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1. Summary

The authors have the basis for a reformulation of the
BIC as we think of it now. This problem is both hard
and important. In particular, to address it, the authors
have put six incisive ideas in sequence. The first is the
separation of parameters that are common across mod-
els versus those that aren’t. The second is the use of an
orthogonal (why not orthonormal?) transformation of
the Fisher information matrix to get diagonal entries di
that summarise the parameter-by-parameter efficiency
of estimation. The third is using Laplace’s method
only on the likelihood, i.e. Taylor expanding the log-
likelihood and using the MLE rather than centring a
Taylor expansion at the posterior mode. (From an esti-
mation standpoint the difference between theMLE and
posterior mode is O(1/n) and can be neglected.) The
fourth is the particular prior selection that the third
step enables. Since the prior is not approximated by,
say π(θ̂), the prior can be chosen to have an impact
and the only way the prior won’t wash out is if it’s tails
are heavy enough. Fifth is defining an effective sample
size nei that differs fromparameter to parameter. Finally,
sixth, is imposing a relationship between the diagonal
elements di and the ‘unit information’ bi by way of the
nei . (All notation and terminology here is the same as in
the paper, unless otherwise noted.)

Taken together, the result is a PBIC that arises
as an approximation to −2 logm(xn), where Xn =
(X1, . . . ,Xn) = (x1, . . . , xn) = xn is the data. This
matches theO(1) asymptotics of the usual BIC.

The main improvement in perspective on the BIC
that this paper provides is the observation that differ-
ent efficiencies for estimating different parameters are
important to include in model selection. Intuitively, if
a parameter is easier to estimate in one model (larger
Fisher information) than the corresponding param-
eter in another model then ceteris paribus the first
model should be preferred. (The use of ceteris paribus
covers a lot of ground, but helps make the point
about efficiency.) Neglecting comparitive efficiences of

parameters is an important gap to fill in the literature
on the BC and model selection more generally.

The focus on the Fisher information I(·) – see
Sec. 3.2 in particular – supports this view, however,
one must wonder if there is more to be gained from
either off-diagonal elements of I or from the orthogonal
(orthonormal) matrix O. The constraint bi = nei di is
also a little puzzling. It makes sense because bi is inter-
pretable as something like the Fisher information rel-
ative to parameter i. (In this sense it’s not clear why
it’s called the ‘unit information’.) The prior selection is
very perceptive – and works – but there does not seem
to be any unique, general conceptual property that it
possesses. Even though it gives an effective result, the
prior selection seems a little artificial. The authors may
of course counter-argue that one of the reasons to use a
prior is precisely that it represents information one has
outside the data.

Setting aside such knit-picking, let us turn to the
substance of the contribution.

2. Other forms for the BIC?

For comparison, let us try to modify the BIC in three
other ways. The first is a refinement of the BIC to
identify the constant c in Result 1.1. The second is to
look more closely at the contrast between the PBIC the
authors propose and a more conventional approach.
The third is a discussion of an alternative that starts
with an effective sample size rather than bringing it in
via the prior.

First observe that the conventional expression for the
BIC is actually only accurate toOP(1) not oP(1). How-
ever, the constant term can be identified. Let xn be IID
Pθ . Staring at Result 1.1 and using standard Lapace’s
method analysis ofm(xn) gives that

∣∣ log p(Xn | θ̂ )π(θ̂)

m(Xn)
− p

2
log

n
2π

− 1
2
log det Î(θ̂)

∣∣→0,

(1)
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in Pθ -probability; see Clarke and Barron (1988). So,
a more refined version of the BIC expression, which
approximates the posterior mode, is

BICbetter = −2�(θ̂)+p log n=− 2 logm(xn)+ p log 2π

− log det Î(θ̂) + 2 logπ(θ̂) + oP(1). (2)

Using (2) may largely address Problem 1 as identified
by the authors. Minimising BICbetter over candidate
models is loosely like maximising m(xn) subject to a
penalty term in p and I, i.e. loosely like finding the
model that achieves the maximal penalised maximum
likelihood if the mixture density were taken as the like-
lihood. Expression (2) can be re-arranged to give an
expression for m(xn). Indeed, one can plausibly argue
that maximisingm(xn) over models (and priors) under
some restrictions should be a useful statistic for model
selection.

This is intuitively reasonable . . . until you want to
take the intuition of the authors into account, viz. that
different θj’s in θ = (θ1, . . . , θp) require different sample
sizes to estimate equally well or correspond to differ-
ent effective sample sizes. One expects this effect to be
greater as more and more models are under considera-
tion. It is therefore natural to focus on the parameters
that distinguish themodels from each other rather than
the common parameters. So, for ease of exposition we
assume that θ = θ(1) i.e. that θ(2) does not appear. (In
simple examples like linear regression θ(2) often corre-
sponds to the intercept and can be removed by centring
the data.)

