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ABSTRACT
Wepresent anewapproach tomodel selectionandBayes factor determination, basedonLaplace
expansions (as in BIC), which we call Prior-based Bayes Information Criterion (PBIC). In this
approach, the Laplace expansion is only done with the likelihood function, and then a suitable
prior distribution is chosen to allow exact computation of the (approximate) marginal likelihood
arising from the Laplace approximation and the prior. The result is a closed-form expression sim-
ilar to BIC, but now involves a term arising from the prior distribution (which BIC ignores) and
also incorporates the idea that different parameters can have different effective sample sizes
(whereasBIConly allowsoneoverall sample sizen).Wealso consider amodificationof PBICwhich
is more favourable to complex models.
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1. Background

1.1. The original BIC (Schwarz, 1978)

Suppose that we observe Xi = (Xi1, . . . ,Xip) ∼ g(xi |
θ) for i = 1, . . . , n. Here θ = (θ1, . . . , θp) is a unknown
vector and, in Schwartz’s derivation of BIC, g(x | θ) is
an exponential family. Then the log-likelihood function
is

l(θ) = log f (x | θ) = log

( n∏
i=1

g(xi | θ)

)
,

where x = (x1, . . . , xn). The goal of Schwarz (1978) is
to find a simple approximation to the marginal density

m(x) =
∫

f (x | θ)π(θ) dθ ,

where π(θ) is a prior density for the unknown θ , and
use the approximation for model comparison.

Result 1.1 (Stone, 1979): Let θ̂ be theMLE of θ . Then,
under reasonable conditions and as n → ∞,

BIC ≡ −2l(̂θ) + p log n = −2 logm(x) + c + o(1),

where c is a constant.

Schwartz then suggested comparing two modelsM1
andM2, using

�BIC = BIC2 − BIC1,

preferringM2 (M1) as this is negative (positive). Clearly
this is equivalent to basing the model comparison
on the Bayes factor (odds) of M2 to M1, with the
approximation

B21 ≡ m2(x)
m1(x)

= exp
(− 1

2BIC2
)

exp
(− 1

2BIC1
) exp(1

2
(c2 − c1)

)

× (1 + o(1)) ≈ exp
(− 1

2BIC2
)

exp
(− 1

2BIC1
) . (1)

1.2. Problemswith general use of BIC

BIC is an excellent tool for the class of problems for
which it was developed. Unfortunately, it is today used
ubiquitously, for completely different classes of prob-
lems.We here outline some of the issues with using BIC
inappropriately.

Problem 1. The term exp( 12 (c2 − c1)) in (1) is
ignored by BIC.

This could have been a serious problem even
with proper use of BIC, except that there happens
to be pseudo-prior distributions that yield BIC itself
(Raftery, 1999), i.e. for which the term exp( 12 (c2 −
c1)) = 1. These pseudo-priors are not real priors, in
that they are centred at the mle’s of each model, which
is a problematical double use of the data. Nevertheless
it is comforting that there is at least some type of prior
distribution that yields BIC exactly.

Problem 2. What is n?
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(i) A common mistake in specifying n: Note that, in
Schwartz’s setup, there are n vector observations
of dimension p, so that there are a total of np
real observations. It is common to mistakenly use
n∗ = np as the sample size in BIC, rather than the
correct n.

(ii) Different parameters can have different n.

Example 1.2 (Groupmeans): For i = 1, . . . , p and l =
1, . . . , r, suppose we observe

Xil = μi + εil,

where εil ∼ N(0, σ 2). If σ 2 were known, this would be
exactly the setup of Schwartz, and the sample size for
μ = (μ1, . . . ,μp) would be r. In effect, each μi has a
sample size of r associatedwith it. But, ifσ 2 is unknown,
the parameter is θ = (μ1, . . . ,μp, σ 2) and it is not rea-
sonable to also associate the sample size of r to σ 2, in
that we know there are p(r − 1) degrees of freedom
associated with the mle of σ 2.

An alternative argument is to note that the observed
information matrix Î = (̂Ijk), with (j, k) entry

Îjk = − ∂2

∂θj∂θk
log f (x | θ)

∣∣∣
θ=θ̂

is given by

Î =
⎛⎝ r

σ̂ 2 Ip×p 0

0
pr
2σ̂ 4

⎞⎠ ,

where σ̂ 2 = (1/pr)
∑p

i=1
∑r

l=1(Xil − X̄i)
2. The infor-

mation matrix suggests that the effective sample size
for each μi is r, while the effective sample size for σ 2

is pr. Whether we use p(r − 1) or pr for the sample size
associated with σ 2 will not typically make much differ-
ence, whereas the difference with using r, instead, will
be quite large.

(iii) Different observations can have different observed
information content.

Example 1.3: Suppose each independent observation,
Xi, i = 1, . . . , n, has probability 1/2 of arising from the
N(θ , 1) distribution and probability 1/2 of arising from
the N(θ , 1000) distribution. Clearly half the observa-
tions are essentially worthless, and the ‘effective sample
size’ is n/2.

Example 1.4 (Findley’s BIC counterexample): One of
the famous counter examples against inappropriate use
of BIC is in Findley (1991). Suppose the observations

are

Xi = 1√
i
· θ + εi, where εi ∼ N(0, 1),

i = 1, . . . , n, (2)

and we are comparing the models H0 : θ = 0 and H1 :
θ 	= 0. It turns out that the mle for θ is consistent under
H1 (a necessary condition to apply BIC), but that BIC is
inconsistent if 0 < |θ | < 1, in that BICwill then declare
H0 to be the true model as n → ∞. The problem here
is that, even though the information about θ goes to ∞
as n grows, it grows much more slowly than n (actually,
the information grows at roughly log n rate), and BIC
erroneously assigns the rate to be n.

