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An equivalence result for moment equations when data are missing at random
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ABSTRACT
We consider general statistical models defined by moment equations when data are missing at
random. Using the inverse probability weighting, such amodel is shown to be equivalent with a
model for the observed variables only, augmented by a moment condition defined by the miss-
ing mechanism. Our framework covers a large class of parametric and semiparametric models
where we allow for missing responses, missing covariates and any combination of them. The
equivalence result is stated under minimal technical conditions and sheds new light on various
aspects of interest in the missing data literature, as for instance the efficiency bounds and the
construction of the efficient estimators, the restricted estimators and the imputation.
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1. Introduction

Models defined by moment and conditional moment
equations are widely used in statistics, biostatistics
and econometrics; see, for instance, Ai and Chen
(2003, 2012), Domínguez and Lobato (2004), and
the references therein. Here, we investigate general
moment or conditional moment equation models with
missing data. The main idea we propose is that under
a missing at random assumption, the initial model
with missing data is equivalent with a inverse proba-
bility weighting moment equations model for the com-
plete observations, augmented by a moment condition
defined by the missing mechanism. The equivalence,
a generalisation of the GMM equivalence result of
Graham (2011), is stated in terms of sets of probabil-
ity measures. It has numerous implications and pro-
vides valuable insight, for instance on the efficiency
bound calculations and the construction of efficient
estimators.

In the framework of missing data, the assumption
of missing at random (MAR) is presumably the most
used when trying to describe an ignorable mecha-
nism on the missingness. However, this concept, first
introduced by Rubin (1976), does not have the same
meaning for everyone. For simplicity, let the full obser-
vations be i.i.d. replications of a vector L = (X,Y ,Z)

and let R = (RX ,RY ,RZ) ∈ {0, 1}3 be a random vec-
tor such that its component takes the value 1 if we
observe the corresponding component of L and 0
otherwise. For Rubin (1976) (see also, for example,
Little & Rubin, 2002; Robins & Gill, 1997), MAR
means that missingness depends only on the observed

components, denoted by L(R), of L:

the conditional law L(R | L) of R given L

is the same as the conditional law L(R | L(R)) of

R given L(R). (1)

This concept was generalised to CAR, coarsening at
random, by Heitjan and Rubin (1991) (see also, for
example, van der Laan and Robins (2003)): L(C | L)
is the same as L(C | ϕ(C, L)) for an always observ-
able transformation ϕ(C, L) of the full data L and the
censoring variable C. In the context of regression-like
models, the MAR assumption is usually stated in a
different and more restrictive way. A strongly ignor-
able selectionmechanism (also called conditional inde-
pendence, or selection on observables, etc.) means
that, assuming some components of L are always
observed,

the conditional law L(R | L) of R given L is the same

as the conditional law of R given the always observed

components of L. (2)

This assumption was originally introduced by
Rosenbaum and Rubin (1983) in the framework of ran-
domised clinical trials, which corresponds in our sim-
ple example, with L = (X,Y ,Z), to the case where, for
example, X is always observed, and one and only one
of Y and Z is observed. This means that the selection
vector R takes the form R = (1,D, 1 − D), where Y is
observed iff D = 1 and Z is observed iff D = 0. In this
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situation, MAR means

P(D = 1 | X,Y ,Z) = P(D = 1 | X,Y)

= 1 − P(D = 0 | X,Y ,Z)

= 1 − P(D = 0 | X,Z)

= P(D = 1 | X,Z),

or, equivalently,

D ⊥⊥ Z | X,Y and D ⊥⊥ Y | X,Z. (3)

Meanwhile a strongly ignorable missingness mecha-
nism writes

P(D = 1 | X,Y ,Z) = P(D = 1 | X),

or, equivalently,

D ⊥⊥ (Y ,Z) | X. (4)

Clearly, condition (4) implies condition (3), but the
reverse is not true in general. In the present work
we consider the case of i.i.d. replications of a vector
containing missing components for which the same
subvector is missing for the incomplete replicates.
In this case the MAR assumption (1) and the the
strongly ignorable MAR assumption (2) coincide (and
are equivalent to CAR), as is it is also the case, for exam-
ple, in Cheng (1994), Tsiatis (2007), Graham (2011),
among others.

