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ABSTRACT
Nonparametric stochastic volatilitymodels, althoughprovidinggreat flexibility formodelling the
volatility equation, often fail to account for useful shape information. For example, a model may
not use the knowledge that the autoregressive component of the volatility equation is mono-
tonically increasing as the lagged volatility increases. We propose a class of additive stochastic
volatility models that allow for different shape constraints and can incorporate the leverage
effect – asymmetric impact of positive and negative return shocks on volatilities. We develop
a Bayesian fitting algorithm and demonstrate model performance on simulated and empirical
datasets. Unlike general nonparametric models, our model sacrifices little when the true volatil-
ity equation is linear. In nonlinear situations we improve themodel fit and the ability to estimate
volatilities over general, unconstrained, nonparametric models.
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1. Introduction

In financial econometrics, volatility is usually defined
as the conditional standard deviation of a discrete-time
return series {rt , t ∈ Z}; namely, σt = √

Var(rt |Ft−1)

where Ft−1 is the filtration up to time t−1. Since
Engle (1982)’s pioneering autoregressive conditional
heteroscedastic (ARCH) model, a plethora of para-
metric models have been proposed to model finan-
cial volatilities. A popular approach is the stochas-
tic volatility (SV) model that originated from Hull
and White (1987)’s stochastic differential equation for
option pricing. In volatility modelling, two functional
relationships are of particular interest – the depen-
dence of volatilities on lagged volatilities, i.e., the
autoregressive component, as well as the relationship
between volatilities and lagged return shocks, which
is also known as the news impact curve in the ARCH
literature (see, e.g., Engle & Gonzalez-Rivera, 1991;
Engle & Ng, 1993). The basic discrete-time SV model
(Taylor, 1994) is essentially a nonlinear state space
model with the state variables, the log volatilities, fol-
lowing an autoregressive (AR) process. To capture the
asymmetric impact of positive and negative return
shocks on volatilities in SV models, researchers have
introduced the ‘leverage effect’. A leverage effect is
defined as a (usually negative) correlation between the
innovations of the volatility process and the lagged
innovations of the return process (see Harvey & Shep-
hard, 1996; Yu, 2005). When the error distributions in
the SV models (see Section 2) are normal, the leverage
effect can be equivalently expressed as a linear func-
tion of the lagged return innovations in the volatility

equation (see, e.g., Omori, Chib, Shephard, & Naka-
jima, 2007; Yu, 2005, 2012).

Although parametric assumptions in traditional SV
models, such as the linearity of the autoregressive and
leverage components, provide reasonable approxima-
tions in some settings, they can also deviate consider-
ably from the truth. Comte (2004) showed the nonlin-
earity of the autoregressive component in SV models
for large cap indices of several major equity markets.
Yu (2012) found empirical evidence that the leverage
effect for many U.S. large cap equity returns is sig-
nificantly smaller than zero when the lagged return
innovation is negative but not when it is positive, which
implies that a linear leverage function is insufficient to
capture the news impact curve.

Nonparametric or semiparametric SV models can
be used to relax the linearity assumptions in tradi-
tional SV models. Such models offer great flexibility
for modelling the nonlinear functional relationships
in the volatility equation. However, due to the latent
structure of the state space model, they can also lead
to a very large estimation variance for the volatilities.
In this article, we propose to incorporate our knowl-
edge about the shapes (such as monotonicity or piece-
wise monotonicity) of the functional components in
the volatility equation as additional constraints in semi-
parametric SV models. In particular, we implement
the shape constraints in the prior distributions of our
Bayesian semiparametric additive model and show that
the resultingmodel ismore flexible than the linear para-
metric model and that the shape-constrained model
can achieve lower estimation errors of the log volatilities
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and higher predictive log likelihood compared to the
semiparametric model without shape constraints.

The idea of imposing shape constraints in a semi-
parametric SV model is warranted by the availability
of our knowledge about the functional shapes as well
as the proven benefits of imposing shape constraints
in linear and generalised linear models. The past two
decades have witnessed the accumulation of significant
empirical knowledge about the shapes of the autore-
gressive and leverage components in SV models. For
example, the phenomenon of volatility clustering (e.g.,
Rydberg, 2000) suggests that the autoregressive compo-
nent of the volatility equation should be monotonically
increasing as the lagged volatility increases. Addition-
ally, Yu (2012)’s findings show that the leverage func-
tion should at least be monotonically decreasing on the
negative real line. Additionally, it has long been estab-
lished that imposing correct shape constraints in func-
tion estimation problems has the potential of greatly
improvingmodel fit without incurringmuch additional
cost (Ramsay, 1988). As a result, shape-constrained
function estimation has been widely applied in regres-
sion and generalised linearmodels (for Bayesian imple-
mentations, see Brezger & Steiner, 2008; Cai & Dun-
son, 2007; Meyer, Hackstadt, & Hoeting, 2011; Neelon
& Dunson, 2004). In state-space models such as SV
models, there has been, to the best of our knowledge,
no demonstration of the benefits of shape-constrained
state smoothing. It is our belief that the aforementioned
functional shapes shall be exploited to provide addi-
tional regularisation in the semiparametric SV models
to ensure better model fit and prediction accuracy.

The remainder of the article is organised as fol-
lows. In Section 2, we introduce our shape-constrained
semiparametric additive SV model. In Section 3, we
develop the Markov chain Monte Carlo procedures for
sampling from the posterior distribution and a particle-
filter-based procedure for evaluating the predictive log
likelihood. We apply our methods to simulated and
real-world financial returns in Sections 4 and 5 and
demonstrate their advantages over both the linear SV
model and the semiparametric model without shape
constraints. We close with conclusions and discussions
in Section 6.