Problem 3. What is p?
Just as n is often not clearly defined for use in BIC,

the parameter dimension p is often not clearly defined
(see also Pauler, 1998).

Example 1.5 (Random effect group means): Con-
sider hierarchical or random effect versions of the
group means problem, where it is assumed that

μi ∼ N(ξ , τ 2),

with ξ and τ 2 being unknown. The number of param-
eters might appear to be p+3 (the means, along with
σ 2, ξ and τ 2), but one could, alternatively, integrate out
μ = (μ1, . . . ,μp) (since it has a known distribution)
obtaining

f (x | σ 2, ξ , τ 2) =
∫

f (x | μ, ξ , σ 2)π(μ | ξ , τ 2) dμ

∝ 1
σ−p(r−1) exp

{
σ̂ 2

2σ 2

} p∏
i=1

× exp

{
− (x̄i − ξ)2

2(σ 2

r + τ 2)

}
.

The marginal likelihood will be the integral of this,
with respect to a prior π(σ 2, ξ , τ 2), so that, if one is
really viewing BIC as an approximation to the marginal
likelihood, it would be correct to set p=3.

Problem 4. What if p grows with n?
BIC is based on an asymptotic argument with p fixed

and n growing, but often p is growing with n; BIC then
does not apply. If one were to erroneously apply BIC in
such a situation, one could end up with inconsistency,
as shone by Stone (1979) for the group means example,
with known variance σ 2 = 1 for simplicity. Indeed, in
comparing models H0 : μ = 0 and H1 : μ 	= 0 for the
group means problem with r=2,

�BIC = BIC1 − BIC0 = −2
p∑

i=1
x̄2i + p log 2,

which, under H0, behaves like p(log 2 − 1) → −∞ as
p grows, thus incorrectly selecting model H1.



4 M. J. BAYARRI ET AL.

1.3. Variants of BIC

Noting the limitations of BIC, researchers have pro-
posed a host of generalisations, many of which have
performed better than BIC under specific scenarios.
Many of these methods arise from the variations in
retaining the number of terms in the Laplace approx-
imation of the Bayes Factor (Kass & Raftery, 1995).
One variant – called the HBIC – (Haughton, 1988)
retains the third term in the Laplace approximation
of the Bayes Factor. A simulation study by Haughton,
Oud, and Jansen (1997) shows that HBIC performs
better in model selection for structural equation mod-
els than does the usual BIC. Following HBIC, Bollen,
Ray, Zavisca, and Harden (2012) developed a sim-
ilar criterion, called the Information matrix-based
Bayesian Information Criterion (IBIC), which retains
more terms in the Bayes Factor approximation and out-
performs BIC and HBIC in many scenarios. Bollen
et al. (2012) also proposed another criterion, named
the scaled unit information prior (SPBIC), which gen-
eralises the interpretation of the unit information prior
in the context of BIC. For approximation of Bayes fac-
tors as the model dimension grows, Berger, Ghosh,
and Mukhopadhyay (2003) proposed another approx-
imation, named GBIC. Following Berger et al. (2003), a
generalisation of BIC for the general exponential fam-
ily was proposed by Chakrabarti and Ghosh (2006),
and a new BIC for change point analysis was proposed
by Shen and Ghosh (2011). Some other extensions of
BIC include techniques for comparing graphical mod-
els (Foygel & Drton, 2010), singular models (Drton
&Plummer, 2017), and sparsemodels (Zak-Szatkowska
& Bogdan, 2011).

1.4. Overview of the paper

Section 2 presents a proposal to generalise BIC, in
order to overcome the problems mentioned above. It
is based on use of a specific (robust) prior distribution
in the computation of the approximate marginal likeli-
hood of a model. Section 3 discusses a critical aspect
of the definition of PBIC, namely the need to deter-
mine the ‘effective sample size’ corresponding to each
parameter in a model. Section 4 presents an alterna-
tive called PBIC*. It employs an empirical Bayes prior
in computation of the marginal likelihood approxi-
mation, resulting in answers more favourable to com-
plex models. Section 5 illustrates the use of PBIC and
PBIC* in the normal linear model; it is of interest that
PBIC and PBIC* correspond to exact marginal likeli-
hoods here. Illustrations in the section are simple lin-
ear regression, testing the equality of normal means
with known unequal variances, Findley’s counterex-
ample, and the group means problem, where consis-
tency results for PBIC and PBIC* are established as
p → ∞.

2. The PBIC solution

We propose a solution to these problems that depends
only on software that can compute mle’s and observed
information matrices. The basis of the solution is a
modified Laplace approximation tom(x) for reasonable
default priors.

2.1. Two important preliminaries

One should analytically integrate out any parameter
that has a distribution given other parameters, if it
is possible to do so. For example, in the hierarchi-
cal group means example, base the analysis on the
marginal likelihood f (x | σ 2, ξ , τ 2), rather than the full
likelihood.

We will be utilising the Laplace approximation,
which is most accurate (Kass & Vaidyanathan, 1992;
Tierney, Kass, &Kadane, 1989) if the parameter space is
transformed to be all of �p. Transformation to �p will
also be necessary for the subsequent step of the anal-
ysis. As an illustration, in the (non-multilevel) group
means example, transform to ν = log σ 2. Then θ =
(μ1, . . . ,μp, ν) ∈ �(p+1). Note that one then works
with the transformed mle log σ̂ 2 and the transformed
observed information matrix

Î∗(μ, ν) =
⎛⎝ r

σ̂ 2 Ip×p 0

0
pr
2

⎞⎠ .

In the multilevel groupmeans example, both σ 2 and τ 2

would need to be transformed in this fashion.