Other MAR-related assumptions appear in the
literature. For instance, when the response Y is miss-
ing, while X and Z are observed, Wei, Ma, and Car-
roll (2012) consider the assumption RY ⊥⊥ (X,Y) |Z
that is stronger than the MAR assumption (2), com-
monly used for regression models. Another assump-
tion for the missingness mechanism is introduced in
Wooldridge (2007) : W = (X,Y) and S ∈ {0, 1} is a
random variable such that W and Z are observed
whenever S = 1, and S ⊥⊥ W |Z.Wooldridge’s assump-
tion is more general than the MAR condition (2)
where Z is supposed to be always observed. Indeed,
Wooldridge (2007) does not suppose that W and/or Z
are missing if S = 0.

The paper is organised as follows. The main equiv-
alence result is stated in Section 2. In Section 3, we
revisit some examples considered in the literature in
the MAR setup: estimating mean functionals in para-
metric and nonparametric regressions; and quantile
regression with missing responses and/or covariates.
For these examples, our equivalence result suggests new
ways for calculating efficiency bounds and construct-
ing efficient estimators, using for instance the GMM,
empirical likelihood approaches, the SMD approach of
Ai and Chen (2007), or the kernel-based method of
Lavergne and Patilea (2013). In Section 4 we reinter-
pret some classes of so-called restricted estimators; see,
for instance, Tsiatis (2007) and Tan (2011). Finally, in

Section 5 we use our general result to discuss on a com-
mon belief that the (multiple) imputation is necessary
in order to capture all the information from the partially
observed data.

2. Equivalent moment model

The following statement is a version of Theorems 1 and
2 inHristache and Patilea (2017). The proof is very sim-
ilar and hence will be omitted. In the following, vectors
a columns matrices and for any matrixA,A′ denotes its
transpose.

Theorem 2.1: LetM1 andM2 be two models defined
for random vectors (D,W′,V ′,U ′)′ ∈ {0, 1} × RdW ×
RdV × RdU as follows:

M1 :

{
E[ρj(γ ,W,V ,U)] = 0, ∀j ∈ J,
D ⊥⊥ {U,V} | W,

(5)

and

M2 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E

[
D

π(W)
ρj(γ ,W,V ,U)

]
= 0, ∀j ∈ J,

E
[

D
π(W)

− 1 | V ,W
]

= 0,

(6)
where γ ∈ � is an unknown (possibly infinite dimen-
sional) parameter, ρj : � × RdW × RdV × RdU → R,
for j ∈ J, is a collection of known measurable functions,
and π is a unknown measurable function such that
π(W) > 0 almost surely.

The models M1 and M2 are equivalent if restricted
to the laws of (D,W′,V ′,DU ′)′;more precisely,

(1) (D,W′,V ′,U ′)′ ∈ M1 ⇒ (D,W′,V ′,U ′)′ ∈ M2,
(2) (D,W′,V ′,U ′)′ ∈ M2 ⇒ ∃ (D̃, W̃′, Ṽ ′, Ũ ′)′ ∈

M1 such that (D̃, W̃′, Ṽ ′, D̃Ũ ′)′ and (D,W′,
V ′,DU ′)′ have the same distribution.

Remarks:

(1) The parameter γ in model M1 could include
parameters of interest and parameters of nuisance.

(2) The function π(·) usually called the propensity
score, could be considered completely unknown
and modelled nonparametrically, or modelled
using a parametric model. With at hand an esti-
mate of π(·) obtained from the second equation
in the modelM2, one could use existing moment
equation approaches for the estimation of the
parameters in the first equation of M2. See our
Example 3.1.

(3) The link of this theorem with models where data
are missing at random is made if we consider that
the vector U is observed if and only if D = 1.
The theorem then basically says that at the obser-
vational level, which means for the laws of the
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observed vector (D,W′,V ′,DU ′)′, the two mod-
elsM1 andM2 are equivalent. As a consequence,
inference for the law of (D,W′,V ′,U ′)′ in the
modelM1, a moment conditions model under an
assumption of data missing at random, could be
done based on the model M2, which is defined
using only the observed part (D,W′,V ′,DU ′)′ of
the vector vector (D,W′,V ′,U ′)′. In particular,
efficiency bound calculations and efficient estima-
tor constructions could be done in the modelM2,
which in many cases could be much easier.

(4) The underlying condition ‘DU is always observed’
includes the usual case

D = 0 if U is not observed,

D = 1 if U is observed,

but it is more general. When D = 1 one observes
the value of U. Meanwhile, one should read that
when D = 0, U could be observed or not since
whatever the value of U is, DU = 0.

