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Wewould like to thank the authors (Bayarri et al., 2018)
for their interesting and provoking paper, and we wish
to discuss some issues related to sample size in general
and the number of covariates in the context of linear
regression model when using the Bayesian information
criteria (BIC) for model selection. Schwarz (1978) was
the first to develop tools for estimating the dimension
of parameters among distributions in exponential fam-
ily and consequently, introduce the BIC to serve as an
approximation to the Bayesian posterior probability of
a given model. The BIC has been used in a broad con-
text and has been widely adapted for model selection
despite that there are situations where the BIC might
not be appropriate. Returning to its root as in this dis-
cussion paper is essential when the model and the data
structure markedly deviate from the original context.

The original BIC criterion targets models arose from
distributions belonging to an exponential family which
permits a neat and simple analytical form after Laplace
approximation. The neatness of this form is a bless-
ing, but unfortunately, can be a curse as well. When
the data is deprived of the independent and identically
distributed (iid) structure, a blind application of BIC
will not survive a close scrutiny. As discussed in Bayarri
et al. (2018), the sample size in BIC becomes problem-
atic. The prior-based BIC (PBIC) proposed in Bayarri
et al. (2018) is essential to overcome these issues.
This paper timely draws our attention to many unset-
tling issues related to the use of BIC in non-standard
situations.

1. The classical andmutated BICs

Suppose we have a statistical model, referring to a spe-
cific family of distributions as usual, denoted as

M = {f (x; θ) : θ ∈ � ⊂ Rp}.
The density function f (x; θ) under consideration is
usually chosen to have nice mathematical properties
such as being regular. The dimension of the parameter

θ remains the same within a model. This assumption is
not obviously seen in the above presentation.

When the above modelM is chosen for a population
and a random sample is provided, statistical analysis is
to infer the θ value of the population. In the context of
Bayesian analysis, the θ value is regarded as uncertain
and the level of uncertainty is specified by a prior den-
sity, say π(θ). The combination of the prior on the θ

and the data sampled from the population lead to the
posterior distributionwhich is the basis of the statistical
decision.

When there are many competing models, say
M1,M2, . . . ,MJ , a prior probability should be decided
for each of theseMj’s. Let αj denote the prior probabil-
ity forMj, j = 1, . . . , J. For notational simplicity, we use
fj(x; θj) for the density function in modelMj, pj for the
dimension of �j which is the parameter space of Mj,
and we also use some obvious conventions such asM, p
and θ as some generic versions.

Let xn be a sample of size n from a distribution
which is a member of model M. By Bayes formula,
the posterior probability that this M is Mj, is propor-
tional to

post(Mj) = αj

∫
fj(xn; θj)πj(θj) dθj. (1)

Equation (1) precisely corresponds to S(Y, n, j) of
Schwarz (1978, p. 462). The development in
Schwarz (1978) is restricted to exponential family and
under the assumption that the density is a function of
xn throughY = Y(xn). Other than the factor αj, our (1)
duplicates the function m(x) of Bayarri et al. (2018).
The subindex j in our expression highlights the fact that
the form of θj depends on modelMj.

If an accurate computation of post(Mj) is cheap,
then we would select the modelMj that maximises the
posterior probability. In most cases, use some compu-
tationally feasible approximation is more realistic but
may lead to complications.

Suppose xn consists of n independent and identi-
cally distributed observations. Let θ̂j be the maximum

CONTACT Jiahua Chen jhchen@stat.ubc.ca Department of Statistics, University of British Columbia, Vancouver, BC, Canada

© East China Normal University 2019

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2019.1583628&domain=pdf&date_stamp=2019-06-06
mailto:jhchen@stat.ubc.ca


STATISTICAL THEORY AND RELATED FIELDS 15

likelihood estimator (MLE) of θj under model Mj and
�n(·) be generic log likelihood function suitable for
allM1,M2, . . . ,MJ . Then under reasonable conditions,
Laplace approximation leads to the authentic BIC:

aBIC(Mj) = −2 log
{
αj

∫
fj(xn; θj)πj(θj) dθj

}

= −2�n(θ̂j) + pj log n + cj + op(1). (2)

Note that cj crucially depends onMj through at least αj,
πj and fj as we understand that fj andMj are two names
for the same notion. When n is very large, the cj and
op(1) can be wrapped up to Op(1) and the aBIC(Mj)
arrives at the classical BIC:

BIC(Mj) = −2�n(θ̂j) + pj log n. (3)

However, unless n is very large, the size of cj is not negli-
gible. In other words, the aBIC in (2) and BIC in (3) can
be very different and so that the BICwould no longer be
a good approximation to the aBIC. Should cj be taken
into consideration? Bayarri et al. (2018) gives a positive
answer to this question.