2.2. PBIC and PBIC* definitions

Suppose θ = (θ (1), θ (2)), where θ (2) denotes the param-
eters that are common to all models under consider-
ation (e.g. an intercept in linear regression). Chang-
ing notation, let p denote the dimension of θ (1) and q
denote the dimension of θ (2); note that p will typically
vary frommodel tomodel, while q is fixed. Partition the
observed information matrix for a model accordingly,
as

Î =
(̂
I11 Î12
Î21 Î22

)
, and define

�−1 = Î11 − Î12̂I
−1
22 Î

t
12. (3)

(If there are no common parameters to all models, then
� = Î−1.) Change variables to ξ = Oθ (1), where O is
an orthogonal matrix such that � = OtDO, with D =
diag{di} for i = 1, . . . , p, and define ξ̂ = Oθ̂ (1) (the
transformed mle). The choice of O does not affect the
definition below. For each transformed parameter ξj,
let nej be the effective sample size corresponding to that
parameter. This is the most difficult aspect of the con-
struction, but equals the intuitive choices of parameter
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sample size discussed in the earlier examples; formal
definitions will be presented in Section 3. Then PBIC
is defined as

PBIC ≡ −2l(̂θ) + log |̂I22| +
p∑

i=1
log(1 + nei )

− 2
p∑

i=1
log

(
1 − e−vi

)
√
2vi

, (4)

where vi = ξ̂2i /[di(1 + nei )]. For a certain natural prior
distribution, PBIC will be shown to be accurate, as an
approximation to−2 logm(x), up to a o(1) termasn →
∞ (for fixed dimension p). Note that, if there are no
common parameters to all models, then

PBIC = −2l(̂θ) +
p∑

i=1
log(1 + nei )

− 2
p∑

i=1
log

(
1 − e−vi

)
√
2vi

. (5)

In the classic case considered by Schwartz, all nei
would equal a common n, and the first two terms
in this expression are then BIC (up to a o(1) term);
the ‘constant’ ignored by BIC is the final term
in (5).

To summarise results in one place, here is an alter-
native version of the approximation, one which is more
favourable to complex models; its development is given
in Section 4:

PBIC∗ ≡ −2l(̂θ) + log |̂I22| +
p∑

i=1
log(1 + nei )

− 2
p∑

i=1
log

(
1 − e−min{vi,1.3})

√
2vi min{vi, 1.3}

. (6)

Note that, if dealing with only normal mean parame-
ters, PBIC and PBIC* are exact as an approximation
to −2 logm(x), as discussed below. This would mean,
for instance, that when dealing with p → ∞, there
would be no need to worry about the accuracy of the
approximations.

Here are the steps in the derivation of PBIC.

2.2.1. Laplace approximation
By a Taylor’s series expansion of l(θ) about the mle θ̂ ,
with ∇ denoting the gradient and Î being the observed
information matrix as defined earlier,

m(x) =
∫

f (x | θ)π(θ) dθ

=
∫

el(θ)π(θ) dθ

=
∫

exp
[
l(̂θ) + (θ − θ̂)t∇l(̂θ)

− 1
2
(θ − θ̂)t̂I(θ − θ̂)

]
π(θ) dθ(1 + o(1))

= el(̂θ)

∫
e−(1/2)(θ−θ̂)t̂I(θ−θ̂)π(θ) dθ(1 + o(1)),

(7)

where o(1) denotes a term that goes to zero as the
sample size n grows. Technical conditions for the valid-
ity of this Laplace approximation can be found in, e.g.
Tierney et al. (1989), Kass and Vaidyanathan (1992);
the key assumption needed is that θ̂ occurs on the
interior of the parameter space, so that ∇l(̂θ) = 0.
(If not true, the analysis must proceed as in Dudley
& Haughton, 1997; Haughton, 1991, 1993). Also, the
presence of o(1) assumes that p is fixed as n grows.
We will nevertheless use this approximation, even as p
grows with n, relying on the considerable evidence that
the Laplace approximation is quite generally accurate.

Note that we do not use the more common version
of the Laplace expansion which involves π(θ) in the
Taylor’s expansion because we will be choosing π(θ)

so that the integral in this expression can be evalu-
ated in closed form. In particular, this means that, if
we are dealing with the situation where θ is the mean
parameter of a normal model, then the computations
herein will be entirely closed form, with no approxima-
tion being involved (and no need to then worry about
p growing with n).

2.2.2. Choosing a good prior π(θ)

Assume that the transformations in Section 2.1 have
been made.

Step 1. Recall that θ = (θ (1), θ (2)), where θ (2)
denotes the common parameters to all models. We will
utilise a prior distribution

π(θ) = (2π)−qπ(θ (1)),

where π(θ (1)) is defined later. The key point is that,
since θ (2) is common to all models, it can be assigned
a constant prior density (see, e.g. Bayarri, Berger,
Forte, & García-Donato, 2012; Berger, Pericchi, & Var-
shavsky, 1998); choosing the constant to be (2π)−q is
to simplify the resulting expression. With the defini-
tions given in (3), integrating out θ (2) results in the
expression

m(x) = el(̂θ)

∫
exp

(
−1
2
(θ − θ̂)t̂I(θ − θ̂)

)
× (2π)−qdθ (2)π(θ (1))dθ (1)(1 + o(1))

= el(̂θ) |̂I|−1/2

×
∫ exp

(− 1
2 (θ (1) − θ̂ (1))

t�−1(θ (1) − θ̂ (1))
)

|�|1/2
× π(θ (1)) dθ (1)(1 + o(1)).
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Step 2. Change variables to ξ = Oθ (1), where O is
an orthogonal matrix such that � = OtDO, with D =
diag(di) for i = 1, . . . , p. (The choice of O does not
matter in the following.) Note that ξ̂ = Oθ̂ (1).