3. Some examples revisited

In this section we present two examples of models
already studied in the literature for which our approach
gives new insights and sometimes allows for simpler
methods for obtaining efficiency bounds and asymp-
totically efficient estimators. The guiding principle is to
use Theorem 2.1 and put the model of interest, in the
presence of a MAR mechanism, under an equivalent
form

E[g1(θ ,α,X,Y ,Z) |X] = 0

E[g2(α,X,Y ,Z) |X,Z] = 0,
(7)

where the two sets of equations are orthogonal, mean-
ing that

E[g1(θ ,α,X,Y ,Z)g′
2(α,X,Y ,Z) |X,Z] = 0.

The equivalent model (7) has a sequential moment
structure that allows to compute the efficiency bound;
see Ai and Chen (2012). Moreover, the finite dimen-
sional interest parameter θ can be efficiently estimated
from the first equations, with the (possibly infinite
dimensional) nuisance parameter α known or suitably
estimated from the last equations. A similar statement
on the efficient estimation of θ , in the particular case
of a finite dimensional α and without conditioning on
X and X, Z, can be found in Theorem 2.2, point 8, of
Prokhorov and Schmidt (2009).

3.1. Mean functionals with datamissing at
random

Consider the problem of estimating the mean of func-
tionals of the variables in a parametric regressionmodel

with missing responses:

E[h(X,Y) − θ] = 0

E[Y − r(X,α) |X] = 0.
(8)

The parameter of interest here is θ = E[h(X,Y)], where
h(·, ·) is some given squared-integrable function; see
Müller (2009). Hristache and Patilea (2017) considered
the same framework and focused on the case where
h(X,Y) does not depend on X. Here we investigate the
general case where h(X,Y) that could also depend on
X. Some usual examples are the mean of the response
variable (h(x, y) = y), the second-order moment of the
response (h(x, y) = vec(yy′)), the cross-product of the
response and the covariate vector (h(x, y) = vec(yx′)).
(Here, vec(·) is the vectorisation operator that trans-
forms a matrix in a column vector by stacking the
columns of the matrix.) For simplicity, we take Y with
real values in the following of this section.

The regression function r(x,α) has a known (para-
metric) form, X is always observed, Y is only observed
whenD = 1 and aMAR assumption holds :D ⊥⊥ Y |X.
With π(x) = P(D = 1 |X = x), the model can be writ-
ten, at the observational level, under the following
equivalent form:

E
{

D
π(X)

[h(X,Y) − θ]
}

= 0

E{D[Y − r(X,α)] |X} = 0

E
[

D
π(X)

− 1 |X
]

= 0.

(9)

The last two equations being orthogonal, since

E
{[

D
π(X)

− 1
]
D[Y − r(X,α)] |X

}
=

[
1

π(X)
− 1

]
E{D[Y − r(X,α)] |X} = 0,

it is also equivalent to the model defined by the fol-
lowing system of orthogonal equations, where σ 2(X)

stands for the conditional variance V(Y|X):

E
{

D
π(X)

[h(X,Y) − θ]

− 1
σ 2(X)π(X)

E
[

D
π(X)

h(X,Y)(Y − r(X,α)) |X
]

D[Y − r(X,α)]

− E
[

D
π(X)

(h(X,Y) − θ) |X
]
c
[

D
π(X)

− 1
]}

= 0

E{D [Y − r(X,α)] |X} = 0

E
[

D
π(X)

− 1 |X
]

= 0.

(10)
Solving for θ , we get

θ = E[
(Y ,X,D;α, σ 2,π , η1, η2)]
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where


(Y ,X,D;α, σ 2,π , η1, η2)

= D
π(X)

h(X,Y) − E
[

D
π(X)

h(X,Y) |X
]

×
[

D
π(X)

− 1
]

− 1
σ 2(X)π(X)

E
[

D
π(X)

h(X,Y)(Y − r(X,α)) |X
]

× D[Y − r(X,α)],

η1(X) = E[Dh(X,Y) |X]
and

η2(X) = η2(X;α) = E[Dh(X,Y)(Y − r(X,α)) |X].
Let α̂ be an estimator of α obtained in the model. With
the variance σ 2(·) and the functions η1(·) and η2(·; ·)
estimated nonparametrically, the plug-in estimator

θ̂ = 1
n

n∑
i=1


(Yi,Xi,Di; α̂, σ̂ 2, π̂ , η̂1, η̂2)

would be efficient. Since the first equation in sys-
tem (10) is orthogonalised with respect to the last one,
for the propensity score π(·), one could use a paramet-
ric model without affecting the efficiency bound.