2. Model specification

2.1. Additive stochastic volatility models

The basic parametric (Gaussian) SV model is

rt = ω + exp(ht/2)εt , εt
iid∼ N(0, 1);

ht = μ+ φht−1 + ηt−1, ηt
iid∼ N(0, σ 2

1 ), (1)

where {εt}t∈Z and {ηt}t∈Z are two mutually indepen-
dent innovation processes. To induce a leverage effect,

we assume that corr(εt−1, ηt) = ρ. Since the error dis-
tributions are normal, the state equation of the lever-
aged SV model can be equivalently expressed as

ht = μ+ φht−1 + ψεt−1 + ξt , ξt
iid∼ N(0, σ 2

2 ), (2)

where ψ = ρσ1, σ2 = σ1
√
1 − ρ2 and {εt}t∈Z is inde-

pendent from {ξt}t∈Z. This alternative form of the
leverage effect (2) has been exploited in several papers
including (Omori et al., 2007; Yu, 2005, 2012).

In this article, we consider the following semipara-
metric stochastic volatility model:

rt = ω + exp(ht/2)εt , εt
iid∼ N(0, 1);

ht = μ+ f (ht−1)+ g(εt−1)+ ξt , ξt
iid∼ N(0, σ 2),

(3)

where the innovations {εt}t∈Z and {ξt}t∈Z are mutually
independent. We assume that the autoregressive com-
ponent, f, and the leverage function, g, are additive. The
leveraged SV model (2) is a special case of (3) when
both f and g are linear functions.Model (3) includes the
models of Comte (2004) and Yu (2012) as special cases:
when g(εt−1) = 0, (3) reduces to Comte (2004)’s non-
parametric unleveraged SVmodel; when f is linear and
g is piecewise linear, (3) becomes Yu (2012)’s semipara-
metric leverage effect model. Additionally, when ξt =
0 for all t, model (3) contains the exponential ARCH
(EGARCH) model of Nelson (1991).

Additional constraints on the functions f and g
are needed for (3) to be identifiable. We assume that
f (hm) = 0 and g(εm) = 0, where hm and εm are two
fixed numbers within the respective ranges of the pro-
cesses {ht}t∈Z and {εt}t∈Z. Under these conditions,
the parameter μ in (3) represents the expected con-
ditional log volatility when ht−1 = hm and εt−1 = εm.
The choice of hm and εm is discussed in Section 2.2. For
the remainder of the article, wewill assume that the data
have already been de-trended, so ω = 0.

2.2. Shape-constrained additive stochastic
volatility models

We call model (3) the shape-constrained semiparamet-
ric additive SV model if f and g are restricted to be
of certain shapes. As discussed in Section 1, for equity
returns, the autoregressive function f is typicallymono-
tonically increasing on the entire real line, while the
leverage function g is monotonically decreasing (at
least) on the negative real line. The findings inYu (2012)
indicate that g(εt−1) might have some change-point
behaviour about zero, but generally, our knowledge of
g(εt−1) for positive εt−1 is mixed.

To construct a monotone function q(x), we consider
the following basis expansion:

q(x) = β0 + β1w1(x)+ · · · + βJwJ(x). (4)
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Ifwj(x)’s are monotonically increasing in x, then q(x) is
monotonically increasing (decreasing) in x if βj ≥ (≤)
0 for all j ≥ 1. In particular, given pre-specified knots
γ0 ≤ · · · ≤ γJ , we propose the following basis functions

wj(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I(x > γj−1)[min(x, γj)− γj−1] − (γj − γj−1)

if 1 ≤ j < M;

I(x > γj−1)[min(x, γj)− γj−1]

ifM ≤ j ≤ J,
(5)

where γM denotes the ‘center’ of the range of x. As
for the choice of M, when the argument of the func-
tion, x, represents the previous log volatility, ht−1, we let
M = �(J + 1)/2�. When x represents the lagged return
innovation, εt−1, we can always include 0 as the knot
γM−1.

The basis functions (5) are a shifted version of the
basis functions used in Neelon and Dunson (2004),
but they considerably improve the computational effi-
ciency for the class of state space models entertained
in this article. Note that under (5), the parameter β0
in (4) represents the ‘center’ of the function through the
equation β0 = q(γM−1), while β0 = q(γ0) under the
original basis functions of Neelon and Dunson (2004).
This makes a difference computationally since the basis
functions are nonorthogonal (hence the coefficients are
mutually dependent by design) and the estimation vari-
ance of q(γM−1) tends to be much smaller than that
of q(γ0) because of the abundance of information con-
tributed by the data from both sides of γM−1. For SV
models or other state space models, the benefits of the
basis functions (5) are even bigger due the necessity
of specifying the knots with a wide enough range to
cover all possible values of the latent variables and the
resulting scarcity (or lack) of data for estimating q(γ0).

Letting w(ht−1) and v(εt−1) denote the basis func-
tions for f and g respectively, we can rewrite (3) as

rt = exp(ht/2)εt , εt
iid∼ N(0, 1);

ht = μ+
K∑

k=1

βkwk(ht−1)+
L∑
l=1

αlvl(εt−1)+ ξt ,

ξt
iid∼ N(0, σ 2). (6)

It is easy to see that model (6) satisfies f (γ h
M−1) =∑K

k=1 βkwk(γ
h
M−1) = 0 and g(γ εM−1) = ∑L

l=1 αl
vl(γ

ε
M−1) = 0, which are the additional constraints

needed for it to be identifiable. We use the following
priors from Neelon and Dunson (2004) on {βk}Kk=1 to
ensure their non-negativity:

β∗
1 ∼ π(β∗

1 );

β∗
k ∼ N(β∗

k−1, τ
2), k ≥ 2;

βk = I(β∗
k > 0)β∗

k , k ∈ {1, . . . ,K}. (7)

The prior for β∗
1 can be based on prior knowledge of

the steepness of the function toward the left tail. How-
ever, if such knowledge is not readily available, the flat
prior π(β∗

1 ) ∝ 1 can be a convenient alternative, which
also has a nice property that the posterior distribu-
tion does not depend on the starting point, nor on the
direction of the latent randomwalk process {β∗

k }Kk=1. In
other words, the posterior will be exactly the same as by
assuming the randomwalk starts at β∗

κ withπ(β∗
κ ) ∝ 1,

for any integer κ from 1 to K.
As for the function g(εt−1) = ∑

l αlvl(εt−1), we
have empirical evidence showing that it is monoton-
ically decreasing on the negative real line but do not
have consistent information about its shape on the pos-
itive real line. Accordingly, our priors for {αl}Ll=1 are
specified as follows.