Taking this in mind, let us look into details for a
data set of sample size n in the classical BIC and the
prior-based BIC of the authors. Recalled that the BIC
in Schwarz (1978) is derived when there are n iid obser-
vations from an exponential family and having these n
iid observations of some dimensions but not necessar-
ily the dimension of the parameters. The dimension of
parameters p in the BIC refers to the dimension of Y(x)
where Y(x) is a vector of statistics, not that of x in the
exponential family model. Once we leave the comfort
zone of iid and exponential family, direct application
of BIC in (3) is questionable though it is now a com-
mon practice. Consider an extreme case where we have
n iid observations from a distribution in an exponential
family, but each observation is duplicated exactly twice
in the data set. The apparent sample size is therefore 2n
but the (correct) likelihood is not affected by the dupli-
cation. Applying classical BICmerely in formality leads
to the wrongful BIC:

BICw = −2
n∑

i=1
log f (xi; θ̂j) + pj log(2n).

Yet its difference from the rightful BIC is merely a
constant pj log(2), which may well be regarded as part
of cj in aBIC. We suggest from this analysis that if
omitting terms of Op(1) in BIC is acceptable, the
precise definition of effective sample size is not so
crucial.

Suppose that θ is a vector. When θ in a small neigh-
bourhood of the truth, and therefore it is also in a
small neighbourhood of θ̂ when the MLE is consistent,

we have

�n(θ) ≈ �n(θ̂) − 1
2 (θ − θ̂ )τ In(θ − θ̂ ),

where In = In(θ̂) is the Fisher information matrix at θ̂ .
The faithful Laplace approximation would lead to

aBIC(Mj) = −2�n(θ̂j) + log det{In(θ̂j)} + cj + op(1)
(4)

assuming log det{In(θj)} → ∞ as n → ∞. By this, we
realise that cj remains dependent on αj, pj and πj, but
the dependence of aBIC on fj has been accommodated
in the Fisher information. In common applications, we
may choose to omit Op(1) constants related to αj and
πj in BIC. After which, we seem to have defined the
effective sample sizes via det{In(θ̂j)}.

Consider the Example 1.3 of Bayarri et al. (2018)
where n/2 observations are iid from N(θ , 1) and
another n/2 observations are iid from N(θ , 1000).
The Fisher information for θ is given by I(θ) = (1 +
1/1000)(n/2) ≈ n/2. Our understanding is therefore
in good agreement with Bayarri et al. (2018). In Exam-
ple 1.4 of Bayarri et al. (2018), the Fisher information
for θ is given by

∑n
i=1 i

−1 ≈ log n. Hence, using the
above suggested approximate aBIC, we would have get

aBIC(θ �= 0) = −2�n(θ̂j) + log log(n).

Our suggestion on sample size is also found reasonable
when applied to Example 1.2 of Bayarri et al. (2018) and
therefore in good agreement with the Prior-based BIC
of the authors.

2. The role of parameter dimension p

Our view on the role of the dimension of the parameter
p in BIC differs from Bayarri et al. (2018). Our start-
ing point is that part of cj omitted as an Op(1) term in
aBIC to arrive at BIC is related to p. When p is very
large, the resulting approximation may lead to a non-
sensical model selection criterion.We use the extended
BIC (EBIC) as an example which is proposed by Chen
and Chen (2008) that are suitable for small-n-large-
p problems. Consider the classical linear regression
model when n independent observations are obtained
and the dimension of the explanatory variable is q. We
use q instead of p to avoid potential confusion. In the
era of big data, the number of explanatory variables q
can be much larger than n. Let Mj be the collection of
models where the expectation of the response is a lin-
ear combination of exactly j explanatory variables. One
generally regards that each specific set of j explanatory
variables makes up a model of its own right. Let Mjk,
k = 1, 2, . . . ,

(q
j
)
be these models. From this angle, the

cardinality ofMj is
(q
j
)
.When aBIC is used, a prior prob-

ability αjk is required for every Mjk and they lead to a
total prior probability forMj.
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Suppose one puts αjk ∝ 1 as it is clearly the default
choice in BIC, we have

αj ∝
(pj)∑
k=1

αjk =
(
q
j

)

for model set Mj. When q=1,000,000, we have α2 =
50, 000α1. In small-n-large-p problems, this implies
that a linear model with two explanatory variables is
50,000 times more likely to be selected than a model
with one explanatory variable if BIC is applied without
any modifications. This is apparently controversial and
leads to inconsistentmodel selectionwhennhas a lower
order than q.

To fix this problem, Chen and Chen (2008) suggest
to put

αjk ∝
(
q
j

)−γ

for some γ ∈ [0, 1]. In applications, one would put an
upper bound J not depending on n or q the number
of explanatory variables allowed. Applying the Laplace
approximation, the Extended BIC is obtained:

EBIC(Mj) = −2�n(θ̂j) + j log(n) + 2jγ log(q).

Although the choice of γ = 1 ismost natural, their sim-
ulation results suggest that the choice of γ = 0.5 is a
better trade-off between model complexity and parsi-
mony. When q is very large, EBIC demands stronger

evidence in order to accommodate a model with
another explanatory variable.

The development of EBIC largely overlooks other
Bayesian aspects of BIC. Refinements along the line of
PBIC can be fruitful.
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