For this model, we will utilise a prior distribution
that is independent in the ξi, i.e. π(ξ) = ∏p

i=1 πi(ξi).
Then we can write

m(x) = el(̂θ) |̂I|−1/2

×
[ p∏
i=1

∫
1√
di
e−((ξi−ξ̂i)

2/2di)πi(ξi) dξi

]
× (1 + o(1)). (8)

For πi(ξi), in a similar situation, Jeffreys (1961) recom-
mended the Cauchy(0, bi) density (1/π

√
bi)(1/(1 +

ξ2i /bi)), where bi is chosen to representunit information
for ξi (see Kass &Wasserman, 1995; also to be discussed
later). A prior that yields almost the same results is

πR
i (ξi) =

∫ 1

0
N
(

ξi

∣∣∣0, 1
2λi

(di + bi) − di
)

1
2
√

λi
dλi,

(9)
which is well-defined if bi ≥ di. Interestingly, this prior
is very similar to the Cauchy prior no matter what di
happens to be (as shown in the Appendix), so we will
interpret this prior (and bi) exactly as we would with
the Cauchy prior. The attraction of πR is that the ensu-
ing computations can be done in closed form. That one
can have all the advantages that Jeffreys pointed out
are possessed by the Cauchy prior for model selection,
while maintaining closed form expressions, is a signif-
icant advantage when dealing with large model spaces.
This prior was extensively discussed in Berger (1985),
as a robust prior (hence theR label) for estimation prob-
lems, but its even greater value for model selection was
not recognised. (This type of prior was first utilised in
Strawderman (1971) in shrinkage estimation.) See also
Bayarri et al. (2012), where amultivariate version of this
prior is utilised for model selection in normal linear
models.

With the prior in (9), the integral in (8) is straight-
forward to evaluate in closed form (first integrate over
ξi, then over λi) yielding

m(x) = el(̂θ) |̂I|−1/2

×
⎡⎣ p∏

i=1

1√
(di + bi)

(
1 − e−ξ̂2i /(di+bi)

)
√
2̂ξ 2i /(di + bi)

⎤⎦
× (1 + o(1)). (10)

Step 3. Define the unit information, bi, by

bi = nei di, where

nei = effective sample size for ξi and recall

vi = ξ̂2i
di(1 + nei )

. (11)

Definitions of the effective sample size will be given in
Section 3. It will be the case that nei ≥ 1 so that bi ≥
di (the condition mentioned earlier for πR to be well
defined). Then (10) becomes

m(x) = el(̂θ) |̂I|−1/2

|D|1/2
p∏

i=1

× 1√
1 + nei

(
1 − e−vi

)
√
2vi

(1 + o(1)).

Since |̂I| = |�−1||̂I22| = |D−1||̂I22|, we thus have that
−2 logm(x) = PBIC + o(1),

with PBIC defined in (4).

3. Defining ‘effective sample size’ nj, for
parameter ξj

Themost difficult aspect of dealing with PBIC turns out
to be defining the effective sample size corresponding to
a parameter. We first present a solution for linear mod-
els, and then suggest a possible solution for the general
case.

3.1. Effective sample sizes in linearmodels

Suppose that all models under consideration are linear
models of the form

Y = X∗α + Xβ + ε, where ε ∼ N(0,	), 	 known,
(12)

with dimensions Y[n×1], X∗
[n×q], α[q×1], X[n×p],

β[p×1], ε[n×1] and 	[n×n]. Here X∗α is a common term
present in all models (e.g. an intercept in linear regres-
sion), but Xβ will differ from model to model. This fits
into the framework for PBIC by defining θ (1) = β and
θ (2) = α.

Since α will be integrated out in PBIC, only the
effective sample size for linear functions of β will be
needed. The first step of the process is to orthogo-
nalise the parameters by transforming α to α∗ = α +
(X∗t	−1X∗)−1X∗t	−1Xβ and defining

X̃ = (I − X∗(X∗t	−1X∗)−1X∗t	−1)X. (13)

Since X∗α + Xβ = X∗α∗ + X̃β , the linear part of the
model has not changed in this reparameterisation, but
now X̃t

	−1X∗ = 0, so that α∗ and β are orthogonal.
There are two important aspects of this. First, since X∗
has not been altered, the new α∗ can still be considered
common parameters in each model, and will be inte-
grated out in PBIC, so that their changed definition is
irrelevant. Second, β has not been transformed, cru-
cial because we wish effective sample sizes for linear
functions of β

Write 	 = σRσ , with σ = diag{σ1, . . . , σp}, where
R is the correlation matrix, and define C[p×p] to be
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the diagonal matrix with entries cii = maxj{|X̃ji|/σj}.
Berger, Bayarri, and Pericchi (2014) gave, as the general
definition of the effective sample size (called TESS), for
any scalar linear transformation ξ = vβ (v is [1 × p])
of β ,

ne = |v|2
vC(X̃t

	−1X̃)−1Cvt
. (14)

Example 3.1 (Group means example): Assume Yij =
μi + εij for i = 1, . . . , p groups, and j = 1, . . . , ri repli-
cates in the ith group, and that the εij are i.i.d.N(0, σ 2).
Computation yields that TESS for μi is nei = ri, as is to
be expected. Note that ri could be 1, which can be seen
to be the lower bound on TESS for linear models when
	 = σ 2I.

Example 3.2 (Orthogonal and related designs):
Assume that X has orthogonal columns with entries

±ai 	= 0, and that 	 = σ 2I. Simple computation here
shows that nei = n for each βi.