α∗
1 ∼ π(α∗

1 );

α∗
l ∼ N(α∗

l−1, γ
2), l ≥ 2;

αl = I(α∗
l < 0)α∗

l , l ≤ M − 1; (8)

αl = ι(α∗
l )α

∗
l , l ≥ M. (9)

In the equation above, π(α∗
1 ) can be specified in the

same way as π(β∗
1 ) and ι is an indicator function that

depends on the assumption of the shape of g on the pos-
itive real line – if g(εt−1) is monotonically decreasing
in positive εt−1, then ι(α∗

l ) = I(α∗
l < 0); if g(εt−1) is

monotonically increasing in positive εt−1, then ι(α∗
l ) =

I(α∗
l > 0); finally, if we lack such information or that

g(εt−1) is not monotone for positive εt−1, we can sim-
ply set ι(α∗

l ) = 1 to remove the shape constraint on that
part of the leverage function altogether.

The remaining parameters are assumed to be mutu-
ally independent. For the priors of the variance parame-
ters σ 2, τ 2 and γ 2, we use the conjugate inverse gamma
distribution. We assume a N(0, d2μ) prior for μ and a
N(0, d20) prior for the initial state h1.

3. Model fitting and comparison

3.1. MCMC procedure

We use the Gibbs sampler to simulate from the joint
posterior distribution of model (6). The algorithm for
a single iteration is described below.

Step1− Update {β∗
k }Kk=1 and {α∗

l }Ll=1 sequentially from
their full conditional distributions, which
are mixtures of two truncated normal dis-
tributions for the shape-constrained semi-
parametric model and normal for the cor-
responding semiparametric model without
shape constraints. See the appendix for more
details. For the shape-constrainedmodel, com-
pute {βk}Kk=1 and {αl}Ll=1 deterministically
using (7)–(9).
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Step2− Update the variance parameters τ 2, γ 2 and σ 2

from their inverse gamma full conditional dis-
tributions.

Step3− Update μ from its normal full conditional dis-
tribution.

Step4− Update {ht , t = 1, . . . ,T} sequentially from
their full conditional distributions using the
random-walk Metropolis-Hastings algorithm.

One challenge of this MCMC algorithm is that both
the ‘dependent variable’, ht , and the ‘independent vari-
ables’, ht−1 and εt−1, of the state equation change from
iteration to iteration. Therefore, in order to update the
coefficients {βk}Kk=1 and {αl}Ll=1, we need to ensure that
their respective knot grids cover large enough ranges so
that the values of {ht}t∈Z and {εt}t∈Z are always within
the boundary knots. See the appendix for more details.

Updating the high-dimensional state vector {ht , t =
1, . . . ,T} remains a bottleneck for many applications
of Bayesian state space models. For the linear unlever-
aged SV model, (Kim, Shephard, & Chib, 1998) devel-
oped a popular algorithm by using a mixture of normal
distributions to approximate the log chi-squared distri-
bution in the linearised observation equation and then
applying the augmented Kalman Filter and simula-
tion smoother to improve the efficiency of the MCMC.
This method was later extended to the linear lever-
aged SV model in Omori et al. (2007) and Naka-
jima and Omori (2009). However, this approach hinges
entirely on the linearity of the state equation, which
does not apply in our case. We will briefly discuss other
ways to improve ourMCMCalgorithm in Section 6, but
it is not the objective of this article to develop the most
efficient algorithm for updating the state vector.

3.2. Model comparison criteria

For simulation studies where the true values of the
latent log volatility, ht , are known, model compari-
son can be easily accomplished by comparing the esti-
mated and simulated ht under theMeanAbsolute Error
(MAE) or the Mean Squared Error (MSE). Under these
two loss functions, it is also desirable thatwemake com-
parisons on the log volatility scale rather than the vari-
ance or standard deviation scale since the distribution
of the former is more symmetric.

For empirical data, a likelihood-based criterion such
as the Bayes Factor is a natural choice for model com-
parison. In this article, we use the predictive log like-
lihood as our performance measure. Let rt1:t2 be an
abbreviation for {rt1 , . . . , rt2} and let θ denote all model
parameters. Then the predictive log likelihood over the
test period {T + 1, . . . ,T + S} can be expressed as

log p(r(T+1):(T+S) | r1:T) =
S−1∑
s=0

log p(rT+s+1 | r1:(T+s)),

(10)

where

p(rT+s+1 | r1:(T+s))

=
∫

p(rT+s+1 | hT+s+1)p(hT+s+1 | hT+s, θ , r1:(T+s))

× p(hT+s, θ | r1:(T+s))dhT+s+1dhT+s dθ . (11)

To compute the predictive log likelihood, we propose
to use the ‘Forward Filtering’ stage of the nonlin-
ear Forward-Filtering-Backward-Sampling algorithm
of Godsill, Doucet, and West (2004), which allows us
to carry out multiple-step-ahead prediction very effi-
ciently. A key step in the multiple-step-ahead predic-
tion approach is to generate samples of hT+s, θ | r1:(T+s)
for s>0 (when s=0, the samples of hT , θ | r1:T can
be directly obtained from the output of the MCMC
algorithm). Given that

p(hT+s, θ | r1:(T+s))

