + 0.3519et−1 − 1.3519et−2. (63)

Furthermore, it can also be inferred fromTable 1 that
for Nigeria, the transition probability is given as

pr{bt = AR(1)/bt−1 = AR(1)} = p = 0.5741,

pr{bt = ARMA(1, 1)/bt−1 = AR(1)}
= 1 − p = 0.4259,

pr{bt = ARMA(1, 1)/bt−1 = ARMA(1, 1)}
= q = 0.7238,

and finally, pr{bt = AR(1)/bt−1 = ARMA(1, 1)}
= 1 − q = 0.2762 (64)

This information is summarised in the following
matrix:

A =
(
0.5741 0.4259
0.2762 0.7238

)
Clearly, the error associated with the system of inter-

est rates of Nigeria banks easily transits from AR(1)
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error to ARMA (1,1) error than the converse since
(1 − p) = 0.4259 > 0.2762 = (1 − q). Also, the prob-
ability that the error is better modelled as AR(1) from
year to year between February 1970 and October 2015
is 57.4% while the probability that the error system is
bettermodelled uniformly with ARMA (1,1) within the
specified period is 72.4%. This indicates that the error
is better modelled with ARMA (1,1) most of the time
than with AR (1).

In addition, the aggregate probability π1 of bt =
AR(1) is easily computed using Equation (5): π1 =
0.3934 and π2 = 0.6066. It is also obvious that πi,
i=1,2 are non-negative and they add up to 1, an indica-
tion that the two conditions imposed for convex com-
bination in Equation (6) are satisfied in the case of
Nigeria. Thus the error associated with the Nigerian
data is essentially a mixture (0.3934, 0.6066) of AR(1)
and ARMA(1,1).

Similarly for USA, the transition probability matrix

A =
(
0.8025 0.1975
0.3559 0.6441

)
.

Also, it is clearly seen that the error system of housing
interest rates in USA easily transits from ARMA(1,1)
error to AR (1) error than the converse since (1 − p) =
0.1975 < 0.3559 = (1 − q). Also, the probability that
the system remains in AR(1) permanently from year
to year between January 1950 and February 2017 is
0.8025 while the probability that the system is better
modelled uniformly with ARMA (1,1) within the spec-
ified period is 0.6441. This implies that the error is
better modelled with AR (1) most of the time than with
ARMA (1,1). We observed further that while the Nige-
rian error system is likely to change from AR to ARMA
with probability 0.4259 and from ARMA to AR with
probability 0.2762, the corresponding probabilities for
the USA data are 0.1975 and 0.3559, respectively; indi-
cating that the error associated with the Nigerian inter-
est rate changes more swiftly from AR to ARMA but
less swiftly from ARMA to AR compared to the USA
system.

In addition, for US, π1 = 0.6431 and π2 = 0.3569.
Obviously, the two conditions imposed for convex com-
bination are also satisfied in this case. Thus the error
associated with the USA data is essentially a mixture
(0.6431, 0.3569) of AR(1) and ARMA(1,1).

Finally, the variances of σ 2
ε and σ 2

e of the white
noise processes εt and et (see Equations (19) and (20))
for Nigeria are σ 2

ε = 0.8212 and σ 2
e = 0.2107; so that

σ 2
u = σ 2

ε + σ 2
e = 1.0319. In the same vein, (σ 2

ε , σ 2
e ) =

(0.7839, 0.3164) for USA implies that σ 2
u = 1.1003.

4.1. Selection ofmodel of best fit

In order to select the model of best fit, we compared
each of the fitted values from the three models of Eni
andMahmud (2008), Eni (2013) and the proposed with

Table 2. Absolute deviations of cumulative probability fre-
quency of fitted models from the observed for US interest rate
spread data.