Note that the effective sample size here is n, in con-
trast to the group means problem where the effective
sample size can be as low as ri = 1. Indeed, it can
be shown that, when 	 = σ 2I, TESS will always be
between 1 and n, with both limits attainable.

Example 3.3 (Heteroscedastic independent obser-
vations): Assume Yi = μ + εi, εi independent, εi ∼
N(0, σ 2

i ), i = 1, . . . , n. Here the effective sample size is

ne =
∑n

i=1 1/σ
2
i

maxi{1/σ 2
i } .

Consider the particular case where, for i = 1, . . . , n1,
we have Yi ∼ N(μ, σ 2

1 ), whereas for the remaining
n2 = n − n1 observations, Yi ∼ N(μ, σ 2

2 ), where σ 2
2 is

much larger than σ 2
1 ; thus, intuitively, only the first n1

observations count. Then, unless n2 is large,

ne = n1/σ 2
1 + n2/σ 2

2
1/σ 2

1
= n1 + n2

σ 2
1

σ 2
2

≈ n1.

3.2. A general definition of effective sample size

Suppose one has independent observations (x1, . . . ,
xn). A possible general definition for the ‘effective
sample size’ follows from considering the informa-
tion associated with observation xi arising from the
single-observation expected information matrix I∗i =
O′(I∗i,jk)O, where

I∗i,jk = −E
[

∂2

∂θj∂θk
log fi(xi | θ)

] ∣∣∣
θ=θ̂

.

Since I∗jj = ∑n
i=1 I

∗
i,jj is the expected information about

ξj, a reasonable way to define the effective sample size,
nej , is

• define information weights wij = I∗i,jj/
∑n

k=1 I
∗
k,jj;

• define the effective sample size for ξj as

nej =
I∗jj∑n

i=1 wijI∗i,jj
=

(
I∗jj
)2

∑n
i=1

(
I∗i,jj
)2 .

Intuitively,
∑

wijI∗i,jj is a weighted measure of the
information ‘per observation’, and dividing the total
information about ξj by this information per case seems
plausible as an effective sample size.

Unfortunately, this does not seem to always be an
effective definition; for instance, it does not reduce to
TESS for all linear models. This should thus be viewed
as primarily a starting point for future investigations of
effective sample size in nonlinear models.

4. PBIC*: a versionmore favourable to
complexmodels

Recall, from Raftery (1999), that BIC can be thought of
as arising from unit information priors for each model
that are centred at the model likelihood. This choice of
prior seems highly favourable tomore complexmodels,
since the prior gives virtually all of its mass to a modest
neighbourhood of the likelihood for each model.

In contrast, PBIC utilises unit information priors
that are centred at 0 and, hence, can give little mass
to the region of high model likelihood. The fat tails of
the prior do result in reasonable answers (cf. Bayarri
et al., 2012; Jeffreys, 1961), but it is of interest to inves-
tigate an intermediate solution.

The intermediate solution is to keep the prior cen-
tred at 0, but choose the scales of the prior, bi, so that the
prior will extend out to the likelihood. In our setup, this
can be implemented by choosing the bi so as to max-
imisem(x) in (10); thus we are effectively choosing the
prior in our class that is most favourable to each model.
Clearly this does allow the prior to give more mass to
the region of high model likelihood, but does not allow
complete concentration of mass in this region.

Since this prior is maximising the marginal likeli-
hood among the given class, it can be viewed as the
empirical Bayes prior in the class. It was also a choice
popularised in the ‘robust Bayes’ literature (cf. Berger
& Sellke, 1987), and was used in Bollen et al. (2012) to
develop a related generalisation of BIC.

The bi that maximises (10) can easily be seen to be

b̂i = max{di, ξ̂
2
i
w

− di}, with w s.t. ew − 1

= 2w, or w ≈ 1.3.

Unfortunately, the resulting version of BIC has serious
problems; in particular it will typically not be consistent
as n → ∞ in that, if ξi is zero, the prior will concen-
trate about zero at such a fast rate that the models
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with and without ξi are essentially equivalent (and one
will fail to select the model without ξi with probability
approaching 1). This same lack of consistency afflicts
the developments in Bollen et al. (2012) and the robust
Bayesian choices.

The obvious solution is simply to prevent b̂i from
becoming too small, and the obvious constraint is to
restrict it to the region [nei di,∞). This yields the rec-
ommended choice

b∗
i = max

{
nei di,

ξ̂ 2i
1.3

− di
}
. (15)

This will avoid inconsistency as n → ∞ in that, as
long as b∗

i → c with c a non-zero constant, the result-
ing prior behaves asymptotically when ξi = 0 as a fixed
prior, and fixed priors will yield consistency as n → ∞.
(Consistency when the effective sample sizes do not
grow is a more delicate issue, discussed in Section 5.5.)

Replacing bi with b∗
i , (10) becomes

m(x) = el(̂θ) |̂I|−1/2

[ p∏
i=1

1√
di(1 + nei )max{1, vi/1.3}

×
(
1 − e−min{vi,1.3})
√
2min{vi, 1.3}

]
(1 + o(1))

= el(̂θ) |̂I|−1/2

[ p∏
i=1

1√
di(1 + nei )

×
(
1 − e−min{vi,1.3})

√
2vi min{vi, 1.3}

]
(1 + o(1)).

The resulting approximation to −2 logm(x) is given
in (6).