= p(rT+s | hT+s, θ , r1:(T+s−1))p(hT+s, θ | r1:(T+s−1))

p(rT+s | r1:(T+s−1))

= p(rT+s | hT+s)

p(rT+s | r1:(T+s−1))
p(hT+s, θ | r1:(T+s−1)), (12)

we can apply Gordon, Salmond, and Smith (1993)’s
bootstrap filter to get weighted samples from the
posterior distribution p(hT+s, θ | r1:(T+s)) without hav-
ing to re-run the MCMC for each s. When apply-
ing the bootstrap filter, we follow the suggestion of
Liu and Chen (1998) and resample using the resid-
ual resampling scheme only when the effective sample
size (ESS) falls below a threshold (see the filtering step
iii in the algorithm below). Although the resampling
approach alleviates the so-called sample impoverish-
ment problem of particle filters, it is still desirable to
re-run the MCMC regularly to obtain new samples. In
other words, we need to pick a moderate step size for
ourmultiple-step-ahead prediction in order to limit the
impact of the sample impoverishment problem while
still allowing fast computation.

In summary, our algorithm is as follows. Let D be
the number of the posterior draws after thinning and
S0 be the step size of themultiple-step-ahead prediction
(i.e., the length of the test data to be evaluated before
we re-run the MCMC to refresh the samples). For s =
0, . . . , S − 1, we iterate the following two steps.

(1) The Prediction Step
(i) If s ≡ 0 (mod S0), run the MCMC to obtain

new samples from the posterior distribu-
tion p(hs, θ | r1:(T+s)). Initialize the particles as
{h(d)T+s, θ

(d); w̃(d)s }Dd=1 where h
(d)
T+s and θ

(d) are
obtained from the MCMC and w̃(d)s = 1/D.

(ii) For d = 1, . . . ,D, draw h(d)T+s+1 from the uni-
variate normal distribution p(hT+s+1 | h(d)T+s,
θ(d), r1:(T+s)).
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(iii) Estimate the predictive likelihood for the
observation rT+s+1 using p̃(rT+s+1 | r1:(T+s))

≈ ∑D
d=1 w̃

(d)
s φ(rT+s+1 | 0, eh(d)T+s+1/2), where

φ(· |μ0, σ0) is the p.d.f. of a N(μ0, σ 2
0 ) distri-

bution.
(2) The Filtering Step

(i) For d = 1, . . . ,D, given the particles (h(d)T+s+1,
θ(d)) obtained in the prediction step, update
the weights using w(d)s+1 ∝ w̃(d)s p(rT+s+1 |
h(d)T+s+1) which follows from Equation (12).

(ii) Normalize the weights, w̃(d)s+1 = w(d)s+1/∑D
d=1 w

(d)
s+1, and calculate the effective sample

size, ESS = 1/
∑D

d=1[w̃
(d)
s+1]

2.
(iii) If ESS< 0.5D, resampleD particles with prob-

abilities {w̃(d)s+1}Dd=1 and reset the weights of
the new particles to be w̃(d)s+1 = 1/D. Other-
wise, use the particles and weights obtained
previously, {h(d)T+s+1, θ

(d); w̃(d)s+1}Dd=1.

At the end, after all test data have been evaluated, we
calculate the log predictive likelihood using (10); that
is,

∑S−1
s=0 log p̃(rT+s+1 | r1:(T+s)).

4. Simulations

The main objective of our simulation studies is to
understand the role of shape constraints in the estima-
tion of log volatilities. We investigate both the unlever-
aged and the more realistic leveraged SV models with
various forms of the volatility function, and compare
the fit of our shape-constrained semiparametric addi-
tive SV model (denoted by SC-SV) with the fit of two
other models: the parametric SV model (AR-SV) as
defined by (1) and (2), and the semiparametric addi-
tive SV model without shape constraints (SP-SV). To
allow for different degrees of smoothness, we consider
semiparametric models with K=L=10 and 20 knot
intervals.

Our simulation results are based on 200 replicate
time series of length N=2048 for each experimen-
tal condition. We use MAE and MSE to measure our
ability to accurately estimate the log volatilities. We
assume flat priors for β∗

1 and α∗
1 , and conjugate mul-

tivariate normal priors for (μ,φ) or (μ,φ,ψ) in the
parametric AR-SV models. The MCMC algorithm for
fitting the semiparametric SV models was presented
in Section 3.1. The same algorithm also applies to the
parametric models (1) and (2), except that the full con-
ditional for the coefficients (μ,φ) or (μ,φ,ψ) is now
multivariate normal given conjugate priors. We used R
(R Core Team, 2013) for all computations but acceler-
ated the updating of the log volatilities, {ht}Nt=1, using
C++ through the R package RcppArmadillo (Eddel-
buettel & Sanderson, 2014). We use the log squared
returns as the initial states for {ht}Nt=1. For the AR-SV

and SC-SVmodels, we sample from the posterior distri-
bution using 21,000 iterations of theMCMC algorithm.
To ensure convergence of the Markov chain, we used
31,000 iterations of theMCMC algorithm for the SP-SV
model. In both cases, the first 1000 iterations were dis-
carded as burn-in samples and the remaining samples
were thinned every 10 iterations.

4.1. Unleveraged SVmodels

We consider three different forms of the autoregressive
component f in the SV model (3) without a leverage
effect. (Plots of the three f functions are shown as the
dashed lines in Figure 1.) The variance of the error term
ξt of the volatility process is set to be 0.15 for all simula-
tions. Although the scales of the returns and volatilities
have no bearing on model performance, we adjust the
value of μ in each volatility equation so that the simu-
lated log volatilities are centred around −8, which is a
typical value for real-world equity returns such as the
S&P500 daily returns. The true volatility equations for
the three unleveraged SV models are as follows.

