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ABSTRACT
Sunoj et al. [(2009). Characterization of life distributions using conditional expectations of doubly
(Intervel)truncated random variables. Communications in Statistics – Theory and Methods, 38(9),
1441–1452] introduced the concept of Shannon doubly truncated entropy in the literature.
Quantile functions are equivalent alternatives to distribution functions in modelling and anal-
ysis of statistical data. In this paper, we introduce quantile version of Shannon interval entropy
for doubly truncated random variable and investigate it for various types of univariate distri-
bution functions. We have characterised certain specific lifetime distributions using themeasure
proposed. Alsowe discuss one fascinating practical example based on the quantile data analysis.
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1. Introduction

Let X be a non-negative absolutely continuous ran-
dom variable representing the lifetime of a component
with cumulative distribution function (CDF) F(t) =
P(X ≤ t) and survival function F̄(t) = P(X > t) =
1 − F(t). In modelling and analysis of lifetime data, the
average amount of uncertainty associated with a non-
negative continuous random variable X is given in the
differential entropy function

H(X) = −
∫ ∞

0
f (x) log f (x) dx,

a continuous counterpart of the Shannon (1948)
entropy in the discrete case and f (x) is the probabil-
ity density function (pdf) of the random variable X.
While the concept of entropy has found increased appli-
cation, little attention has yet been given to the practical
problems of estimating entropy. Gong, Yang, Gupta,
and Nearing (2014) discussed a method for computing
robust and accurate estimates of entropy that accounts
for several important characteristics of hydrological
data sets. Since this entropy is not applicable to a system
which has survived for some unit of time or for used
item. The residual lifetime of the system when it is still
operating at time t is Xt = (X − t |X > t); which has
the probability density f (x; t) = f (x)/F̄(t), x ≥ t > 0.
Ebrahimi (1996) proposed the entropy of the residual
lifetime Xt as

H(X; t) = −
∫ ∞

t

f (x)
F̄(t)

log
f (x)
F̄(t)

dx, t > 0. (1)

In some practical situations, uncertainty is related to
past life time rather than future. In this situation,

the random variable X∗
t = (t − X |X ≤ t), which is

known as inactivity time is suitable to describe the time
elapsed between the failure of a system and the time
when it is found to be ‘down’. Based on this idea, Di
Crescenzo and Longobardi (2002, 2004) have consid-
ered the entropy of the inactivity time X∗

t given as

H̄(X; t) = −
∫ t

0

f (x)
F(t)

log
f (x)
F(t)

dx. (2)

In many situations, we only have information between
twopoints, and in this case statisticalmeasures are stud-
ied under the condition of doubly truncated random
variables. The doubly truncatedmeasures are applicable
to engineering systems when the observations are mea-
sured after it starts operating and before it fails. If the
random variable X denotes the lifetime of a unit, then
the random variable Xt1,t2 = (X − t1 | t1 ≤ X ≤ t2) is
called the doubly truncated (interval) residual lifetime,
which in special case t2 → ∞ tends to residual life-
time random variable Xt . Also, we can use the doubly
truncated past lifetime random variable X∗

t1, t2 = (t2 −
X | t1 ≤ X ≤ t2), which in special case t1 = 0, it tends
to past lifetime random variable X∗

t . Another exten-
sion of Shannon entropy is based on a doubly truncated
(interval) random variable, which is as follows,

H(X; t1, t2)

= −
∫ t2

t1

f (x)
F(t2) − F(t1)

log
f (x)

F(t2) − F(t1)
dx. (3)

Given that a system has survived up to time t1 and
has been found to be down at time t2, then H(X; t1, t2)
measure the uncertainty about its lifetimes between t1
and t2. Different aspects and properties of H(X; t1, t2)
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have been studied by Sunoj, Sankaran, andMaya (2009)
and Misagh and Yari (2011, 2012). For various results
on doubly truncated random variable, we refer to
Sankaran and Sunoj (2004)), Khorashadizadeh, Rezaei
Roknabadi, andMohtashami Borzadaran (2013), Kayal
and Moharana (2016), and Kundu (2017).

All the theoretical investigations and applications
using these information measures are based on the dis-
tribution function. A probability distribution can be
specified either in terms of its distribution function or
by the quantile function. Although both convey the
same information about the distribution with different
interpretations, the concepts and methodologies based
on distribution functions are traditional. When tradi-
tional approach are either difficult or fails to obtain
desired results then quantile-based study were carried
out. However, as Gilchrist (2000) discussed, there are
many distinct properties for quantile functions that are
not shared by the distribution functions, which makes
the former attractive in certain practical situations. For
inference purposes, quantile-based statistics are often
more robust than those based on moments in the dis-
tribution function approach. Furthermore, there exist
many simple quantile functions, that serve very well in
empirical model building, for which distribution func-
tion are not in tractable forms, refer to van Staden
and Loots (2009), Hankin and Lee (2006) and Nair,
Sankaran, andVineshKumar (2012). Inmany cases, QF
is more convenient as it is less influenced by extreme
observations and thus provides a straightforward analy-
sis with a limited amount of information. In such cases,
conventional tools of analysis using distribution func-
tions are difficult to apply. An alternative approach to
the study is to use the quantile functions (QFs), defined
by

Q(u) = F−1(u) = inf{x | F(x) ≥ u}, 0 ≤ u ≤ 1.
(4)