3.2. Quantile regressionwith datamissing at
random

A particular setting of quantile regression with miss-
ing data at random is considered in Wei et al. (2012).
For 0 < τ < 1, the conditional quantileQτ (Y |X,Z) of
the always observed responseY given the regressor vec-
tors Z (always observed) and X (observed iff D = 1) is
assumed to be linear,

Qτ (Y |X,Z) = X′β1,τ + Z′β2,τ , (11)

and themissingnessmechanism is defined by the strong
missing at random condition

D ⊥⊥ (X,Y) |Z. (12)

Taking in (6) U = X, V = Y, W = Z, ρj(βτ ,W,V ,U)

= (X′,Z′)′ [1{Y−X′β1,τ −Z′β2,τ ≤0} − τ ] × aj(U,W) �
ρ(X,Y ,Z,βτ ) × aj(X,Z), j ∈ N, where the family of
functions {aj}j∈N spans L2(X,Z), the model defined
by (11) and (12) can be written under the following
equivalent form:

E[Dρ(Y ,X,Z,βτ ) |X,Z] = 0

E
[

D
π(Z)

− 1 |Z
]

= 0.
(13)

The two sets of equations being already orthogonal
(with respect to the σ -field σ(X,Z)), in this situa-
tion we can efficiently estimate the parameter βτ =

(β ′
1,τ ,β

′
2,τ )

′ from the complete data only, that is from
the model defined by (11) keeping for the statistical
analysis only the observations for which all the compo-
nents of the vector (Y ,X′,Z′)′ are observed. The gain
in efficiency observed in the simulation experiment of
Wei et al. (2012) for theirmultiple imputation improved
estimator comes, in our opinion, from the supplemen-
tary parametric assumption on the form of the condi-
tional density of X given Z (see their Assumption 4).

A more general linear quantile regression model
defined by (11) with missing data at random is con-
sidered in Chen, Wan, and Zhou (2014). With their
notations, we have

Y = Z′θ(τ ) + ε, P(ε ≤ 0 |Z) = τ , 0 < τ < 1,
(14)

for the full datamodel. They also denote byX the always
observed components of the vector (Y ,Z′)′ and withXc

the components of the same vector that are observed iff
the binary variableD takes the value 1 and use the ‘stan-
dard’ missing at random assumption P(D = 1 |Y ,Z) =
P(D = 1 |X,Xc) = P(D = 1 |X) = π(X). This fits our
framework by taking U = X, V = 1,W = Xc and

ρj(θ(τ ),W,V ,U) = Z[1{Y−Z′θ(τ )≤0} − τ ] × aj(U,W)

� ρ(Y ,Z, θ(τ )) × aj(Z), j ∈ N,

where the family of functions {aj}j∈N spans L2(Z). The
equivalent moment equations model, at the observa-
tional level, can be written as

E
{

D
π(X)

Z[1{Y−Z′θ(τ )≤0} − τ ] |Z
}

= 0

E
[

D
π(X)

− 1 |X
]

= 0.
(15)

The information bound for this model is given in
Hristache and Patilea (2016). It can not be calculated
explicitly, except some special cases, which includes
the missing responses as before or the case where X
or/and Z are discrete. It is different from the informa-
tion bound given in Chen, Hong, and Tarozzi (2008)
which corresponds to a model defined by an uncon-
ditional quantile moment and a MAR assumption and
could be represented equivalently under the form

E
{

D
π(X)

Z[1{Y−Z′θ(τ )≤0} − τ ]
}

= 0

E
[

D
π(X)

− 1 |X
]

= 0.
(16)

Models (15) and (16) are quite different and so are the
corresponding efficiency bounds, so that no estimation
procedure given in Chen et al. (2014) could be effi-
cient in their linear quantile regressionmodel (14) with
missing data at random.
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4. Restricted estimators for quantile
regressions and general conditional moment
models with datamissing at random

The model defined by the regression-like equation

E[ρ(θ ,Y ,X,V) |X,V] = 0,

and the MAR selection mechanism

P(D = 1 |Y ,X,V ,W) = P(D = 1 |W) = π(W)

is equivalent, at the observational level, to the following
model defined by conditional moment equations :

P :

⎧⎪⎪⎨⎪⎪⎩
E

[
D

π(W)
ρ(θ ,Y ,X,V) |X,V

]
= 0,

E
[

D
π(W)

− 1 |W
]

= 0.