Range Proposed AR ARMA

(0–1] 0 0.0012 0.0012
(1–2] 0.0012 0.0025 0.0012
(2–3] 0 0.0012 0.0024
(3–4] 0.0012 0 0
(4–5] 0.0025 0.0012 0.0024
(5–6] 0 0.0038 0.0038
(6–7] 0.0012 0.0038 0.005
(7–8] 0.0012 0.0012 0.0024
(8–9] 0.0012 0.0012 0.0012
(9–10] 0.0012 0.0024 0.0012
(10–11] 0.0023 0.0036 0
(11–12] 0 0 0.0013
(12–13] 0 0.0012 0.0013
(13–14] 0 0 0
(14–15] 0 0 0

Table 3. Absolute deviations of cumulative probability fre-
quency of fitted models from the observed for interest rate
spread data in Nigeria.

Range Proposed AR ARMA

(0–1] 0 0.0073 0
(1–2] 0 0.0073 0.0145
(2–3] 0 0.0145 0
(3-4] 0.0073 0.029 0.0217
(4–5] 0.0072 0.0362 0.0145
(5–6] 0.0072 0.0435 0.0217
(6–7] 0.0217 0.0218 0.0145
(7–8] 0.0217 0 0.0145
(8–9] 0.0145 0.0072 0.0072
(9–10] 0.0073 0.0072 0
(10–11] 0 0.0072 0.0072
(11–12] 0 0 0

the observed using the Kolmogorov–Smirnov test. First
the cumulative probability Fi(x), i=0,1,2,3 for the dis-
tribution of observed and fitted data from the three
models were computed. Denote F0(x) the cumulative
probability of the observed, F1(x) the cumulative prob-
ability from the proposed model, F2(x) the cumula-
tive probability from Eni and Mahmud (2008) model
(i.e. AR error pattern) and F3(x) the probability from
Eni (2013) model (i.e. ARMA error pattern). Table 2
presents the absolute deviations of each of Fi(x), i =
1, 2, 3 from F0(x) for US interest rates while Table 3 dis-
played those on interest rates in Nigeria. Actual cumu-
lative probabilities for US and Nigerian interest rates
data are presented in the Appendix – Tables A1 and A2.

It is easily seen that the proposed (i.e. F1(x)) had
accurate cumulative probabilities in 7 out of 15 cases
with a maximum absolute error of .25% whereas AR
error pattern (i.e. F2(x)) had accurate cumulative prob-
abilities in 4 out of 16 cases with a maximum absolute
error of .38%while ARMA error pattern (i.e. F3(x)) had
accurate cumulative probabilities in 4 out of 16 cases
with a maximum absolute error of 0.50%. Our submis-
sion therefore is that F1(x) is closer to the observed
F0(x) than F2(x) and F3(x) are. Thus, in this case, the
order of performance is F3(x) < F2(x) < F1(x).
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Table 3 also presents the absolute deviations of each
ofFi(x), i = 1, 2, 3 fromF0(x) as displayed inAppendix,
Table A2. It is easily seen that the proposed (i.e. F1(x))
had accurate cumulative probabilities in 5 out of 12
cases with a maximum absolute error of 2.17% whereas
AR error pattern (i.e. F2(x)) had accurate cumulative
probabilities in 2 out of 12 cases with amaximum abso-
lute error of 4.35% while ARMA error pattern (i.e.
F3(x)) had accurate cumulative probabilities in 4 out
of 12 cases with a maximum absolute error of 2.17%.
It can therefore be concluded that F1(x) is closer to the
observed F0(x) than F2(x) and F3(x) are. Thus the order
of performance is F2(x) < F3(x) < F1(x).

Further comparisonwasmade in terms of the cumu-
lative frequency distribution of the observed and the
three models of AR/ARMA, AR and ARMA. Figures 1
and 2 plotted the cumulative frequency distribution of
the Observed against each of the three fitted models for
Nigerian and US interest rates, respectively. A careful
look at Figure 1 in particular shows that the combined

AR/ARMA provided the best straight line graph while
the other two deviated markedly from the Observed
(i.e. the solid line) around 0.4 and 0.9. This is less pro-
nounced for the USA data in Figure 2. From both plots,
it is obvious that the AR/ARMA model produces the
best straight line graph compared to AR model and
ARMA model which clearly shows that the fitted val-
ues from the proposedmodel are closest to the observed
thanEni andMahmud (2008) andEni (2013), therefore,
the best fit to the data points.