When F is continuous, we have from (4), FQ(u) =
u, where FQ(u) represents the composite function
F(Q(u)). Defining the density quantile function by
fQ(u) = f (Q(u)) and quantile density function by
q(u) = Q′(u), where prime denotes the differentiation,
we have

q(u)fQ(u) = 1,

refer to Nair, Sankaran, and Balkrishanan (2013).
Several researchers have studied information theo-
retic measures based on quantile function. Sunoj
and Sankaran (2012) have considered the quantile
version of Shannnon entropy and its residuals form,
defined as

Ḩ =
∫ 1

0
log q(p) dp (5)

and

Ḩ(u) = log(1 − u) + (1 − u)−1
∫ 1

u
log q(p) dp (6)

respectively. Sunoj, Sankaran, and Nanda (2013) have
considered the quantile past entropy, which is defined
as

Ḩ̄(u) = log u + u−1
∫ u

0
log q(p) dp. (7)

Readers can refer to Nanda, Sankaran, and Sunoj
(2014), Baratpour and Khammar (2018), Sankaran
and Sunoj (2017), Guoxin (2018), andKumar (2018) for
more works on this line.

Motivated with the usefulness of the quantile func-
tion and the interval entropy, in the present note,
we introduced a quantile version of Shannon inter-
val entropy and derived some new characterisations
to certain probability distributions as well as study its
important properties. The proposed measure has sev-
eral advantage. The measure proposed for doubly trun-
cated random variable appears in quasar survey, where
an investigator assumes that the apparent magnitude
is doubly truncated. Also, the times to progression for
patients with certain disease who received chemother-
apy, experienced tumour progression and subsequently
died, are doubly truncated. Secondly, quantile functions
(QFs) have several properties that are not shared by dis-
tribution functions. Application of these properties give
some new results and better insight into the properties
of themeasure that are difficult to obtain in the conven-
tional approach. However, the use of QFs in the place of
F provides new models, alternative methodology, eas-
ier algebraic manipulations, and methods of analysis in
certain cases and some new results that are difficult to
derive by using distribution function.

The paper is organised as follows. In Section 2,
we consider the quantile version of Shannon interval
entropy. In Section 3, the quantile interval entropy has
been derived in case of some specific distributions. In
Section 4, we study characterisation results concerning
Quantile Interval Entropy (QIE) and also characterise a
few specific lifetime distributions. Finally, conclusions
have been given along with comments.

2. Quantile interval entropy

Defining a doubly truncated random variable (X | u1 ≤
X ≤ u2)which represents the lifetime of a unit between
u1 and u2, where (u1, u2) ∈ D = {(u1, u2);Q(u1) <

Q(u2)}. Corresponding to (4), a measure of uncertainty
for the doubly truncated random variable in term of
quantile function (4) is defined as

Ḩ(u1, u2) = −
∫ u2

u1

f (Q(p))
(u2 − u1)

log
f (Q(p))
u2 − u1

dQ(p)

= log(u2 − u1)

+ 1
(u2 − u1)

∫ u2

u1
log(q(p)) dp. (8)

The important quantile measures useful in reliabil-
ity analysis are hazard quantile function and reversed
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hazard quantile, defined as A(u) = ((1 − u)q(u))−1

and A(u) = (uq(u))−1, respectively, corresponding
to the hazared rate a(x) = f (x)/F(x) and reversed
hazared rate a(x) = f (x)/F(x) of X. In doubly trun-
cation, Ruiz and Navarro (1996) defined the gener-
alised hazard function (GHF) given by h1(t1, t2) =
f (t1)/(F(t2) − F(t1)) and h2(t1, t2) = f (t2)/(F(t2) −
F(t1)), respectively. Thus, generalised quantile hazard
functions (GQHF) are defined as

ḩ1(u1, u2) = 1
(u2 − u1)q(u1)

and

ḩ2(u1, u2) = 1
(u2 − u1)q(u2)

, (9)

respectively. Equation (8) can be rewritten as

Ḩ(u1, u2) = 1 − 1
(u2 − u1)

∫ u2

u1
logA(p) dp

+ 1
(u2 − u1)

[(1 − u2) log(1 − u2)

− (1 − u1) log(1 − u1) + log(u2 − u1)],
(10)

Ḩ(u1, u2) = 1 − 1
(u2 − u1)

∫ u2

u1
logA(p) dp

+ 1
(u2 − u1)

[u2 log(u2 − u1) log u1

+ log(u2 − u1)] (11)

where (10) and (11) are the expression of quan-
tile entropy in terms of hazard quantile function
and reversed hazard quantile function, respectively.
Using (6), (7) and (8), the quantile entropy (5) can be
decomposed as

Ḩ = u1Ḩ̄(u1) + (u2 − u1)Ḩ(u1, u2) + (1 − u2)Ḩ(u2)

− [u1 log u1 + (u2 − u1) log(u2 − u1)

+ (1 − u2) log(1 − u2)]. (12)

The identity (12) can be interpreted by decomposing
the uncertainty about the failure of item into in the
following way. into four parts:

(i) The uncertainty about the failure time in (0, u1)
given that the item has failed before u1,

(ii) The uncertainty about the failure time in the
interval (u1, u2) given that the item has failed
after u1 but before u2,

(iii) The uncertainty about the failure time in (u2,∞)

given that it has failed after u2,
(iv) The uncertainty of the item that has failed

before u1 or in between u1 and u2 or after
u2,Differentiating Ḩ(u1, u2) with respect to u1

and u2, we have

∂Ḩ(u1, u2)
∂u1

= ḩ1(u1, u2)
(
log ḩ1(u1, u2)

+ Ḩ (u1, u2) − 1
)

(13)

and

∂Ḩ(u1, u2)
∂u2

= −ḩ2(u1, u2)
(
log ḩ2(u1, u2)

+ Ḩ (u1, u2) − 1
)
. (14)

When Ḩ(u1, u2) is increasing in u1 and u2, then, (13)
and (14) together imply

(1 − log ḩ1(u1, u2))

≤ Ḩ(u1, u2) ≤ (
1 − log ḩ2(u1, u2)

)
.

