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ABSTRACT
Apopular imputationmethodused to compensate for itemnonresponse in sample surveys is the
nearest neighbour imputation (NNI) method utilising a covariate to defined neighbours. When
the covariate is multivariate, however, NNI suffers the well-known curse of dimensionality and
gives unstable results. As a remedy, we propose a single-index NNI when the conditional mean
of response given covariates follows a single index model. For estimating the population mean
or quantiles, we establish the consistency and asymptotic normality of the single-index NNI esti-
mators. Some limited simulation results are presented to examine the finite-sample performance
of the proposed estimator of population mean.
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1. Introduction

LetP be a finite population containingN units indexed
by i, yi be a univariate outcome or response of inter-
est from unit i ∈ P , xi be a covariate vector associated
with yi, and let S ⊂ P be a sample of size n taken from
P according to some sampling design. We consider the
situation where xi is always observed if i ∈ S but yi is
subject to nonresponse, i.e., yi is observed if and only
if i ∈ R ⊂ S . In sample surveys, imputation is com-
monly applied to compensate for nonresponse (Kalton
& Kasprzyk, 1986; Rubin, 1987; Sedransk, 1985). The
nearest neighbour imputation (NNI) method imputes
a missing yj by yl, where l ∈ R is the nearest neigh-
bour of j in the sense that d(xj, xl) = mini∈R d(xi, xj)
and d(xi, xj) is a distance between xi and xj, e.g., the
Euclidean distance. It is a popular method in many sur-
vey agencies and has a long history of applications in
surveys such as the Census 2000 and the Current Pop-
ulation Survey conducted by the U.S. Census Bureau
(Farber & Griffin, 1998; Fay, 1999), the Job Openings
and Labor Turnover Survey and the Employee Benefits
Survey conducted by the U.S. Bureau of Labor Statis-
tics (Montaquila & Ponikowski, 1993), and the Unified
Enterprise Survey, the Survey of Household Spending,
and the Financial Farm Survey conducted by Statistics
Canada (Rancourt, 1999).

The NNI method has some nice features. First,
imputed values are actually occurring y-values, not
constructed values; they may not be perfect substi-
tutes, but are unlikely to be nonsensical values. Second,
the NNI method may be more efficient than imputa-
tion not using x-values, such as mean imputation or
random imputation, when x provides useful auxiliary

information. Third, the NNI method does not assume
a parametric regression model between y and x and,
hence, it is more robust against model violations than
ratio or regression imputation based on a linear regres-
sion model. Finally, under some conditions NNI esti-
mators (i.e., estimators calculated using standard for-
mulas and treating nearest neighbour imputed values
as observed data) are asymptotically valid not only for
moments of yi but also for the distribution and quan-
tiles of yi, which is a superiority over other non-random
imputation methods (such as mean, ratio or regression
imputation) that lead to valid moment estimators only.

For a univariate covariate xi, some asymptotic prop-
erties of NNI are established in Chen and Shao (2000,
2001) and Shao andWang (2008).When xi is multivari-
ate, however, NNI runs into the curse of dimensionality
problem. The purpose of this paper is to propose a
single-indexNNImethod formultivariate xi and derive
its asymptotic properties, under the following single
index model assumption:

(A1) The populationP can be partitioned into K sub-
populations, P1, . . . ,PK , such that for within
eachPk, (xi, yi)’s are independent and identically
distributed (i.i.d.) from a superpopulation with

E(yi | xi) = μk(β
′
kxi),

where β ′
k is the transpose of an unknown param-

eter vector βk with the same dimension as xi and
μk(·) is an unspecified function, k = 1, . . . ,K.

Imputation for nonrespondents are typically done
within each Pk and, hence, Pk’s are often referred to
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as imputation classes. They are usually constructed
using a categorical variable whose values are observed
for all sampled units; for example, under stratified
sampling, strata or unions of strata are often used as
imputation classes. Each imputation class should con-
tain a large number of sampled units. When there are
many strata of small sizes, imputation classes are often
obtained through poststratification (Valliant, 1993)
and/or combining small strata. The superpopulation
assumption on (xi, yi) within each imputation class
ensures exchangeability of units within each Pk. The
single index model assumption is a semiparametric
assumption, since μk is unspecified.

Details of the proposed method are presented in
Section 2, where we also show that estimators based
on single-index NNI are consistent and asymptotically
normal under some limiting process as the sample
size n increases to infinity. To complement the the-
ory, some simulation results are presented in Section 3
to examine the finite sample performance of proposed
estimators.