This framework includesmany situations. For instance,
taking W′ = (Y ′,V ′,Z′) we obtain the case in which
some regressors (conditioning variables) X are miss-
ing, while with W′ = (X′,V ′,Z′) we cover the case of
missing responses. Splitting Y in an observed subvec-
tor Yo and a not always observed subvector Yu, with
W′ = (Y ′

o,V ′,Z′) this corresponds to the case where
both some responses and some covariates are missing.
In all these examples, U is the vector of not always
observed components of the data vector.

For the model

P(1) : E
[

D
π(W)

ρ(θ ,Y ,X,V) |X,V
]

= 0,

denoting by P0 the true law of (Y ′,X′,V ′,Z′)′, the tan-
gent space is

T(1) =
{
s ∈ {L2(P0)}⊕d : E(s) = 0,

E
[

D
π(W)

ρ(θ ,Y ,X,V)s′(Y ,X,V ,Z) |X,V
]

= 0
}
.

For the model

P(2) : E
[

D
π(W)

− 1 |W
]

= 0,

the tangent space is

T(2) =
{
s ∈ {L2(P0)}⊕d : E(s) = 0,

E
[(

D
π(W)

− 1
)
s′(Y ,X,V ,Z) |W

]
= 0

}
.

The tangent space T of P = P (1) ∩ P(2) is (see
Hristache & Patilea, 2016)

T = T (1) ∩ T(2).

We obtain the efficient score Sθ by projecting the score
Sθ on T ⊥,

Sθ = �(Sθ |T ⊥) = �(Sθ |T ⊥
(1) + T ⊥

(2)),

which gives the following solution :

Sθ = a∗
1(X,V)

D
π(W)

ρ(θ ,Y ,X,V) + a∗
2(W)

×
(

D
π(W)

− 1
)

∈ T ⊥
(1) + T ⊥

(2),

where

a∗
1(X,V) = {−E(∂θρ

′|X,V)

+E
[
E(a∗

1ρ |W)
1 − π

π
ρ′ |X,V

]}
× E−1

(
1

π(W)
ρρ′ |X,V

)
,

a∗
2(W) = −E[a∗

1(X,V)ρ |W].

Remark: Sθ is also the efficient score in the model

P :

⎧⎪⎪⎨⎪⎪⎩
E

[
a∗
1(X,V)

D
π(W)

ρ(θ ,Y ,X,V)

]
= 0

E
[
a∗
2(W)

(
D

π(W)
− 1

)]
= 0,

,

or in the model defined by the moment condition

E
[
a∗
1(X,V)

D
π(W)

ρ(θ ,Y ,X,V) + a∗
2(W)

×
(

D
π(W)

− 1
)]

= 0.

As shown in Hristache and Patilea (2016), a∗
1 satisfies

an equation of the form

a∗
1(X,V) = γ (X,V) + T(a∗

1(X,V)),

with T a contraction operator. The solution of this
equation is unique, but in order to obtain it one needs
to use nonparametric estimators at each step of the iter-
ative procedure. An alternative approach would be to
consider finite dimensional subspaces S1 ⊂ T ⊥

(1) and
S2 ⊂ T ⊥

(2) when calculating the ‘efficient score’, lead-
ing to an approximately efficient score. We obtain in
this way what is known in the literature as restricted
estimators. We can write:

T ⊥
(1) =

{
s=a1(X,V)

D
π(W)

ρ(θ ,Y ,X,V) : a1 ∈ L2(P0)
}
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S1 ⊂ T ⊥
(1) finite dimensional ⇒ ∃ a(1)

1 , . . . , a(k)
1 ∈

L2(P0) s.t.

S1 = lin
{
a(i)
1 (X,V)

D
π(W)

ρ(θ ,Y ,X,V) :

1 ≤ i ≤ k
}

⇔ S⊥
1 =

{
s ∈ {L2(P0)}⊕d : E

(
a(i)
1
D
π

ρs′
)

= 0,

1 ≤ i ≤ k
}
.

Compare to

T(1) =
{
s ∈ {L2(P0)}⊕d : E

(
D
π

ρs′ |X,V
)

= 0
}
.

Similarly for S2 ⊂ T ⊥
(2):

T ⊥
(2) =

{
s = a2(W)

(
D

π(W)
− 1

)
: a2 ∈ L2(P0)

}

S2 ⊂ T ⊥
(2) finite dimensional ⇒ ∃ a(1)

2 , . . . , a(l)
2 ∈

L2(P0) s.t.