Nair and Rajesh (2000) gave some applications of geo-
metric vitality function. Sunoj et al. (2009) discussed
few properties of this measure and showed that it
determines the distribution function uniquely. Next, we
define the quantile-based geometric vitality function.

Definition 2.1: Let X be a non-negative random vari-
able then geometric vitality quantile function (GVQF)
for a doubly truncated random variable is defined by

G(u1, u2) = E(logX | u1 < X < u2)

= 1
(u2 − u1)

∫ u2

u1
fQ(p)q(p) logQ(p) dp

= 1
(u2 − u1)

∫ u2

u1
logQ(p) dp. (15)

This gives the geometric mean life of a doubly trun-
cated random variable between the points u1 and u2.
Relationships between geometric vitality quantile func-
tion (15) for doubly truncated random variables and
generalised hazard quantile function (9) are given in
Table 1.

where

R(u1, u2) = E
(
1
X

∣∣∣∣ u1 < X < u2
)

= 1
(u2 − u1)

∫ u2

u1

1
Q(p)

dp. (16)

2.1. Relationship between H(u1,u2) and quantile
conditionmeasure of uncertainty

Based on residual life distribution, Sankaran andGupta
(1999) have introduced a new measure of uncer-
tainty known as conditional measure of uncertainty,
which is defined as M(X; t) = −E(log f (X) |X > t) =
−(1/F(t))

∫∞
t f (x) log f (x) dx. The doubly truncated

situation was considered in Sunoj et al. (2009) given
as followsM(X; t1, t2) = −E(log f (X) | t1 < X < t2) =
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Table 1. Relationship between GVQF and GHQF.

Distribution Quantile Functions G(u1, u2)

Exponential −λ−1 log(1 − u) 1
λ
[ḩ1(u1, u2) logQ(u1) − ḩ2(u1, u2) logQ(u2) + R(u1, u2)]

Finite Range 1
a (1 − (1 − u)1/b) 1

(ab) [(1 − aQ(u1))ḩ1(u1, u2) logQ(u1) − (1 − aQ(u2))ḩ2(u1, u2) logQ(u2) + R(u1, u2) − a]

Pareto-II 1
p ((1 − u)1/q − 1) 1

(pq) [(1 + pQ(u1))ḩ1(u1, u2) logQ(u1) − (1 + pQ(u2))ḩ2(u1, u2) logQ(u2) + R(u1, u2) + p]

Power au
1/b

log a + 1
b

[
Q(u2)ḩ2(u1, u2) log

(
Q(u2)
a

)
− Q(u1)ḩ1(u1, u2) log

(
Q(u1)
a

)
− 1

]
Pareto-1 a(1 − u)−1/b log a + 1

b

[
Q(u2)ḩ2(u1, u2) log

(
a

Q(u2)

)
− Q(u1)ḩ1(u1, u2) log

(
a

Q(u1)

)
+ 1

]

Table 2. Relation between M̧(u1, u2) and GHQF for various distributions.

Distribution Quantile Functions M̧(u1, u2)

Exponential −λ−1 log(1 − u) λm(u1, u2) − log λ

Finite range 1
a (1 − (1 − u)1/b) − log ab + (−b + 1)E[log(1 − aX) | u1 < X < u2]

Pareto -II 1
p ((1 − u)1/q − 1) (q + 1)E[log(1 + pQ(u)) | u1 < X < u2] − log pq

Power au
1/b

(
b−1
b

) [
1 + Q(u1)ḩ1(u1, u2) log

(
Q(u1)
a

)
− Q(u2)ḩ2(u1, u2) log

(
Q(u2)
a

)]
+ log

( a
b

)
Pareto -I a(1 − u)−1/b

(
b+1
b

) [
1 − Q(u1)ḩ1(u1, u2) log

(
a

Q(u1)

)
+ Q(u2)ḩ2(u1, u2) log

(
a

Q(u2)

)]
+ log

( a
b

)
Weibull (− log(1 − u))1/p − log p − (p − 1)G(u1, u2) + E[(X)p | u1 < X < u2]

Rayleigh (− log(1 − u))1/2 − log 2 − log G(u1, u2) + E[(X)2 | u1 < X < u2]

((−1)/(F(t2) − F(t1)))
∫ t2
t1 f (x) log f (x) dx. Using (4),

the quantile-based condition measure of uncertainty
for the doubly truncated random variable defined as

M̧(u1, u2)

= − 1
(u2 − u1)

∫ u2

u1
f (Q(u)) log f (Q(u)) dQ(u)

= 1
(u2 − u1)

∫ u2

u1
log q(u) du. (17)

Using (17) in (8), we obtain

M̧(u1, u2) = Ḩ(u2 − u1) − log(u2 − u1). (18)

Differentiation of (18) with respect to u1 and u2,
respectively, provides the relationships with GHQF,
which is given as ∂M̧(u1, u2)/∂u1 = ∂Ḩ(u1, u2)/∂u1 +
ḩ1(u1, u2), and ∂M̧(u1, u2)/∂u2 = ∂Ḩ(u1, u2)/∂u2 −
ḩ2(u1, u2). The various relationships between the
quantile condition measure of uncertainty (17) and
GHQF (9) for some commonly used probabilitymodels
are given in Table 2.