So, second, let us look at the Laplace’s method
applied tom(xn). Being informal about a second order
Taylor expansion and using standard notation gives

m(xn) =
∫

p(xn | θ)π(θ)dθ = p(xn | θ̂ )

×
∫

e−(n/2)(θ−θ̂ )T Î(θ̃)(θ−θ̂ )π(θ)dθ .

(The domain of intgration is R
p but this can be cut

down to a ball B(θ̂ , ε) by allowing error terms of order
O(e−nγ ) for suitable γ > 0. Then, the Taylor expan-
sion can be used. Finally, one can go back to the original
domain of integration again by adding an exponentialy
small error term.) Standard conditions (see e.g. Clarke
& Barron, 1988) give that the θ̃ can be replaced by θT
and the empirical Fisher information, Î, can be replaced
by the actual Fisher information. Thus:

m(xn) ≈ p(xn | θ̂ )

∫
e−(n/2)(θ−θ̂ )TI(θT)(θ−θ̂ )π(θ)dθ .

The integrand is a normal density that can be integrated
in closed form, apart from the π . By another approx-
imation (that seems to be asymptotically tight up to
OP(εnp/2) factor where ε can be arbitrarily small) we

get:

m(xn) ≈ p(xn | θ̂ )

∫
e−(n/2)(θ−θT)TI(θT)(θ−θT)π(θ)dθ .

(3)
So far, this is standard. It becomes more interesting
when the technique of the authors is invoked. Essen-
tially, they diagonalise I(θT). For this, the p eigenval-
ues must be strictly positive, but that is not usually
a difficult assumption to satisfy. Write D = OtI(θT)O
where O is an orthonormal matrix, i.e., a rotation, and
D = diag(d1, . . . , dp). (The authors use an orthogo-
nal matrix, but an orthonormal matrix seems to give
cleaner results.) Now, consider the transformation ξ =
OT(θ − θT) so that dξ = dθ by the orthonormality of
O. Note that the transformation has been simplified
since the argument ofO is θT . Now, the integral in right
hand side of expression (3) is∫

e−(n/2)ξTOTI(θT)Oξπ(O(θT)ξ + θT)dθ

=
∫

e−(n/2)ξTDξπ(O(θT)ξ + θT)dθ . (4)

At this point the authors, rather than using Laplace’s
method on the integral, choose π as a product of indi-
vidual πi’s for each ξi. Each factor in that product has
hyperparameters λi, di, and bi and the resulting p-
dimensional integral in (4) has a closed form as given
at the end of Sec. 2.

An alternative is the more conventional approach
of recognising that as n → ∞ the integrand converges
to unit mass at ξ = 0. Using this gives that m(xn) is
approximately

p(xn | θ̂ )w(θT)(2π)p/2 det(nD)−1/2

×
∫
e−(1/2)ξ((nD)−1)−1ξdξ

(2π)p/2 det(nD)−1/2

= p(xn | θ̂ )w(θT)(2π)p/2
1

np/2((	p
i=1di)1/p)p/2

= p(xn | θ̂ )w(θT)(2π)p/2
1

(ns)p/2
,

where s is the geometricmean of the di’s. The geometric
mean is the side length of a p-dimensional cuboidwhith
volume equal do 	

p
i=1di. Thus, s plays the role of a sort

of average Fisher information for the collection of ξi’s.
This sequence of approximations gives

logm(xn)=�(θ̂) + logw(θT) + p
2
log(2π) − p

2
log ns.

This leads to a form of the BIC as

BICS = −2�(θ̂) + p log n = −2 logm(xn)

+ 2 logw(θT) − p log(2π) − p log s + o(1).
(5)

Comparing (5) and (2), the only difference is that the
Fisher information is summarised by s, a sort of aver-
age efficiency that in effect puts all parameters on the
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same scale. Roughly, p log s and log det I(θ) correspond
to the term

∑p
i=1 log(1 + nei ) in the PBIC. The extra

term in the PBIC,−2
∑p

i=1 log((1 − evi)/
√
2vi), seems

to correspond to the log prior density term.
As a third way to look at the BIC, oberve that nei-

ther (5) nor (2) have any clear analog to nei apart from
the treatment of Fisher information and its interpre-
tation as an efficiency. So, two natural questions are
what the effective sample sizes mean and what they are
doing. In the PBIC they are introduced as hyperparam-
eters and are restricted to linear models. For instance,
in Example 3.3, effective sample sizes are average pre-
cisions divided by the maximal precision even though
it is unclear why this expression has a claim to be an
effective sample size.