(1) (Lf) Linear f : ht = −0.8 + 0.9ht−1 + ξt . This is the
basic SV model.

(2) (Cf) Change-point f :ht = −8.1 + 0.9h∗
t−1I(h

∗
t−1 >

0)+ 0.3h∗
t−1I(h

∗
t−1 ≤ 0)+ ξt , where h∗

t−1 =
ht−1 + 8. The slope of this autoregressive function
is steeper when the lagged log volatility ht−1 is
greater than the change point, −8, which reflects
the belief that the signal in the volatility process is
stronger when the market is more volatile.

(3) (Sf) Sigmoid f : ht = −8 + 1.6h∗
t−1/

√
1 + h∗2

t−1 +
ξt , where h∗

t−1 = ht−1 + 8. This particular sigmoid
function produces a volatility series with a quasi-
Markov-switching behaviour. The two states
(volatile and stable) are generated by the two tails
of the sigmoid function and the steepness of the
curve in themiddle controls the transition between
the two states.

Table 1 summarises the estimated MSE and MAE
of the posterior means of the log volatilities com-
pared to their simulated values. When the autoregres-
sive function is linear, i.e., when AR-SV is the correct
model, the shape-constrained semiparametric model
underperforms the AR-SV model by a small margin,
while the SP-SV model, without proper shape con-
straints, is too flexible to pick up the linear form reli-
ably. When the true autoregressive function is non-
linear, the impact of imposing the correct shape con-
straints on the estimation of the log volatilities becomes
evident. For example, with the change-point autore-
gressive SV model, imposing shape constraints (i.e.,
the SC-SV model) reduces the MSE over the SP-SV
model by 28% (10 knot intervals) and 30% (20 knot
intervals) and the reduction in MSE for the sigmoid
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Figure 1. Estimated autoregressive function f for the unleveraged SV models based on a single simulated dataset. The dashed line
in each graph shows the true functional form of f and the solid lines represent the posterior average of f as well as the 95% credible
bands. For the semiparametric models SC-SV and SP-SV, the 20-knot-interval version is presented.

Table 1. For the three true unleveraged SVmodels (Lf , Cf and Sf ), a summary
of the MSE and MAE of the log volatilities, {ht}Nt=1, obtained from fitting five
different SV models. The averages and standard errors are multiplied by 100,
and are based on 200 replicate series.

True Model Fitted Models
AR-SV SC-SV(10) SP-SV(10) SC-SV(20) SP-SV(20)

Lf
Average (s.e.) MSE 36.3(0 36.7(0 40.2(0 36.9(0 43.2(0

MAE 47.9(0 48.2(0 50.4(0 48.3(0 52.2(0
Rel. to AR-SV MSE 100.0% 101.2% 110.7% 101.5% 119.0%

MAE 100.0% 100.6% 105.1% 100.8% 108.9%
Cf AR-SV SC-SV(10) SP-SV(10) SC-SV(20) SP-SV(20)
Average (s.e.) MSE 24.7(0 23.1(0 31.9(0 23.1(0 33.2(0

MAE 39.4(0 38.1(0 44.7(0 38.1(0 46.0(0
Rel. to AR-SV MSE 100.0% 93.6% 129.3% 93.5% 134.7%

MAE 100.0% 96.9% 113.6% 96.8% 116.8%
Sf AR-SV SC-SV(10) SP-SV(10) SC-SV(20) SP-SV(20)
Average (s.e.) MSE 38.2(0 34.2(0 46.5(0 34.0(0 48.5(0

MAE 49.1(0 46.2(0 55.7(0 45.9(0 57.1(0
Rel. to AR-SV MSE 100.0% 89.6% 121.8% 88.9% 126.9%

MAE 100.0% 94.1% 113.5% 93.6% 116.3%

autoregressive SV model is 26% and 30% respectively.
This evidences the gain from including shape con-
straints in a semiparametric SV model when they are
warranted.

Our findings from Table 1 can be further confirmed
by the fitted autoregressive functions shown in Figure 1.
To simplify our presentation, we only display the 20-
knot-interval version of the fitted semiparametric SV
models (the 10-knot-interval version was less smooth,
but exhibited similar patterns). The true autoregressive
functions (denoted by the dark solid lines in each panel
of the figure) are estimated by the posterior means of
f (h̃t−1)where h̃t−1 is a grid of pre-specified values of ht .

It is clearly seen in Figure 1 that the estimated autore-
gressive functions for the semiparametric model with-
out shape constraints (SP-SV) have very large posterior
variance, especially toward the tails where the volatility
data are scarce. Additionally, the posterior distribution
of f (h̃t−1) can be highly skewed and the posterior aver-
ages can deviate substantially from the truth (see the
fitted f function for the change-point autoregressive
model). Imposing proper shape constraints in the semi-
parametric model considerably reduces the posterior
variance and skewness of the estimated autoregressive
function across all values of the past volatilities, and
the resulting SC-SV model is still flexible enough to
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Figure 2. For the three true leveraged SVmodels (Lf-Lg, Lf-NLg andNLf-NLg), the estimated autoregressive function f (odd rows) and
leverage function g (even rows) in different fitted models (columns). The legends are the same as in Figure 1.

capture the shapes of the different true autoregression
functions.

4.2. Leveraged SVmodels

For the leveraged models, we consider the following
three different volatility equations. (Plots of the true
autoregressive and leverage functions are shown as the
dashed lines in Figure 2.)

(1) (Lf-Lg) Linear f & Linear g: ht = −0.9 + 0.9ht−1 −
0.6εt−1 + ξt where εt−1 = rt−1 exp(−ht−1/2).
This is the AR-SV model with leverage effect.