3. Quantile interval entropy for various
univariate distributions

In reliability theory, while studying the lifetime of a
component or a system, a flexible model which is used
in the literature is that of a generalised Pareto distribu-
tion (GPD) with survival function

F̄(x) =
(

b
ax + b

)1/a+1
, x > 0 b > 0, a > −1.

It plays an important role in extreme value theory
and other branches of statistics. The GPD, as a family

of distributions, includes the exponential distribution
when a → 0, the Pareto type-II distribution or Lomax
distribution for a > 0, which is used in the investiga-
tion of city population, occurrence of natural resources,
insurance risk, size of human settlements, reliability
modelling and business failure. It has been an impor-
tant model in many socio-economic studies. The GPD
becomes power distribution for −1 < a < 0. Next, let
us discuss some examples on expression for quantile
interval entropy function for some commonly used
univariate distribution.

Example 3.1: If X is a random variable follow-
ing the GPD with quantile function and quantile
density function are given, respectively, by Q(p) =
(b/a)((1 − p)−a/(a+1) − 1) and q(p) = (b/(a + 1))
(1 − p)−((2a+1)/(a+1)). Hence quantile interval entropy
(8) for GPD is given by

Ḩ(u1, u2)

= log(u2 − u1) + 1
(u2 − u1)

∫ u2

u1
log q(p) dp

= log(u2 − u1) + 1
(u2 − u1)∫ u2

u1
log

[(
b

a + 1

) (
1 − p

)− (2a + 1
a + 1

)]
dp,

= log(u2 − u1) +
log

(
b

a+1

)
(u2 − u1)

∫ u2

u1
dp

−
(

2a + 1
(a + 1)(u2 − u1)

)∫ u2

u1
log(1 − p) dp,
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which gives,

Ḩ(u1, u2) = log(u2 − u1) + log
(

b
a + 1

)

−
(
2a + 1
a + 1

)
1

(u2 − u1)
[(1 − u2)(

1 − log(1 − u2)
)− (1 − u1)(

1 − log(1 − u1)
)]
. (19)

When u1 = u and u2 = 1, then (19) reduces to Ḩ(u) =
log(b/(a + 1)) + ((2a + 1)/(a + 1)) − (a/(a + 1))
log(1 − u), the quantile residual entropy (6) for GPD.
Also when u1 = 0 and u2 = u, then (19) reduces to
Ḩ̄(u) = log(b/(a + 1)) + ((2a + 1)/(a + 1)) + log u
+ ((2a + 1)/(a + 1))[((1 − u)/u) log(1 − u) + 1], the
quantile past entropy (7) for GPD.

Example 3.2: If random variable X having the Pareto-
II distribution with quantile function and quantile
density function are given, respectively, by Q(p) =
a((1 − p)−1/b − 1) and q(p) = (a/b)(1 − p)−(1+b)/b.
Then quantile interval entropy (8) becomes

Ḩ(u1, u2) = log(u2 − u1) + 1
(u2 − u1)∫ u2

u1
log

(a
b
(1 − p)(−(1+b))/b

)
dp

= log(u2 − u1) + log
( a
b
)

(u2 − u1)

∫ u2

u1
dp

− (1 + b)
b(u2 − u1)

∫ u2

u1
log(1 − p) dp

= log(u2 − u1) + log
(a
b

)

− (1 + b)
b(u2 − u1)

[
(
1 − u2)

(
1 − log(1 − u2)

)
−(1 − u1)(1 − log(1 − u1)

)
].

Example 3.3: If a random variable X follows the
rescaled beta distribution distribution with quantile
and quantile density functions are given, respectively,
by Q(p) = R(1 − (1 − p)1/c) and q(p) = (R/c)(1 −
p)(1−c)/c. Then quantile interval entropy for the
rescaled beta distribution is given as

Ḩ(u1, u2) = log(u2 − u1) + 1
(u2 − u1)∫ u2

u1
log

(
R
c
(1 − p)(1−c)/c

)
dp,

= log(u2 − u1) + log
(R
c
)

(u2 − u1)

∫ u2

u1
dp

+ (1 − c)
c(u2 − u1)

∫ u2

u1
log(1 − p) dp

which gives,

Ḩ(u1, u2) = log(u2 − u1) + log
(
R
c

)

+
(
1 − c
c

)(
1

u2 − u1

)

[(1 − u2)(1 − log(1 − u2))

− (1 − u1)(1 − log(1 − u1))].

Example 3.4: If a random variable X having half
logistic distribution with quantile and quantile den-
sity functions as Q(p) = σ log((1 + p)/(1 − p)) and
q(p) = 2σ/(1 − p)(1 + p), respectively. Then quantile
interval entropy (8) for half logistic distribution is given
as

Ḩ(u1, u2) = log(u2 − u1) + 1
(u2 − u1)∫ u2

u1
log

(
2σ

(1 − p)(1 + p)

)
dp,

= log(u2 − u1) + log 2σ

− 1
(u2 − u1)

∫ u2

u1
log(1 − p)(1 + p) dp.

after some algebraic simplifications, we obtain

Ḩ(u1, u2) = log(u2 − u1) + log(2σ)

− 1
(u2 − u1)

(1 − u2)(1 − log(1 − u2))

+ 1
(u2 − u1)

(1 − u1)(1 − log(1 − u1))

− 1
(u2 − u1)

(1 + u2)(log(1 + u2) − 1)

+ 1
(u2 − u1)

(1 + u1)(log(1 + u1) − 1).