On the other hand, in Sec. 3.2 a general definition
of nej in terms of entries of I(θ) is given for each
j = 1, . . . p. This is a valid generalisation of sample
size because the nej ’s reduce to n. Indeed, in the
IID case with large n, I∗jj(θ̂ ) ≈ nIjj(θT) and wij ≈ 1/n.
So,

∑n
i=1 wijI∗ijj(θT) ≈ (1/n)

∑n
i=1 I

∗
ijj(θT) ≈ (1/n)(nIjj

(θT)) = Ijj(θT). This gives nei ≈ nIjj(θT)∗/Ijj(θT) = n.
In this generalisation, each nej is closely related to
the Fisher information and hence to the relative effi-
ciency of estimating different parameters. Indeed, nei
is, roughly, the total Fisher information for θi (over
the sample) as a fraction of the convex combination of
Fisher informations for the θj’s over the data.

Now, it may make sense to use the definition of nej
in Sec. 3.2 to generalise the BIC directly, i.e. find the
nej ’s first, since they depend only on the Fisher informa-
tions and on xn, and use them to propose a new BIC.
For instance, consider

BICTESS = −2�(θ̂) +
p∑

i=1
log nei . (6)

In (6), the concept of effective sample size is used to
account for the different efficiencies of estimating dif-
ferent parameters, making it valid to compare them.
Note that (6) levels the playing field for the fi(·θ)’s in the
log-likelihood so that they do not need to be modified.
Thus, effective sample sizes have a meaning something
like the sample size required to make the estimation of
one parameter (to a prescribed accuracy) close to the
sample size required to estimate another parameter (to
the same accuracy), a parallel to the appearance of the
geometric mean in (5).

At this point, one can go back to (3) and (4) and
seek ways to justify using nei in place of n. Because (4) is
nearly a product of univariate integrals it may be pos-
sible to regard the elements on the diagonal of D as a
form of the Fisher information that permits replace-
ment ofnwithnei . Similarly, the geometricmean used in
(5) may be related (by, say, log) to the ratios of sums of
Fisher informations used to define nei in Sec. 3.2 thereby
relating (5) and (6). Finally, (6) is not obviously related

to m(xn) but one can hope that a suitably reformu-
lated Laplace’s method on (3) and (4) may lead to a
compatible expression for it.

One interesting query the authors are well-placed to
answer is whether the results of Sec. 5.5 hold if the PBIC
is replaced by (6). After all, there should be reason-
able conditions under which all the nei ’s from Sec. 3.2
increase fast enough with n, e.g. for all n, 0 < η <

minj I∗jj ≤ I∗jj < maxj I∗jj < B < ∞.

3. Where to from here?

The authors have a very promising general definition
in Sec. 3.2. Establishing a relationship between nej and
the effective sample size formulae proposed for linear
models would be useful, but more fundamentally, the
question is whether the nej from Sec. 3.2 makes sense
in such simpler contexts. If it does, then the fact that
it differs from ‘TESS’ may not be very important. We
strongly agree with the authors who write, á propos of
nej , that it should ‘be viewed primarily as a starting point
for future investigations of effective sample size’. (They
actually limit this point to nonlinear models, but for
the sake of a satisfying overall theory it should apply to
linear models as well.)

Another tack is to be overtly information-theoretic
by defining an effective sample size in terms of code-
length. One form of the relative entropy, see Clarke
and Barron (1988), is implicit in (2). However, one can
use an analogous formulation to convert a putative sam-
ple of size n to an effective sample. Use a nonparametric
estimator to form h(x; xn), an estimate of the density of
X. Then, choose a ‘distortion rate’, r and find zm for the
smallest value ofm that satisfies D(h(·; xn)‖h(·; zm)) ≤
r, where D(·‖·) is the relative entropy. This is the effec-
tive sample and sample size since it recreates the empiri-
cal densitywith a tolerable level of distortion. The larger
r is, the more distortion is allowed and the smaller m
will be. Information-theoretically, this is the same as
approximating a Shannon code based on h(·; xn) by
a Shannon code based on h(·; zm) in terms of small
redundancy, in say, bits. This definition for effective
sample size requires choosing r, but D is in bits so it
would make sense for r to be some function of bits
per symbol e.g. ε(σn), where Var(X) = σ 2, for some
c ∈ (0, 1], with ε = 1/2 as a default.

Another way to look at this procedure for finding
an effective sample size is via data compression. In this
context, the rate distortion function is a well-studied
quantity, see Cover and Thomas (2006), Chap. 10. The
problem is that it’s not obvious how to obtain an effec-
tive sample size from the rate distortion function, or,
in the parlance of information theory, a set of lower
dimensional canonical representatives that achieve the
rate distortion function lower bound. On the other
hand, this can be done in practice and further studymay
yield good solutions.
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Finally, the rate distortion function is the result of
an operation performed on a Shannon mutual infor-
mation that, for parameteric families, usually has an
expression in terms of the Fisher information. Like-
wise, it is well known that certain relative entropies can
be expressed in terms of Fisher information. So, the
definitions of effective sample size from an informa-
tion theory perspective (via rate distortion) and form
Sec. 3.2 (via efficiency) may ultimately coincide.
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