5. PBIC and PBIC* for the linear model

5.1. The expressions

Consider the normal linear model framework in (12)
and assume the orthogonalisation discussed there has
been carried out. This does not change PBIC, but
is more convenient because we can ignore the com-
mon orthogonal parameter α∗ (see Bayarri et al., 2012;
Berger et al., 1998; Jeffreys, 1961 for justification), and
focus only on the other parameters β , with the associ-
ated model

Y = X̃β + ε, where ε ∼ N(0,	), 	 known,
(16)

with X̃ given by (13).
Following the PBIC algorithm, note that �−1 =

X̃′
	−1X̃. Change variables to ξ = Oβ , where O is an

orthogonal matrix such that � = OtDO, with D =
diag(di) for i = 1, . . . , p. Then, for each ξj = Ojβ ,
define nej using (14) with v = Oj, and let ξ̂j = Ojβ̂ ,
where β̂ = (X̃′

	−1X̃)−1X̃′
	−1Y . Finally, recalling that

vi = ξ̂2i /[di(1 + nei )], PBIC and PBIC* are given by

PBIC = S2 + C +
p∑

i=1
log(1 + nei )

− 2
p∑

i=1
log

(
1 − e−vi

)
√
2vi

(17)

PBIC* = S2 + C +
p∑

i=1
log(1 + nei )

− 2
p∑

i=1
log

(
1 − e−min{vi,1.3})

√
2vi min{vi, 1.3}

, (18)

where S2 is the usual residual sum of squares corre-
sponding to (12) and

C = log(|	|) + n log(2π) = log(|	|) + n log(2π).

Note that C is the same constant in any model under
consideration, and hence it can be ignored in compar-
ing models or determining Bayes factors.

In what follows we describe some important Lin-
ear Model examples. There are more, including corre-
lated observations and autoregressivemodels, in Berger
et al. (2014).

5.2. Simple linear regression

Let Yi = α + Xiβ + εi, εi
i.i.d.∼ N(0, σ 2), so that

Y =

⎛⎜⎝1 X1
...

...
1 Xn

⎞⎟⎠(α

β

)

+

⎛⎜⎝ε1
...

εn

⎞⎟⎠ , where ε ∼ N(0, σ 2I).

Suppose we are considering two models M0 : β = 0
and M1 : β 	= 0. Computation under M1 yields X̃ =
(X1 − X, . . . ,Xn − X)′, so that� = σ 2/s2x = σ 2/

∑n
i=1

(Xi − X)2. Also, from (14),

ne =
∑n

i=1(Xi − X)2

maxi{(Xi − X)2} = s2x
maxi{(Xi − X)2} . (19)

Finally, d = � = σ 2/s2x, v = β̂2/[d(1 + ne)], and

S2 = 1
σ 2

(
|Y|2 − (

∑n
i=1(xi − x̄)yi)2∑n
i=1(xi − x̄)2

)
= 1

σ 2 (|Y|2 − s2xβ̂
2)

complete the terms needed to define PBIC and PBIC*
under M1. Under M0, we only need S2 = (1/σ 2)|Y|2;
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thus, with v = β̂2/[σ 2(s−2
x + (maxi{(Xi − X)2})−1)],

�PBIC = − s2xβ̂2

σ 2 + log
(
1 + s2x

maxi{(Xi − X)2}
)

− 2 log
(
1 − e−v

)
√
2v

.

�PBIC* is the obvious modification of this.

5.3. Testing equality of twomeans with unequal
variances

Consider comparing two normal means via the test
H0 : μ1 = μ2 versus H1 : μ1 	= μ2, where the associ-
ated known variances, σ 2

1 and σ 2
2 are not equal. The

linear model is thus

Y = Xμ + ε =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
...

...
1 0
0 1
...

...
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(

μ1
μ2

)
+

⎛⎜⎝ ε11
...

ε2n2

⎞⎟⎠ ,

× ε ∼ N(0, diag{σ 2
1 , . . . , σ

2
1︸ ︷︷ ︸

n1

, σ 2
2 , . . . , σ

2
2︸ ︷︷ ︸

n2

}).

Defining α = (μ1 + μ2)/2 and β = (μ1 − μ2)/2
places this in the linear model comparison framework,
where we are comparingM0 : β = 0 versusM1 : β 	= 0
with the covariate matrix

B = X
(
1 1
1 −1

)−1
= 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
...

...
1 1
1 −1
...

...
1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

UnderM1, computation yields

X̃ =
(

n2
n∗σ 2

2
, . . . ,

n2
n∗σ 2

2
,− n1

n∗σ 2
1
, . . . ,− n1

n∗σ 2
1

)′
with

n∗ =
(
n1
σ 2
1

+ n2
σ 2
2

)−1
,

so that

d = � =
(

σ 2
1
n1

+ σ 2
2
n2

)
.

Also, from (14),

ne =
(

σ 2
1
n1 + σ 2

2
n2

)
max

{
σ 2
1 /n21, σ

2
2 /n22

}
= min

{
n21
σ 2
1
,
n22
σ 2
2

}(
σ 2
1
n1

+ σ 2
2
n2

)
,

and v = β̂2/[d(1 + ne)].

A special case is the standard test of equality of
means when σ 2

1 = σ 2
2 = σ 2. Then

ne = min
{
n1
(
1 + n1

n2

)
, n2

(
1 + n2

n1

)}
.

While this may look unusual, looking at the extremes
indicates why this is reasonable. Indeed, as say n1 →
∞, note that ne → n2. In this scenario, we perfectly
learn μ1, so the test of mean equality is really just a test
that μ2 equals this known mean, based on n2 observa-
tions. Attempting to utilise BIC with an adhoc choice of
n, such as (n1 + n2)/2, would clearly be a disaster here.

5.4. Findley’s counterexample to BIC

For the simple linear model in (2), computation yields
that, under H1 : θ 	= 0,

d = � =
( n∑

i=1

1
i

)−1

, ne =
n∑
i=1

1
i
,

S2 = |Y|2 − θ̂2
n∑
i=1

1
i
.