(20)

Put u1 = u and u2 = 1, in (20), we have the quantile
residual entropy for the half logistic distribution which
is given by

Ḩ(u) = 3 + log 2σ − 2
(1 − u)

log 2

+ log(1 − u) + 2
(1 − u)

log(1 + u),

and for u1 = 0 and u2 = u then we get quantile past
entropy for the half logistic distribution as

Ḩ̄(u) = 2 + log u + log 2σ −
(
1 + u
u

)
log(1 + u)

+
(
1 − u
u

)
log(1 − u).
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Example 3.5: If a random variable X having log
logistic distribution with quantile function and quan-
tile density function are respectively given as Q(p) =
(1/a)((p/(1 − p))1/b) and q(p) = (1/ab)(p/
(1 − p))1/b((p(1 − p))−1. Then quantile interval
entropy for log logistic distribution is given as

Ḩ(u1, u2)

= log(u2 − u1) + 1
(u2 − u1)∫ u2

u1
log

(
1
ab

(
p

1 − p

)1/b (
p(1 − p)

)−1
)
dp,

= log(u2 − u1) + log
(

1
ab

)
+ 1

(u2 − u1)∫ u2

u1
log

((
p

1 − p

)1/b (
p(1 − p)

)−1
)
dp,

= log(u2 − u1) + log
(

1
ab

)
+ (1 − b)

b(u2 − u1)∫ u2

u1
log p dp − (1 + b)

b(u2 − u1)

∫ u2

u1
log(1 − p) dp.

which gives,

Ḩ(u1, u2)

= log(u2 − u1) + log
(

1
ab

)

+
(
1 − b
b

)
1

(u2 − u1)

[u2
(
log u2 − 1

)− u1(log u1 − 1)]

−
(
1 + b
b

)
1

(u2 − u1)
[(1 − u2)

(
1 − log(1 − u2)

)
− (1 − u1)

(
1 − log(1 − u1)

)
]. (21)

Substituting u1 = u and u2 = 1 in (21), then we get
quantile residual entropy for log logistic distribution
given as

Ḩ(u) = 2 + log
(

1
ab

)
+
(
b − 1
b

)(
u

1 − u

)
log u

−
(
1
b

)
log(1 − u),

whereas the quantile past entropy for log logistic dis-
tribution is obtain, when we take u1 = 0 and u2 = u is
given as

Ḩ̄(u) = 2 − log
(

1
ab

)
+ 1

b
log u

+
(
1 + b
b

)(
1 − u
u

)
log(1 − u).

Example 3.6: Let X be a random variable having
the exponential geometric distribution with quantile
and quantile density functions are given, respectively,
by Q(p) = (1/λ)(log((1 − qp)/(1 − p))) and q(p) =
(1/λ)((1 − q)/(1 − qp))(1 − p)−1. Then quantile
interval entropy for the exponential geometric distri-
bution is given as

Ḩ(u1, u2) = log(u2 − u1) + 1
(u2 − u1)∫ u2

u1
log

[
1
λ

(
1 − q
1 − qp

)
(1 − p)−1

]
dp,

= log(u2 − u1) + log
(
1 − q

λ

)

− 1
(u2 − u1)∫ u2

u1
log

[(
1 − qp

)
(1 − p)

]
dp,

which gives

Ḩ(u1, u2)

= log(u2 − u1) + log
(
1 − q

λ

)

− 1
q(u2 − u1)

[(1 − qu2)(1 − log(1 − u2))

− (1 − qu1)(1 − log(1 − u1))]

− 1
(u2 − u1)

[(1 − u2)
(
1 − log(1 − u2)

)
− (1 − u1)(1 − log(1 − u1))]. (22)

Particularly, if we put u1 = u and u2 = 1 in (22), then
we get quantile residual entropy for the exponential
geometric distribution as

Ḩ(u) = log 2 + log(1 − u) + log
(
1 − q

λ

)

+ 1
q
[
(1 − q) log(1 − q)

−(1 − qu) log(1 − qu)
]
,

and if we take u1 = 0 and u2 = u, we get quantile past
entropy for the exponential geometric distribution as

Ḩ̄(u) = log u + log
(
1 − q

λ

)
+
(
1 + q
q

)(
1
u

)

+ log
(

1 − u
1 − qu

)
.

Example 3.7: If X is a random variable following
the quantile function and quantile density functions
of linear hazard rate distribution are given, respec-
tively, by Q(p) = (1/(a + b)) log((a + bp)/a(1 + p))



STATISTICAL THEORY AND RELATED FIELDS 65

and q(p) = ((a + b)/(b − a))(1/(a + bp)(1 + p)).
Hence quantile interval entropy Ḩ(u1, u2) is given as

Ḩ(u1, u2) = log(u2 − u1)

+ 1
(u2 − u1)

∫ u2

u1
log q(p) dp,

= log(u2 − u1) + 1
(u2 − u1)∫ u2

u1
log

((
a + b
b − a

)
1

(a + bp)(1 + p)

)
dp,

= log(u2 − u1) + log
(
b + a
b − a

)

− 1
(u2 − u1)

[∫ u2

u1
log(1 + p) dp

+
∫ u2

u1
log(a + bp) dp

]
.

After some algebraic simplifications, we have

Ḩ(u1, u2) = 2 + log(u2 − u1) + log
(
b + a
b − a

)

+
(

1 + u1
u2 − u1

)
log(1 + u1)

−
(

1 + u2
u2 − u1

)
log(1 + u2)

+ 1
b(u2 − u1)

[(a + bu1) log(1 + bu1)

− (1 + bu2) log(1 + bu2)].