Finally, we conducted aKolmogorov–Smirnov (K–S)
test to confirm our observations from Tables 2 and 3,
andFigures 1 and 2. The result is presented inTable 4. In
testing the null hypothesis that a model fits the datasets
for Nigerian and US interest rates, it is observed that
the p-value for the three models were greater than a
significant level of α = 0.05, which implies that there
is no significant evidence against the null. However, we
observed further that the proposed had the lowest z-
score and consequently, the highest p-value compared

Figure 1. A plot of the cumulative frequency distribution of the observed against each of the three fitted models of AR ARMA and
AR/ARMA, respectively, for Interest Rate Spread in Nigeria.

Figure 2. A plot of the cumulative frequency distribution of the observed against each of the three fitted models of AR ARMA and
AR/ARMA, respectively, for Interest Rate in USA.
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Table 4. K–S test valuesonobservedagainst variousmodels for
Nigeria and USA dataset points.

AR/ARMA AR ARMA

Nigeria ZK−S 0.501 0.504 0.503
p 0.464 0.458 0.460

USA ZK−S 0.588 0.633 0.653
p 0.880 0.818 0.787

to the other two models.2 This indicates clearly that
the generalisation proposed in this study providesmore
flexible specification to model time series processes in
the presence of errors.

5. Conclusion

This study formulated a credible, flexible and versatile
model capable of accounting for errors from different
sources and has been able to apply basic tools such
as the autocovariance function, maximum likelihood
method, Newton–Raphson iterative method and Kol-
mogorov–Smirnov test statistic to examine and fit the
formulated specification to data. Based on the theo-
retical results and data application, we concluded that
the proposed model is a generalisation of the existing
models on AR error and ARMA error.

Empirical results from the application of the pro-
posed model to the Nigerian and US interest rates
showed that the error associated with Nigerian inter-
est rates system is essentially a mixture (0.3934, 0.6066)
of AR and ARMA and has 0.574 and 0.724 chances of
being modelled uniformly as AR and ARMA, respec-
tively. The corresponding probabilities for the US data
were (0.6431, 0.3569) formixture and 0.803 for remain-
ing anAR, and 0.644 for remaining anARMA. Further-
more, while the Nigerian error system is more likely
to switch between AR and ARMA errors with proba-
bility 0.426, USA’s has lower probability of switching
between AR and ARMA with a margin of 0.228 rela-
tive to Nigerian system. This indicates that the Nige-
ria data changes more swiftly from AR to ARMA but
less swiftly from ARMA to AR compared to US sys-
tem. The graphical analysis indicated that the pro-
posed model provided the best fit for the two inter-
est rates datasets considered. This was further con-
firmed with the Kolmogorov–Smirnov test as the pro-
posed model had more accurate cumulative proba-
bilities, gave the least maximum absolute deviations
and consequently the lowest z-scores for the error sys-
tems of Nigerian and US interest rates, respectively.
Thus, the Nigerian interest rates error pattern more
likely follows ARMA than AR, while that of USA
has a higher probability of being modelled as AR
than ARMA.

Finally, this study discussed AR(1), ARMA(1,1)
and the convex combination of ARMA errors. It will
certainly enhance research if other versions of time
series processes like Autoregressive Conditional Het-
eroskedasticity (ARCH), Generalised Autoregressive
Conditional Heteroskedasticity (GARCH), Seasonal
Autoregressive Integrated Moving Average (SARIMA),
etc., are considered for volatility and seasonality. More
data will be required for better results. Also, properties
of the error pattern and the variation with different val-
ues of the parameters may be investigated. These may
includemoments, kurtosis and some other parameters.
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Appendix

Table A1. Cumulative probability frequency of observed (F0(x)) and cumulative probability frequency for fittedmodels for interest
rate data in USA.