(2) (Lf-NLg) Linear f & Nonlinear g: ht = −1.1 +
0.9ht−1 − 0.6εt−1I(εt−1 < 0)+ 0.1εt−1I(εt−1
≥ 0)+ ξt , where εt−1 = rt−1 exp(−ht−1/2). If the
variance of the error term ξt is 0, this becomes
the EGARCH model whose news impact curve is
asymmetric and piecewise linear.
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Table 2. For the three true leveraged SV models (Lf-Lg, Lf-NLg and NLf-NLg),
a summary of the MSE and MAE of the log volatilities, {ht}Nt=1, obtained from
fitting five different SVmodels. The averages and standard errors aremultiplied
by 100, and are based on 200 replicate series.

True model Fitted models

AR-SV SC-SV(10) SP-SV(10) SC-SV(20) SP-SV(20)
Lf-Lg
Average (s.e.) MSE 38.0(0 39.5(0 39.6(0 39.7(0 40.3(0

MAE 48.5(0 49.6(0 49.6(0 49.7(0 50.0(0
Rel. to AR-SV MSE 100.0% 104.2% 104.3% 104.7% 106.1%

MAE 100.0% 102.3% 102.3% 102.5% 103.1%
Lf-NLg AR-SV SC-SV(10) SP-SV(10) SC-SV(20) SP-SV(20)
Average (s.e.) MSE 35.3(0 30.9(0 31.2(0 31.0(0 31.7(0

MAE 47.2(0 44.3(0 44.6(0 44.4(0 44.8(0
Rel. to AR-SV MSE 100.0% 87.5% 88.5% 87.9% 89.6%

MAE 100.0% 93.9% 94.4% 94.2% 94.9%
NLf-NLg AR-SV SC-SV(10) SP-SV(10) SC-SV(20) SP-SV(20)
Average (s.e.) MSE 25.5(0 21.8(0 26.3(0 22.0(0 27.0(0

MAE 40.2(0 37.4(0 41.2(0 37.6(0 41.9(0
Rel. to AR-SV MSE 100.0% 85.5% 103.2% 86.4% 105.9%

MAE 100.0% 93.0% 102.4% 93.6% 104.2%

(3) (NLf-NLg) Nonlinear f &Nonlinear g: ht = −8.5 +
0.9h∗

t−1I(h
∗
t−1 > 0)+ 0.3h∗

t−1I(h
∗
t−1 ≤ 0)− 0.6

εt−1I(εt−1 < 0)+ 0.1εt−1I(εt−1 ≥ 0)+ ξt , where
h∗
t−1 = ht−1 + 8 and εt−1 = rt−1 exp(−ht−1/2).

The variances of the ξt terms in the above equations
are set to be 0.15. We implement the correct shape con-
straints in the SC-SV models, which means that for the
Lf-Lg case, the leverage function g is assumed to be
monotonically decreasing on the entire real line while
in the other two cases, it is assumed to bemonotonically
decreasing on the negative real line and monotoni-
cally increasing on the positive real line. The MSE and
MAE of the estimated log volatilities compared to the
simulated values are shown in Table 2.

When the autoregressive component f and the lever-
age function g are both linear, AR-SV is the true model
and as expected, it outperforms both semiparametric
models. When either f or g is nonlinear, however, the
AR-SV model is not flexible enough to pick up the true
functional forms, resulting in the larger MSE andMAE
as compared to the shape-constrained semiparametric
model. For all three forms of the volatility function,
the advantage of incorporating shape constraints in the
semiparametric models is reflected in the consistently
smaller MSE and MAE for the SC-SV model over the
SP-SV model. As in Section 4.1, the greatest gain in
the MSE and MAE was obtained when the autoregres-
sive function f deviates the most from linearity (the
NLf-NLg case).

Figure 2 shows the estimated autoregressive func-
tion f (odd rows) and leverage function g (even rows).
Whenever the true autoregressive or leverage func-
tion is nonlinear, the fitted f or g functions in the
semiparametric SV model without shape constraints
(SP-SV) can have extremely large posterior variance
toward the tails where the data are scarce. Restricting
the parameter space through proper shape constraints
proves to be essential formore efficient estimation in SV
models.

5. Empirical studies

We now assess the advantage of our proposed shape-
constrained semiparametric additive SV models for
the prediction of volatilities in four real-world equity
returns: the S&P500 index, Equity Residential (EQR;
a real estate investment trust), Microsoft (MSFT), and
Johnson & Johnson (JnJ). The returns are calculated as
the change in the logarithm of the daily adjusted closing
prices obtained from Yahoo! Finance. For each series,
we use the returns from November 1, 2001 to October
29th, 2010 as our training set and the following three
years of returns from November 1, 2010 to October 31,
2013 as the test set. For both the training and test return
series, we subtract the sample mean from the data so
that the returns have zero mean.

As in our simulation studies, we consider the para-
metric model (AR-SV), the semiparametric additive
SV model with shape constraints (SC-SV) and with-
out shape constraints (SP-SV). We fit both a lever-
aged and an unleveraged version of each model and
compare their predictive log likelihoods over the test
period. We run the MCMC for 1,02,500 iterations
with the first 2500 draws discarded as burn-in sam-
ples and the remaining draws thinned every 25 itera-
tions. In terms of the shape constraints in the SC-SV
model, exploratory analyses indicated that it is rea-
sonable to assume the autoregressive function f to be
monotonically increasing and the leverage function g

Table 3. Predictive log likelihood of daily returns from Novem-
ber 1, 2010 toOctober 31, 2013 using six different SVmodels. (u)
– unleveraged; (l) – leveraged. The results of the best perform-
ing model (those with the largest predictive log likelihood) are
in bold face.