S2 = lin
{
a(j)
2 (W)

(
D

π(W)
− 1

)
: 1 ≤ j ≤ l

}
⇔ S⊥

2 =
{
s ∈ {L20(P0)}⊕d : E

[
a(j)
2

(
D

π(W)
− 1

)
s′
]

= 0, 1 ≤ j ≤ k
}
.

An optimal class 1 restricted estimator (see Tan, 2011;
Tsiatis, 2007) is solution of the approximated efficient
score equation

E
{
a(1)
1 (X,V)

D
π(W)

ρ(θ ,Y ,X,V) + a(1)
2 (W)

×
(

D
π(W)

− 1
)}

= 0,

where a(1)
1 and a(2)

2 are given by

Sθ = �(Sθ |S1 + S2)

= a(1)
1 (X,V)

D
π(W)

ρ(θ ,Y ,X,V) + a(1)
2 (W)

×
(

D
π(W)

− 1
)
.

In fact, Sθ is the efficient score in the following moment
equations model:

P ′ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
[
a(1)
1 (X,V)

D
π(W)

ρ(θ ,Y ,X,V)

]
= 0

...

E
[
a(k)
1 (X,V)

D
π(W)

ρ(θ ,Y ,X,V)

]
= 0

E
[
a(1)
2 (W)

(
D

π(W)
− 1

)]
= 0

...

E
[
a(l)
2 (W)

(
D

π(W)
− 1

)]
= 0

This allows for a new, simple and intuitive interpre-
tation of the optimal class 1 restricted estimators as
efficient estimators in a largermodel, obtained from the
initial one by using appropriate ‘instruments’ to trans-
form the conditional moment equations in a (growing)
number of unconditional moment conditions. Another
advantage of this new perspective is the access to the
most commonly used methods of obtaining efficient
estimators in moment equations models such as GMM,
SMD (see Lavergne & Patilea, 2013) or empirical likeli-
hood estimators.

Similar procedures can be used for class 2 restricted
estimators, based on

�(Sθ |S1 + T ⊥
(2)) = a(2)

1 (X,V)
D

π(W)
ρ(θ ,Y ,X,V)

+ a(2)
2 (W)

(
D

π(W)
− 1

)
and class 3 restricted estimators (Tan, 2011), based on

�(Sθ |T ⊥
(1) + S2) = a(3)

1 (X,V)
D

π(W)
ρ(θ ,Y ,X,V)

+ a(3)
2 (W)

(
D

π(W)
− 1

)
.

4.1. Simulation study

The approach on restricted estimators is illustrated in
a setting already considered by Chen, Wan, and Zhou
(2015); see their Example 1, scenario S2. With the nota-
tions of the previous section, the data are generated
from the following model:

Y = θ0 + θ1X + θ2V + 0.5[1 + (X + V)]ε,

ε ∼ N (0, 1), (17)

where (θ0, θ1, θ2) = (1,−1, 1) and (X,V) follows a cen-
tred bivariate normal distribution with unit variances
and correlation equal to 0.5. The parameter of interest
here is the vector coefficient (θ0(τ ), θ1(τ ), θ2(τ )) of the
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conditional quantile of Y given X and V :

Qτ (Y | X,V) = θ0(τ ) + θ1(τ )X + θ2(τ )V , (18)

with θ0(τ ) = θ0 + Qτ (ε), θ1(τ ) = θ1 + 0.5Qτ (ε), θ2
(τ ) = θ2 + 0.5Qτ (ε), whereQτ (ε) is the τ th quantile of
ε, τ ∈ (0, 1). Herein, we only report the case τ = 0.75.
The variables Y and V are always observed, while X is
observed if and only if D = 1, where D is a Bernoulli
random variable such that P(D = 1 | Y ,V) = 0.4(1 +
sin2(Y − V))1{|Y−V|≤1} + 1 − 1{|Y−V|≤1} = π(W),
with W = (Y ,V). The model for the fully observed
data is defined by the regression-like equation

E[ρ(θ ,Y ,X,V) |X,V] = 0,

where ρ(θ ,Y ,X,V) = 1{Y−θ0−θ1X−θ2V≤0} − τ . Under
the MAR selection mechanism

P(D = 1 |Y ,X,V) = P(D = 1 |Y ,V) = π(W).

it is equivalent, at the observational level, to the follow-
ing model defined by conditional moment equations:

P :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E

[
D

π(W)
(1{Y−θ0−θ1X−θ2V≤0} − τ) | X,V

]
= 0,

E
[

D
π(W)

− 1 | W
]

= 0.