Example 3.8: If X be a random variable following
the Davies distribution (2006), that do not have any
closed form expressions for distribution and den-
sity function, then QFs and quantile density func-
tions are given, respectively, by Q(p) = cpλ1(1 − p)−λ2

and q(p) = cp(λ1−1)(1 − p)(−λ2−1)(λ2p + λ1(1 − p)).
Hence quantile interval entropy (8) for Davies distri-
bution is given by

Ḩ(u1, u2) = log(u2 − u1)

+ 1
(u2 − u1)

∫ u2

u1
log q(p) dp,

= log(u2 − u1) + 1
(u2 − u1)∫ u2

u1
log[cp(λ1−1)(1 − p)(−λ2−1)

(
λ2p + λ1(1 − p)

)
]dp,

= log(u2 − u1) + log c + 1
(u2 − u1)[

(λ1 − 1)
∫ u2

u1
log p dp − (λ2 + 1)

∫ u2

u1
log(1 − p) dp

]
+ 1

(u2 − u1)

∫ u2

u1
log

(
λ2p + λ1(1 − p)

)
dp,

We get, after some algebraic calculations,

Ḩ(u1, u2) = (λ2 − λ1 + 1) + log c + log(u2 − u1)

+ (λ1 − 1)u2
(u2 − u1)

log u2

− u1(λ1 − 1)
(u2 − u1)

log u1 + (λ2 + 1)(1 − u2)
(u2 − u1)

log(1 − u2) + (λ2 + 1)

(1 − u1)
(u2 − u1)

log(1 − u1)

+ (λ2u2 + (1 − u2)λ1)
(λ2 − λ1)(u2 − u1)

log(λ2u2

+ (1 − u2)λ1) − (λ2u1 + (1 − u1)λ1)
(λ2 − λ1)(u2 − u1)

log (λ2u1 + (1 − u1) λ1). (23)

If we substitute u1 = u and u2 = 1, then (23) reduces
to

Ḩ(u) = (λ2 − λ1 + 1) + log c

− 1
(1 − u)(λ2 − λ1)λ2 log λ2

− λ2 log(1 − u)

− 1
(1 − u)(λ1 − 1)u

log u

− (λ1(1 − u) + λ2u)
(1 − u)(λ2 − λ1)

log(λ1(1 − u) + λ2u),

the quantile residual entropy (6) for Davies distri-
bution. When we put u1 = 0 and u2 = u, then (23)
reduces to

Ḩ̄(u) = (λ2 − λ1 + 1) + log c + λ1 log u

+ (λ2 + 1)(1 − u)
u

log(1 − u)

+ (λ2u + (1 − u)λ1)
(λ2 − λ1)u

log(λ2u + (1 − u)λ1)

− λ1

(λ2 − λ1)u
log λ1,

the quantile past entropy (7) for Davies Distribution.

Example 3.9: If X be a random variable following the
Govindarajulu’s distribution that donot have any closed
form expressions for distribution and density func-
tion, then QFs and quantile density functions are given,
respectively, by

Q(u) = a{(b + 1)ub − bub+1} and

q(u) = ab(b + 1)(1 − u)ub−1; 0 ≤ u ≤ 1; a, b > 0.
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Thus quantile-based interval entropy (8) for Govin-
darajulu’s distribution is given as

Ḩ(u1, u2) = log(u2 − u1) + 1
(u2 − u1)∫ u2

u1
log ab(b + 1)(1 − p)pb−1 dp,

= log(u2 − u1) + log ab(b + 1)

+ 1
(u2 − u1)

∫ u2

u1
log(1 − p) dp

+ (b − 1)
(u2 − u1)

∫ u2

u1
log p dp (24)

which gives

Ḩ(u1, u2) = log(u2 − u1) + log ab(b + 1)

−
(

1 − u2
u2 − u1

)
log(1 − u2)

+
(

1 − u1
u2 − u1

)
log(1 − u1)

+ (b − 1)
u2 − u1

(
u2 log u2 − u1 log u1

)
.

Table 3 provides the relationships between the quan-
tile interval entropy Ḩ(u1, u2), quantile conditional
expectation

m(u2, u1) = E(X | u1 < X < u2)

= 1
(u1 − u2)

∫ u2

u1
Q(u) du, (25)

and generalised hazard quantile function ḩi(u1, u2); i =
1, 2 for some commonly used distribution.

4. Characterisation results

In the literature, the problem of characterising prob-
ability distributions has been investigated by many
researchers. The standard practice inmodelling statisti-
cal data is either to derive the appropriate model based
on the physical properties of the system or to choose
a flexible family of distributions and then find a mem-
ber of the family that is appropriate to the data. In
both the situations, it would be of more use if we find
characterisation theorems that explain the distribution
using important measures of indices as. In this section,
we discussed some characterisation theorems for life-
time distribution taking some important concepts like
GHQF, GVQF and quantile-based condition Shannon’s
measures of uncertainty.

Theorem 4.1: Let X be a random variable defined on
(0,∞) having the quantile function Q(u), then the rela-
tionship

G(u1, u2) = 1
k
[(1 + CQ(u1))ḩ1(u1, u2) logQ(u1)

− (1 + CQ(u2))ḩ2(u1, u2) logQ(u2)

+ R(u1, u2) + C] (26)

where k, C are constants holds for all (u1, u2) ∈ D. If and
only if for

(i) C=0, X has exponential distribution with quantile
function Q(u) = −(1/λ) log(1 − u),

(ii) C > 0,X has Pareto distribution with quantile func-
tion Q(u) = (1/a)(1 − u)1/b, and

(iii) C < 0, X has finite range distribution with quantile
function Q(u) = a(1 − (1 − u)1/b.