AR-SV(u) SC-SV (u) SP-SV (u) AR-SV(l) SC-SV (l) SP-SV (l)

S&P500 −3798.8 −3796.5 −3799.3 −3784.5 −3784.2 −3786.0
EQR −4080.5 −4068.8 −4072.0 −4080.4 −4070.6 −4079.5
MSFT −4103.6 −4100.7 −4100.8 −4102.6 −4099.4 −4103.1
JnJ −3681.7 −3682.9 −3684.2 −3680.9 −3680.7 −3681.7
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Figure 3. Fitted autoregressive function f and leverage function g for the daily returns of the S&P500, EQR, MSFT and JnJ. The solid
lines show the posterior means and 95% credible bands of the fitted functions in the leveraged semiparametric models with shape
constraints while the dashed lines represent the posterior means and 95% credible bands in the leveraged semiparametric models
without shape constraints.

monotonically decreasing. These assumptions will be
assessed later. We use K=20 basis functions for f and
L=20 basis functions for g. The predictive log likeli-
hood that we use to compare the models is calculated
according to Section 3.2 with the step size S0 for the
multiple-step prediction set to be 110.

Table 3 displays the estimated predictive log like-
lihoods for all six SV models. For each of the four

return series, the value in bold denotes the model with
the largest predictive log likelihood. The predictive
log likelihood of the semiparametric model without
shape constraints always lags behind the corresponding
shape-constrained model, suggesting that it is desirable
to incorporate shape constraints in our semiparamet-
ric additive model when the knowledge of the true
functional shapes is available. Compared to the AR-SV
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model, the semiparametric model without shape con-
straints only outperforms the corresponding AR-SV
model in three out of the eight pairs. However, impos-
ing shape constraints increases this ratio to seven out
of eight. For Equity Residential, the outperformance
of the shape-constrained model compared to AR-SV is
substantial. In one case, Johnson & Johnson, the linear
parametric AR-SV model seems to be the most suit-
able model, indicating that amore parsimoniousmodel
is preferred for explaining the volatility in this return
series.

To assess the appropriateness of our shape assump-
tions for the four equity returns, we estimate the autore-
gressive function f and leverage function g in the same
way as in the simulation studies. Figure 3 shows the
fitted functions (posterior mean) and the associated
pointwise 95% credible bands for the leveraged semi-
parametric SV models (with and without the shape
constraints) for each return series.

For the S&500 index, both fitted functions are clearly
nonlinear, which means that the volatility process and
consequently the return series are nonstationary.When
the lagged log volatility ht−1 is small, the lag one auto-
correlation for fixed εt−1 is diminished as compared
to when ht−1 is moderate; when ht−1 is large, the lag
one autocorrelation is also attenuated, but to a lesser
degree. In addition, the shapes of the autoregressive
and leverage functions estimated from the two semi-
parametric models (SC-SV and SP-SV) agree with each
other for the most part: the function f is monotoni-
cally increasing and g monotonically decreasing. This
means that our assumptions of the shape constraints are
appropriate. Even though the leftmost section of the g
function is found to be increasing in the SP-SV model,
we find this counterintuitive and also unreliable since
our simulation studies showed that the estimated func-
tions towards the boundaries can deviate considerably
from the truth if no shape constraints are implemented.

As for the other three return series, it can be seen
that our monotonicity assumptions for the autoregres-
sive and leverage functions in the shape-constrained
models hold for all except the Equity Residential series
(EQR). For EQR, the SP-SV model finds that the pos-
terior mean of the leverage function g is increasing on
the positive real line but with a very large degree of
uncertainty. As a further investigation, we fit two addi-
tional shape-constrained models with the same priors
on f and on g(εt−1) for εt−1 < 0. In the first model, we
assumed the leverage function g to be monotonically
increasing on the positive real line, but we imposed no
shape constraints on g(εt−1) for εt−1 > 0 in the second
one. Their predictive log likelihoods are −4074.3 and
−4074.5 respectively, both larger than the predictive
log likelihoods for the corresponding leveraged AR-
SV and SP-SV models. However, neither of these two
additional models outperforms the original leveraged
SC-SV model with the monotonicity constraint on g.

This may be due to the fact that the lagged return inno-
vation εt−1 follows the standard normal distribution a
priori, which means that it would be rare to observe an
extreme εt−1 out in the tails. Nevertheless, a monoton-
ically decreasing leverage function seems a reasonable
assumption for fitting the shape-constrained semipara-
metric additive SV models on most equity returns.

6. Conclusion

In this article, we have proposed a class of shape-
constrained semiparametric additive stochastic volatil-
ity models. We have introduced a parameterisation
that allows for more efficient sampling from the poste-
rior distribution, and developed a particle-filter-based
model comparison approach. Through simulations and
empirical studies, we demonstrated that the shape-
constrained semiparametric SV model has the flexibil-
ity to capture unknown functional shapes, while not
losing too much efficiency compared to a paramet-
ric SV model when the true underlying model is best
explained by the latter.

We demonstrated the use of specific forms of shape
constraints on the autoregressive and leverage function,
but we note that within this framework, researchers and
practitioners can easily incorporate other shape con-
straints that they deem appropriate. Furthermore, our
methodology of modelling the shape constraints in SV
models can also be applied to other nonlinear state
space models, such as the stochastic conditional dura-
tion (SCD) model (Bauwens & Veredas, 2004), to effi-
ciently capture nonlinear features of the state equation.
In this article we have fixed the number of basis func-
tions for the nonlinear functions f and g (as denoted by
K and L respectively) to be 10 or 20 – more generally
we can use the Bayes Factor to select between different
numbers of basis functions.