The restricted estimators considered are obtained by
the generalised method of moments in the following
modelsPs, s ∈ {a, b, c, d, e, f }, which contain the model
P :

Ps :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
[

D
πs(φ,Y ,V)

(1{Y−θ0−θ1X−θ2V≤0} − τ)

a(k)
1s (X,V)

]
= 0, k ∈ {1, . . . , ks}

E
{[

D
πs(φ,Y ,V)

− 1
]
a(l)
2s (Y ,V)

}
= 0, l ∈ {1, . . . , ls},

where:

(a) πa ≡ 1, D ≡ 1, ka = 3, a(1)
1a (X,V) = 1, a(2)

1a (X,V)

= X, a(3)
1a (X,V) = V (no missing data, 1, X and V

as instruments);
(b) πb ≡ 1, D ≡ 1, kb = 3, a(1)

1b (X,V) = (1 + X2)−1,
a(2)
1b (X,V) = (1 + V2)−1, a(3)

1b (X,V) = (1 + |X| +
|V|)−2 (no missing data, (1 + X2)−1, (1 + V2)−1

and (1 + |X| + |V|)−2 as instruments);
(c) πc(Y ,V) = 0.4(1 + sin2(Y − V))1{|Y−V|≤1} +

1 − 1{|Y−V|≤1}, kc = 3, a(1)
1c (X,V) = (1 + X2)−1,

a(2)
1c (X,V) = (1 + V2)−1, a(3)

1c (X,V) = (1 + |X| +
|V|)−2 (true propensity score, (1 + X2)−1, (1 +
V2)−1 and (1 + |X| + |V|)−2 as instruments);

(d) πd(Y ,V) = {1 + exp[−(φ0 + φ1Y + φ2V)]}−1,
with φ0, φ1 and φ2 estimated from a logis-
tic regression, kd = 3, a(1)

1d (X,V) = (1 + X2)−1,

a(2)
1d (X,V) = (1 + V2)−1, a(3)

1d (X,V) = (1 + |X| +
|V|)−2 (propensity score estimated by a logistic
regression on Y and V, (1 + X2)−1, (1 + V2)−1

and (1 + |X| + |V|)−2 as instruments for the IPW
quantile equation);

(e) πe(Y ,V) = {1 + exp[−(φ0 + φ1Y + φ2V)]}−1,
ke = 3, a(1)

1e (X,V) = (1 + X2)−1, a(2)
1e (X,V) =

(1 + V2)−1, a(3)
1e (X,V) = (1 + |X| + |V|)−2, le =

3, a(1)
2e (Y ,V) = 1, a(2)

2e (Y ,V) = Y , a(3)
2e (Y ,V) = V ,

((1 + X2)−1, (1 + V2)−1 and (1 + |X| + |V|)−2 as
instruments for the IPW quantile equation, 1, Y
and V as instruments for the propensity score
equation);

(f) πf (Y ,V) = {1 + exp{−[φ0 + φ1(Y − V) + φ2

(Y − V)2]}}−1, kf = 3, a(1)
1f (X,V) = (1 + X2)−1,

a(2)
1f (X,V) = (1 + V2)−1, a(3)

1f (X,V) = (1 + |X| +
|V|)−2, lf = 3, a(1)

2f (Y ,V) = 1, a(2)
2f (Y ,V) = Y −

V , a(3)
2f (Y ,V) = (Y − V)2, ((1+X2)−1, (1+V2)−1

and (1 + |X| + |V|)−2 as instruments for the IPW
quantile equation, 1, Y −V and (Y − V)2 as
instruments for the propensity score equation).

The estimates of the MSE obtained in the case
τ = 0.75 from 1000 replications, with sample size n ∈
{200, 400, . . . , 1400, 1600}, are given in Table 1.