Proof: The if part is straightforward from the Table 1.
To prove the converse, let us assume that (26) holds.
Using (15), (9) and (16) in (26), we obtain

∫ u2

u1
fQ(p)q(p) logQ(p) dp

= 1
k
{
logQ(u1) (1 + CQ(u1)) fQ(u1)

− (1 + CQ(u2)) fQ(u2) logQ(u2)
}

+
∫ u2

u1

1
Q(p)

dp

+ C(u2 − u1). (27)

Differentiating (27) with respect to ui, i=1,2 we get,
after some algebraic calculations,

f ′(Q(ui))
f (Q(ui))

= (k + C)

(1 + CQ(ui))
, i = 1, 2

or f ′(Q(u))/f (Q(u)) = (k + C)/(1 + CQ(u)), which
gives the required result. �

Theorem 4.2: For a non-negative random variable X,
the relation

M̧(u1, u2) − λm(u1, u2) = k, (k > 0, a constant)
(28)

holds for all (u1, u2) ∈ D if and only if X follows
exponential distribution with quantile function Q(u) =
−(1/λ) log(1 − u).

Proof: The if part is straightforward from the Table 2.
To prove the converse, let us assume that (28) holds.
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Table 3. Relationships between ḩi(u1, u2); i = 1, 2 and Ḩ(u1, u2).

Distribution Quantile Functions Ḩ(u1, u2)

Exponential −λ−1 log(1 − u) λm(u1, u2) − λQ(u2)) − log ḩ2(u1, u2)

Finite Range 1
a (1 − (1 − u)1/b) (−b + 1)E[log(1 − aQ(u) | u1 < X < u1] − log ab

((1−aQ(u1)b−((1−aQ(u2)b

Pareto-II 1
p ((1 − u)1/q − 1) (q + 1)E[log(1 + pQ(u)) | u1 < X < u1] − log pq

((1+pQ(u1)−q−((1+pQ(u2)−q

Power au
1/b

1 + G(u1, u2) + Q(u1)ḩ1(u1, u2) log
(
Q(u1
a

)
− Q(u2)ḩ2(u1, u2) log

(
Q(u2
a

)
− log

[
b(

Q(u2)

a

)b−( Q(u1)

a

)b
]

Pareto-1 a(1 − u)−1/b 1 + G(u1, u2) − Q(u1)ḩ1(u1, u2) log
(

a
Q(u1)

)
+ Q(u2)ḩ2(u1, u2) log

(
a

Q(u2)

)
− log

[
b(

a
Q(u1)

)b−( a
Q(u1)

)b
]

Then using (16) and (25), (28) becomes

∫ u2

u1
log q(p) dp − λ

∫ u2

u1
Q(p) dp = k(u2 − u1).

(29)
Differentiating (29) with respect to ui, i = 1, 2, we get,
after some algebraic calculations,

f (Q(ui)) = Ke−λQ(ui), i = 1, 2 and K > 0 (constant)

or f (Q(u)) = Ke−λQ(u), which characterise the expo-
nential distribution. �

Theorem 4.3: If X be a non-negative random variable
with quantile function Q(u), and constants k>0 and
c>0. A relationship of the form

M̧(u1, u2) − (c + 1)G(u1, u2) = k, (30)

holds for a < u1 < u2 with Q(u2) < Q(u2) if and only
if X follows Pareto-1 distribution with quantile function
Q(u) = (a/(1 − u)1/c); a > 0.

Proof: The if part is straightforward. To prove the con-
verse, let us assume that (30) holds. Then using (15)
and (16), we have

∫ u2

u1
log q(p) dp − (c + 1)

∫ u2

u1
logQ(p) dp = k(u2 − u1). (31)

Differentiating (31) with respect to ui, i = 1, 2, we get,
after some algebraic calculations

f (Q(ui)) = k1(Q(ui))−(c+1),

i = 1, 2 and k1 (constant)

or f (Q(u)) = k1 (Q(u))−(c+1), which gives the required
result. �

Next, we state the characterisation of power distri-
bution. The proof is similar to that of Theorem 4.3 and
hence omitted.

Theorem 4.4: If X is a non-negative random variable
with quantile function Q(u), and K > 0, C>1 be con-
stants. A relationship of the form

M̧(u1, u2) + (c − 1)G(u1, u2) = k,

is holds for 0 < u1 < u2 < b with Q(u1) < Q(u1) if
and only if X follows power distribution with quantile
function Q(u) = au1/b.

Theorem 4.5: Let X be a random variable defined on
(0,∞) with quantile function Q(u). Then X follows one-
parameter log exponential distribution if and only if

M̧(u1, u2) = logA(θ) − θG(u1, u2) − mc(u1, u2),
(32)

where mc(u1, u2) = E[logC(X) | u1 < X < u2] for all
(u1, u1) ∈ D.

Proof: The if part is straightforward from the Table 1.
To prove the converse, let us assume that (32) holds.
Using (15) and (16) in (32), we have∫ u2

u1
log f (Q(p)) dp = (u2 − u1) logA(θ)

− θ

∫ u2

u1
logQ(p) dp −

∫ u2

u1
log C(Q(p)) dp. (33)

Differentiating (33) with respect to ui, i = 1, 2 we get,
after some algebraic calculations,

f (Q(ui)) = (Q(ui))θ C(Q(ui))
A(θ)

, i = 1, 2

or f (Q(u)) = (Q(u))θC(Q(u))/A(θ), which gives the
required result. �

We conclude this section by characterising expo-
nential distribution. The proof is similar to that of
Theorem 4.5 and hence omitted.