It follows that

�PBIC = −θ̂2
n∑
i=1

1
i

+ log(1 +
n∑

i=1

1
i
)

− 2 log
(
1 − e−v

)
√
2v

, v = θ̂2

d(1 + ne)
.

Since
∑n

i=1(1/i)= log n+O(1) and θ̂2 → θ2 (because
the mle is consistent here),

�PBIC = −θ2(log n + O(1)) + log(log n)

− 2 log

(
1 − e−θ2

)
√
2θ2

+ o(1).

Under H0 : θ = 0, �PBIC = log(log n) + log 2 + o(1)
→ ∞ and, under H1 : θ 	= 0, �PBIC → −∞. Thus
PBIC is consistent as n → ∞. Essentially the same
argument shows that PBIC* is consistent.

5.5. Consistency of PBIC and PBIC* as p → ∞ in
the groupmeans problem

Bayes model selection rules for fixed priors and fixed p
are virtually always consistent as the sample size n →
∞. This type of consistency transfers over to rules such
as PBIC and PBIC* because the priors from which they
arise converge to fixed priors as n → ∞ with p fixed.

There is nothing within Bayesian theory, however,
that guarantees consistency of Bayes rules when the
dimension p also grows. Indeed, it turns out that consis-
tency is then a very delicate property, that can easily be
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violated by even standard Bayes rules. The groupmeans
problem provides a simple illustration.

Example 5.1: Consider the group means problem
with known σ 2 = 1 and effective sample size ni =
r fixed, and reduce to the sufficient statistics X̄i ∼
N(μi, 1/r) for i = 1, . . . , p. Consider comparison of
the null model M0 : μ1 = · · · = μp = 0 with the full
model M1 : all μi non-zero. Suppose the μi are inde-
pendently assigned N(0, τ 2i ) priors. Then it is easy to
show that consistency obtains under M1 as p → ∞
if and only if V ≡ limp→∞(1/p)

∑p
i X̄

2
i satisfies V ≥

limp→∞(1/p)
∑p

i τ 2i , assuming the limits exist. (This
example was brought to our attention by J. K. Ghosh.)

After reflecting upon this, it might seem surpris-
ing that any prior could achieve consistency as p →
∞. However, Berger et al. (2003) computed Laplace
approximations to the marginal density, for this prob-
lem, that produced consistent Bayes factors when p
grows with n. They used a multivariate Cauchy prior,
which does not result in a closed form Bayes factor, as
arises with PBIC and PBIC*. The next theorem indi-
cates the situation involving consistency for PBIC and
PBIC*.

Theorem 5.2: For the group means problem with
fixed r, PBIC and PBIC* are consistent under M0
as p → ∞. Under M1 and assuming that τ 2 =
limp→∞(1/p)

∑p
i μ2

i exists, PBIC and PBIC* are

consistent if τ 2

>
log 2 + log(1 + r) + 1

r
; inconsistent if τ 2

<
log 2 + log(1 + r) − 1

r
. (20)

Proof: We utilise (17) and (18) as the definitions of
PBIC andPBIC*, butwill ignoreC since it is common to
allmodels.Note that thenei = r, S21 = ∑p

i=1
∑r

j=1(xij −
x̄i)2, S20 = S21 + r

∑p
i=1 x̄

2
i , vi = rx̄2i /(r + 1) under M1

and vi = 0 under M0. Thus PBIC and PBIC* become,
with subscripts denoting the model,

PBIC0 = PBIC*0 = S20 = S21 + r
p∑

i=1
x̄2i ,

PBIC1 = S21 + p log(r + 1) − 2
p∑

i=1
log

1 − e−vi
√
2 vi

= S21 + p log[2(r + 1)] − 2
p∑

i=1
log

1 − e−vi

vi
,

PBIC*1 = S21 + p log(r + 1)

− 2
p∑

i=1
log

(
1 − e−min{vi,1.3})

√
2 vi min{vi, 1.3}

= S21 + p log[2(r + 1)]

− 2
p∑

i=1
log

(
1 − e−min{vi,1.3})
√

vi min{vi, 1.3}
.

It is straightforward to show that

1 − e−vi

vi
< 1 and

(
1 − e−min{vi,1.3})
√

vi min{vi, 1.3}
< 1,

so that �PBIC = PBIC1 − PBIC0 and �PBIC* =
PBIC*1 − PBIC*0 satisfy

�PBIC (�PBIC*)

> p log[2(r + 1)] − r
p∑

i=1
x̄2i ≡ A(p).

UnderM0, r
∑p

i=1 x̄
2
i ∼ χ2

p , so that

A(p) = p log[2(r + 1)]

− p
(
1 + O

(
1√p

))
→ ∞ as p → ∞,

establishing consistency underM0.
To show inconsistency under M1, note that r

∑p
i=1

x̄2i ∼ χ2
p (λp), with non-centrality parameter λp = r∑p

i=1 μ2
i . Thus

A(p) = p log[2(r + 1)]

− (p + λp)

(
1 + O

(
1√

p + λp

))
→ ∞

if τ 2 = limp→∞ λp/[rp] < (log[2(1 + r) − 1])/r, esta-
blishing the inconsistency result.

To investigate consistency of PBIC and PBIC* under
M1, note that

(
1 − e−min{v,1.3})
√

v min{v, 1.3} ≥ 1 − e−v

v
≥ 1

1 + v
. (21)

Also, because of concavity, E[log(1 + v)] ≤ log(1 +
E[v]). Thus,

E
[
log

1 − e−vi

vi

]
≥ −E[log(1 + vi)]

≥ − log(1 + E[vi])

= − log
(
1 + 1 + rμ2

i
1 + r

)
.
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Using this inequality and the fact that
∏

i ω
1/p
i ≤

(
∑

ωi)/p), it follows that

2
p
E

[ p∑
i=1

log
1 − e−vi

vi

]

≥ −2 log
p∏

i=1

(
1 + 1 + rμ2

i
1 + r

)1/p

≥ −2 log

[
1
p

p∑
i=1

(
1 + 1 + rμ2

i
1 + r

)]

= −2 log
(
2 + r + λp/p

1 + r

)
.