Observed ARMA/AR AR ARMA

Range Freq. Cum. Freq. Cum. Pr., F0(x)) Freq. Cum. Freq. Cum. Pr., F1(x)) Freq. Cum. Freq. Cum. Pr., F2(x)) Freq. Cum. Freq. Cum. Pr., F3(x))

(0–1] 86 86 0.1067 86 86 0.1067 85 85 0.1055 86 86 0.1067
(1–2] 90 176 0.2184 91 177 0.2196 94 179 0.2221 94 180 0.2233
(2–3] 65 241 0.2990 64 241 0.2990 63 242 0.3002 60 240 0.2978
(3–4] 120 361 0.4479 121 362 0.4491 120 362 0.4491 122 362 0.4491
(4–5] 99 460 0.5707 100 462 0.5732 99 461 0.5720 101 463 0.5744
(5–6] 128 588 0.7295 126 588 0.7295 130 591 0.7333 125 588 0.7295
(6–7] 85 673 0.8349 84 672 0.8337 84 675 0.8375 83 671 0.8325
(7–8] 48 721 0.8945 48 720 0.8933 46 721 0.8945 48 719 0.8921
(8–9] 31 752 0.9330 31 751 0.9318 31 752 0.9330 32 751 0.9318
(9–10] 17 769 0.9541 19 770 0.9553 16 768 0.9529 18 769 0.9541
(10–11] 7 776 0.9628 5 775 0.9651 7 775 0.9615 6 775 0.9615
(11–12] 5 781 0.9690 6 781 0.9690 6 781 0.9690 5 780 0.9677
(12–13] 13 794 0.9851 13 794 0.9851 12 793 0.9839 12 792 0.9826
(13–14] 8 802 0.9950 8 802 0.9950 9 802 0.9950 10 802 0.9950
(14–15] 4 806 1.0000 4 806 1.0000 4 806 1.0000 4 806 1.0000

Table A2. Cumulative probability frequency of observed (F0(x)) and cumulative probability frequency for fitted models for interest
rate spread data in Nigeria.

Observed ARMA/AR AR ARMA

Range Freq. Cum. Freq. Cum. Pr., F0(x)) Freq. Cum. Freq. Cum. Pr., F1(x)) Freq. Cum. Freq. Cum. Pr., F2(x)) Freq. Cum. Freq. Cum. Pr., F3(x))

(0–1] 9 9 0.0652 9 9 0.0652 8 8 0.0579 9 9 0.0652
(1–2] 5 14 0.1014 5 14 0.1014 7 15 0.1087 7 16 0.1159
(2–3] 8 22 0.1594 8 22 0.1594 9 24 0.1739 6 22 0.1594
(3–4] 32 54 0.3913 33 55 0.3986 34 58 0.4203 35 57 0.4130
(4–5] 8 62 0.4493 8 63 0.4565 9 67 0.4855 7 64 0.4638
(5–6] 12 74 0.5362 10 73 0.5290 13 80 0.5797 13 77 0.5579
(6–7] 17 91 0.6594 15 88 0.6377 14 94 0.6812 16 93 0.6739
(7–8] 19 110 0.7971 19 107 0.7754 16 110 0.7971 15 108 0.7826
(8–9] 15 125 0.9058 17 124 0.8913 14 124 0.8986 16 124 0.8986
(9–10] 6 131 0.9493 6 130 0.9420 8 132 0.9565 7 131 0.9493
(10–11] 5 136 0.9855 6 136 0.9855 3 135 0.9783 4 135 0.9783
(11–12] 2 138 1.0000 2 138 1.0000 3 138 1.0000 3 138 1.0000
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