Theorem 4.6: Let X ∈ (0,∞) be a random variable
having absolutely continuous quantile function Q(u).
Then the relationship of the form

M(u1, u2) = log b(θ) − m(u1, u2) log θ − ma(u1, u2),

where ma(u1, u2) = E[log a(X) | u1 < X < u2] holds
for all (u1, u2) ∈ D if and only if X follows one-parameter
exponential distribution.
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4.1. Exploratory data analysis using Q-Q Plot

Quantile-quantile (Q-Q) plot is a diagnostic tool, which
is widely used to assess the distributional similarities
and differences between two independent univariate
samples. It is also a popular device for checking the
appropriateness of a specified probability distribution
for a given univariate data. The advantages of the Q-Q
plot are: The sample sizes do not need to be equal.Many
distributional aspects can be simultaneously tested. For
example, shifts in location, shifts in scale, changes
in symmetry, and the presence of outliers can all be
detected from this plot. The Q-Q plot is similar to a
probability plot. For a probability plot, the quantiles for
one of the data samples are replaced with the quantiles
of a theoretical distribution.

Example 4.1: Consider the Rainfall data from seeded
clouds and non-seeded clouds are given below: (num-
bers in paratheses indicate the number of repetitions of
the values)

Rainfall from control clouds: 1, 4.9(2), 11.5, 17.3,
21.7, 24.4, 26.1, 26.3, 28.6, 29,36.6,41.1, 47.3, 68.5, 81.2,
87.0, 95, 147.8, 163, 243.3, 321.2, 345.5,372.4, 830.1,
1202.6.

Rainfall from seeded clouds: 4.1, 7.7, 17.5, 31.4,
32.7, 40.6, 92.4, 115.3, 118.3, 119, 129.6, 198.6, 200.7,
242.5, 255.0, 274.7(2),302.8,334.1, 430.0, 489.1, 703.4,
978, 1656, 1697.8, 2745.6. (Source: Simpson, Olsen,
& Eden, 1975)

The conclusions of our data analysis are as follows:
Compare the location of the data sample (mean,median):
Seeded rainfall has greater location parameter than
non-seeded rainfall.

Compare scale: The interquartile range indicates the
variability of seeded rainfall is greater than non-seeded
rainfall.

Table 4. Numerical summary of rainfall for seeded clouds and
non- seeded clouds.

Rainfall from
non-seeded clouds

Rainfall from
seeded clouds

Sample size 26 26
Number of different values 25 25
Sample mean 601.8 1374.85
Sample standard deviation 849.66 1938.533
S/

√
n 166.63 380.18

sample min 1 4.1
Sample max 1202.6 2745.6
Next to min 4.9 7.7
Next to max 830.1 1697.8
Q1 24.4 92.4
Q2 44.2 221.25
Q3 163 430
MQ 93.7 261.2
IQR2 277.2 675.2
Q2−MQ
IQR2 −0.18 −0.06

Upper fence 370.9 936.4
Upper outliers 830.1,1202.6 1656,1697.8,2745.6
MIN−MQ
IQR2 −0.33 −0.38

Conclusion Skew symmetric

Table 5. Quantile plot table of seeded rainfall.

Rank Q(ui) ui Zi

1 4.1 .01923 −2.070
2 7.7 .076923 −1.425
3 17.5 .096154 −1.304
. . . .
. . . .
. . . .
24 1656 .90385 1.304
25 1697 .94231 1.425
26 2745.6 .98077 2.069

Side by side box plots: These plot reader can draw
using Table 4; non-seeded rainfall has a skew distribu-
tion,whereas seeded rainfall is symmetric.

Identification of probability laws: Seeded rainfall and
non-seeded data both indicates fit by exponential dis-
tribution.

The Q-Q plot is a graphical technique for deter-
mining if two data sets come from populations with
a common distribution. A Q-Q plot is a plot of the
quantiles of the first data set against the quantiles of
the second data set. In general for computing a nor-
mal probability plot,the standard normal table could be
used to approximate the normal quantile. We look up
the Z value corresponding to the pi for i = 1, 2, 3 · · · n
and then plot the ordered data against the correspon-
ding Z value. Table 5 displays the quantiles for rainfall

Table 6. Quantile plot table of non-seeded rainfall.

Rank Q(ui) ui Zi

1 1.0 .01923 −2.070
2 4.9 .076923 −1.425
3 4.9 .096154 −1.304
4 11.5 .13462 −1.108
. . . .
. . . .
. . . .
24 372.4 .90385 1.304
25 830.1 .94231 1.425
26 1202.6 .98077 2.070
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data from seeded clouds as well as the corresponding
normal quantile approximated from a standard normal
table (Table 6).

5. Conclusion

Recently, there has been a great interest in the study
of information measures based on quantile functions,
namely quantile entropy. When a system has lifetime
between two time points (t1, t2), the interval entropy
plays an important role, in the field of reliability theory
and survival analysis. The present work introduced an
alternative approach to interval entropy measure using
quantile functions. The proposed measures may help
information theorists and reliability analysts to study
the various characteristics of a system when it fails
between two time instants. The results presented here
generalise the related existing results in context with
quantile entropy for residual and past lifetime random
variables.
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