Our shape-constrained SV model can be extended
in a number of directions, beyond simply including
additional lagged terms. First, the additivity between
the autoregressive and leverage function can be relaxed.
One option would be to assume that the log volatility
satisfies ht = ζ(ht−1, εt−1)+ ξt where the function ζ
is subject to a two-dimensional shape constraint. The
challenge lies in the fact that this function ζ does not
have a rectangular support because of the dependence
between ht−1 and εt−1. Alternatively, we can assume
that the additivity holds on a different scale, ς(σt),
where ς can be a known function other than exp(ht/2)
– the exp(ht/λ0) scale considered by Comte (2004)
would be an example. Second, the idea of incorpo-
rating shape constraints in semiparametric SV models
can also be applied to additive GARCH-type mod-
els for more efficient estimation of the news impact
curve. Third, our framework can be adapted to include
convexity constraints on the functional components.
Under the basis expansion (4) and with the same basis
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functions (5), convexity constraints can be translated
to the ordering of the slope coefficients {βk}Kk=1. To
constrain the function to be convex and monotoni-
cally increasing at the same time, the slope coefficients
need to satisfy 0 ≤ β1 ≤ β2 ≤ · · · ≤ βK and the model
fitting is straightforward.

There are also several ways to improve our MCMC
algorithm, especially the updating of the
high-dimensional state vector. First, since the state vari-
ables are highly correlated with each other, updating
more than one state variable at a time, i.e., using block
updating (e.g., Chib & Greenberg, 1994, 1995), would
be more efficient than the one-at-a-time updating. Sec-
ond, we can improve the proposal distributions for
updating the state variables by exploiting the shape
of the full-conditional distribution, such as using the
Metropolis-adjusted Langevin algorithm (Grenander
&Miller, 1994; Roberts & Tweedie, 1996) and its varia-
tions. Finally, particle-filter-based methods, such as the
Particle Markov chainMonte Carlo (PMCMC)method
(e.g., Andrieu, Doucet, & Holenstein, 2010), can be
applied as well.
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Appendix

Updating βk and β∗
k in the semiparametric SV model (6):

Without sign constraints on βk (i.e., no shape constraints on
the autoregressive function f ), we draw βk = β∗

k from its nor-
mal full conditional distribution whose mean and variance
are given as

μ̃k = τ 2
∗

k
σ 2w
k + τ 2

∗
k
μw
k + σ 2w

k
σ 2w
k + τ 2

∗
k
μ∗
k and

τ̃ 2k = σ 2w
k τ 2

∗
k

σ 2w
k + τ 2

∗
k

.

In the above equations, μ∗
k and τ

2∗
k are the conditional prior

mean and variance of β∗
k , whereasμ

w
k and τ 2

w

k reflect the new
information about β∗

k in the data. If we use a flat prior for the
initial state of the random walk prior of {β∗

k }Kk=1, we have

μ∗
k =

⎧⎪⎪⎨
⎪⎪⎩
β∗
k+1 if k = 1

β∗
k−1 if k = K

(β∗
k−1 + β∗

k+1)/2 otherwise;

and

τ 2
∗

k =
{
τ 2 if k = 1 or K

τ 2/2 otherwise.

From the likelihood,we can obtain thatμw
k = ∑T

t=2 wk(ht−1)

ek(t)/
∑T

t=2 w
2
k(ht−1) and σ 2w

k = σ 2/
∑T

t=2 w
2
k(ht−1), where

ek(t) = ht − μ− ∑L
l=1 vl(εt−1)αl −

∑K
j=1,j �=k wj(ht−1)βj.

We can see that for μw
k and σ 2w

k to exist, the correspond-
ing basis function evaluated at ht−1, wk(ht−1), needs to be
non-zero for at least some t ≥ 2. However, this is not always
guaranteed since by the definition of the basis functions (5),
when k ≥ M,wk(ht−1) = 0 forht−1 < γk−1 andwhen k<M,
wk(ht−1) = 0 for ht−1 > γk. In other words, wk(ht−1) would
be zero for all t ≥ 2 if all values of {ht−1}Tt=2 simulated in one
MCMC iteration are below γk−1 for k ≥ M or above γk for
k<M. When this happens, we draw β∗

k from its conditional
prior distribution N(μ∗

k , τ
2∗
k ).

If βk is constrained to be positive a priori, i.e., βk =
I(β∗

k > 0)β∗
k , Neelon and Dunson (2004) shows that the

full conditional of β∗
k can be expressed as a mixture of

two truncated normal distributions. Let �(·;m, v) be the
cumulative distribution function of a N(m, v) random vari-
able, φ(·;m, v) be the corresponding density function and
tN(μ0, σ 2

0 ; [a, b]) denote the truncated Normal distribution
with support [a, b]. Then a MCMC draw for β∗

k is simply a
draw from a tN(μ∗

k , τ
2∗
k ; (−∞, 0]) distribution with proba-

bility proportional to�(0;μ∗
k , τ

2∗
k )/φ(0;μ

∗
k , τ

2∗
k ) and from a

tN(μ̃k, τ̃ 2k ; [0,∞)) distribution with probability proportional
to [1 −�(0; μ̃k, τ̃ 2k )]/φ(0; μ̃k, τ̃ 2k ).

Updatingαl andα∗
l in the semiparametric SVmodel (6):The

difference between updating αl and βk lies in the fact that
both positive and negative sign constraints for αl are con-
sidered in (8) and (9). Without sign constraints on αl (i.e.,
without shape constraints on the leverage function g), the full
conditional distribution ofα∗

l is similar to that ofβ∗
k .Whenαl

is constrained to be positive, the full conditional distribution
of α∗

l is again similar to that of β∗
k for positive βk. However,

when αl is constrained to be negative, the full conditional
distribution of α∗

l is a mixture of two truncated normal dis-
tributions whose positive part now depends on the condi-
tional prior mean and variance and the negative part on the
data.
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