Hence, by the law of large numbers,

lim
p→∞

1
p
�PBIC

≤ log[2(r + 1)] + 2 log
(
2 + r + r τ 2

1 + r

)

− lim
p→∞

(
1 + λp

p

)(
1 + O

(
1√
p + λ

))

= log[2(r + 1)] + 2 log
(
2 + r + r τ 2

1 + r

)
− (1 + rτ 2)(1 + o(1)).

Let B(r, τ 2) denote the right hand side above (without
the o(1) term). IfB(r, τ 2) < 0, then�PBIC goes to−∞
as p → ∞, and we have consistency.

Differentiating with respect to τ 2 shows that B(r, τ 2)
is decreasing in τ 2, so that, if we can find a value of τ 2

for which B(r, τ 2) < 0, then any larger value of τ 2 will
also work. As a candidate, consider τ 2c = [c + log(1 +
r)]/r. Then

B(r, τ 2c ) = log[2(r + 1)]

+ 2 log
(
2 + r + c + log(1 + r)

1 + r

)
− (1 + c + log(1 + r)).

Differentiating this with respect to r shows that it is
decreasing in r so that all we need to show is that τ 2c
works for r=1. Indeed,

B(1, τ 2c ) = log[4] + 2 log
(
3 + c + log 2

2

)
− (1 + c + log 2) < 0,

if c>1.67. Since 1 + log 2 = 1.693 > 1.67, the condi-
tion for consistency of PBIC in the theorem is estab-
lished. And because of (21), the same condition ensures
that PBIC* is consistent. �

Note that, if r is moderately large, PBIC and PBIC*
are consistent under M1, unless τ 2 is extremely close
to 0, i.e. unless the non-zero means are extremely close
to 0; it is not surprising that it is difficult to distinguish
betweenM1 andM0 in this situation.

There is a gap in the theorem between the consis-
tency and inconsistency conditions underM1. The gap
is quite large for small r, but shrinks as r grows. A more
refined analysis would reduce the gap, but the theorem
does convey the basic messages about consistency.

More generally, M0 could be a group means model
containing some zero and some non-zero means. IfM0
is nested in M1 and the number of additional non-
zero means in M1 goes to ∞, then the theorem still
applies, since the common non-zeromeans will be inte-
grated out at the beginning and will not affect the
analysis.
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Appendix

To see that the prior in (9) is almost the same as πC, the
Cauchy(0,b) prior (we drop the i subscripts in this appendix),
consider the extremes.

Theorem A.1: For b ≥ d,

lim
|ξ |→∞

πC(ξ)

πR(ξ)
= 2

√
b√

π(b + d)
∈ (0.80, 1.13),

πC(0)
πR(0)

= 2d√
bπ(

√
b + d − √

b − d)

∈ (0.80, 1.13).

Proof: Note that

πR(0) = 1
2
√

π

∫ 1

0

1√
d + b − 2λd

dλ =
√
b + d − √

b − d
2d

√
π

.

Hence

πC(0)
πR(0)

= 2d√
bπ(

√
b + d − √

b − d)
.

It is straightforward to show that
√
b(

√
b + d − √

b − d) is
decreasing in b ≥ d, with a maximum of

√
2d and mini-

mum of d. Thus
√
2/π ≤ πC(0)/πR(0) ≤ √

4/π , which (to
2 decimal places) is the result above.

To prove the result as |ξ | → ∞, separately integrate
over �1 = (0, |ξ |−3/2) and �2 = (|ξ |−3/2, 1) in (9). For λ ∈
�1, note that (d + b − 2λd)−1 = (d + b)−1 + O(|ξ |−3/2), so
that

(d + b − 2λd)−1/2 = (d + b)−1/2 + O(|ξ |−3/2),

exp
(

− ξ 2λ

d + b − 2λd

)
= exp

(
− ξ 2

d + b
[
λ + O(|ξ |−3)

])
= exp

(
− ξ 2

d + b

) (
1 + O(|ξ |−1)

)
.

Hence the integral over �1 is

1
2
√

π

∫ |ξ |−3/2

0

(
1√
d + b

+ O(|ξ |−3/2)

)
× exp

(
− ξ 2λ

d + b

) (
1 + O(|ξ |−1) dλ

=
√
d + b

2
√

πξ 2

(
1 − exp

(
−

√|ξ |
d + b

)) (
1 + O(|ξ |−1) .
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Noting that exp (−ξ 2λ/[d + b − 2λd]) is decreasing in λ,
it is immediate that the integral over �2 is bounded above
by

exp (−√|ξ |/[d + b])
2
√

πd

∫ 1

|ξ |−3/2

1√
d + b − 2λd

dλ

= exp (−√|ξ |/[d + b])
2
√

πd

×
(√

d + b − 2|ξ |−3/2d − √
b − d

)
= o(|ξ |−2).

It follows that

lim
|ξ |→∞

πC(ξ)

πR(ξ)
= lim

|ξ |→∞
2
√

π[π−1ξ−2√b(1 + O(|ξ−2))]√
d + bξ−2(1 − exp (−√|ξ |/[d + b]))

(1 + O(|ξ−1)) + o(|ξ |−2)

= 2
√
b√

π(b + d)
.

It is straightforward to show that
√
2/π ≤ 2

√
b/

√
π(b + d)

≤ √
4/π , yielding (to two decimal places) the conclusion.

�
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