Note that none of the GMM estimators in models
Ps could be efficient in the initial model P , but only
approximately efficient, if the instruments are suitably
chosen, which could be a delicate point in practice.
Here we observe that the instruments a(k)

1b , involved in
the first equations in the first equations of the model
Pb performs better that the instruments a(k)

1a used in
Pa. We observe a similar phenomenon for the propen-
sity score equations when looking at the columns Pd,
Pe and Pf . The case in Pd corresponds to common
practice when one trusts the logistic regression for the
propensity score. The cases inPe andPf correspond to
our approach based on instruments with more effective
instruments in the later case. The non-orthogonality of
the quantile model equations and the propensity score
equations could explain the better results inPf . A joint
estimation of the two set of equations with effective

Table 1. Estimates of E(‖θ̂ − θ‖2) over 1000 replicates when
τ = 0.75.

n Pa Pb Pc Pd Pe Pf

200 431.29 221.19 233.81 404.44 333.66 246.55
400 350.79 127.95 143.11 240.37 275.73 118.66
600 296.33 101.49 113.57 213.83 241.23 85.69
800 276.33 82.23 81.28 196.20 232.01 73.81
1000 257.09 73.58 73.77 176.90 211.63 65.14
1200 240.27 66.14 66.49 177.00 208.15 62.44
1400 237.85 59.56 66.47 173.35 196.65 58.42
1600 231.86 53.85 56.53 163.77 192.95 52.06

Note: The reported values are multiplied by 104.
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instruments could improve over the common practice.
Next, let us notice that themodelsPc andPf are similar:
we use the same instruments for the first equation inPs.
Moreover, inPc we use the true propensity score, while
in Pf we use an estimated propensity score obtained
from amodel that is somehow close to the true propen-
sity score. As the two equations in the model Ps are
not orthogonal, estimating the propensity score could
improve the asymptotic variance of the estimators of θ̂ .
This is related to the so-called puzzling phenomenon
noticed by Prokhorov and Schmidt (2009). Here, even
if propensity score the model is slightly wrong, there
is still a gain of MSE. Let us also note the surprisingly
good results for the model Pf in which log[π/(1 −
π)] is approximated by a quadratic function of Y −V.
Using the same instruments for the conditional quan-
tile equations, the estimation with missing data is even
better than in the case with full data (compare results
for model Pf to those for model Pb). This could be
explained by the fact that in model Pb we do not use
the optimal instruments that should be proportional
to the conditional density of the error term at the ori-
gin. The weighting introduced by the propensity score
seems, in some sense, to compensate the non-optimal
instruments. This suggests further possible improve-
ments based on other choices of instrumental variables
in order to approach efficiency.

5. Is imputation really informative?

Multiple imputation is a widely used method to gen-
erate substitute values when data are missing. How-
ever, under the MAR assumption, the interest of mul-
tiple imputation in the context of conditional moment
restriction models is at least questionable, as discussed
in the following.

Consider that (D,W′,V ′,DU ′)′ is always observed
and consider the MAR assumption

(U,V) ⊥⊥ D | W. (19)

Then, any substitute observation generated from the
law of Ũ is adequate to replace a missing U, where the
law of Ũ should be such that

L(Ũ | W̃, Ṽ , D̃ = 0) = L(U |W,V ,D = 1)

= L(Ũ | W̃, Ṽ , D̃ = 1).

(Here, L(V1 | V2) denotes the conditional law of V1
given V2.) Since, in general, the law L(U | W,V ,D =
1) is unknown, one can estimate it, parametrically
or nonparametrically, and generate substitute observa-
tions from this estimate. This is the so-called para-
metric or nonparametric imputation. See, for instance,
Wang andChen (2009),Wei et al. (2012), Chen andVan
Keilegom (2013) for some nonparametric imputation
applications.

The equivalence established by Theorem 2.1 for
models defined by moment restrictions, implies that all
the information on the parameter θ in the initial model
under the MAR assumption (19) is contained in the
model defined by the equations (6). Let us point out that
the last equation of the model (6) includes the informa-
tion contained in the incomplete observations. Indeed,
to estimate π(·), parametrically or nonparametrically,
one uses all the observations of W. This remark opens
new perspectives for defining estimators of θ without
using substitute observations. Moreover, this remark
sheds some new light on a common justification used
in the literature, namely that imputation is necessary
in order to capture the information contained in the
partially observed data.

6. Conclusions

We consider a statistical model defined by an arbitrary
number ofmoment equations. Our framework includes
a large panel of models defined through conditional
and/or unconditional moments. Next, we assume that
some variables are missing at random. In this setup of
modelling withmissing data, we present amodel equiv-
alence result. It states that the initial statistical model
together with the MAR mechanism is equivalent to a
moment equations model. Using the equivalent model
could greatly simplify the estimation and the inference
with missing data problems. We discuss several conse-
quences for widely used models, including the quantile
regressions.
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