2. Method and theory

We consider one stage sampling without clusters. Let
wi be the survey weight for unit i ∈ P , which is equal
to the inverse of probability that unit i is selected, a
known quantity from sampling design. When there
is no nonresponse, a simple and popular estimator
of the unknown population total Y = ∑

i∈P yi is the
Horvitz–Thompson estimator Ŷ = ∑

i∈S wiyi, which
has the unbiasedness property

Es(Ŷ) = Es

(∑
i∈S

wiyi

)
=
∑
i∈P

yi = Y , (1)

where Es is the expectation with respect to sampling.
If the total number of units in P , N, is known, then
the population mean Y/N is estimated by Ŷ/N. If N is
unknown, then Y/N is estimated by Ŷ/N̂, where N̂ =∑

i∈S wi satisfying Es(N̂) = N.
The most important population parameter in a sur-

vey study concerning a variable y is the population
mean. Estimation of population quantiles has also
become more and more important in modern survey
studies. For income variables, for example, the median
income or other quantiles could be as important as the
mean income. In children with cystic fibrosis, the 10th
percentiles of height and weight are important clinical
boundaries between healthy and possibly nutritionally
compromised patients (Kosorok, 1999). Let I(yi ≤ t)
be the indicator of yi ≤ t for any fixed value t. Using
property (1) with yi replaced by I(yi ≤ t), we obtain
an approximately unbiased estimator

∑
i∈S wiI(yi ≤

t)/N̂ of the population cumulative distribution of yi

at t, which further leads to an approximately unbi-
ased estimator of any quantile of the distribution
of yi.

When yi has nonresponse, however, the previously
discussed estimators cannot be used. Imputation is a
popular technique to handle nonresponse. It fills in a
value for every nonrespondent yj, such that an unbiased
or approximate unbiased estimator can be obtained
using the formula for the situation of no nonresponse
with imputed values treated as observed values. That is,
if ŷj is an imputed value for nonrespondent yj, then our
estimator of the population total Y is

ŶI =
∑
i∈R

wiyi +
∑
j∈R̄

wjŷj, (2)

whereR and R̄ are the sets of respondents and nonre-
spondents, respectively, in the sample S = R ∪ R̄.

Under (A1), we consider NNI within each imputa-
tion class and independently across imputation classes.
For a multivariate xi, if βk in (A1) is known, we can
apply a single-index NNI by defining the distance
between xi and xj as |β ′

kxi − β ′
kxj|, to avoid the curse of

dimensionality issue in multivariate NNI. As βk is gen-
erally unknown, we can first estimate βk by β̂k using
a nonparametric method such as the sliced inverse
regression (SIR) proposed by Li and Duan (1991) or
the sliced average variance estimation (SAVE) proposed
by Cook and Weisberg (1991), and then apply single-
index NNI using |β̂ ′

kxi − β̂ ′
kxj| as the distance between

xi and xj, i.e., a nonrespondent yj in imputation class k
is imputed by ŷj = yl with l satisfying

|β̂ ′
kxl − β̂ ′

kxj| = min
i∈R∩Pk

|β̂ ′
kxi − β̂ ′

kxj|. (3)

After imputation, the population total Y is estimated
by ŶI in (2) with ŷj defined by (3). The population
cumulative distribution of yi at any t is estimated by

F̂I(t) = 1
N̂

⎧⎨
⎩
∑
i∈R

wiI(yi ≤ t) +
∑
j∈R̄

wjI(ŷj ≤ t)

⎫⎬
⎭ ,

regardless whether N is known or unknown (to ensure
that the estimate → 1 when t → ∞).

To consider asymptotic properties of estimators
based on singe-index NNI, we assume that the finite
populationP is a member of a sequence of finite popu-
lations indexed by ν. All limiting processes in this paper
are understood to be as ν → ∞. We need the following
assumptions in addition to (A1).

(A2) The size ofPk and sample size ofS ∩ Pk increase
to infinity as ν → ∞, while the number of sub-
populations, K, is fixed.
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(A3) There is a fixed constant c>0 (not depending on
ν) such that

max
i∈P

nwi

N
≤ c and

n
N2Es

(∑
i∈S

wi

)2

≤ c.

Recall that N is the size of P and n is the sample
size. The first condition in (A3) ensures that none of
the weightswi’s is disproportionately large (see Krewski
& Rao, 1981). The second condition in (A3) means
that the sampling variance of

∑
i∈S wi/N is at most of

the order n−1. These conditions are typically satisfied,
e.g., they are satisfied under stratified simple random
sampling designs.

Let ai be the response indicator, i.e., ai = 1 if yi is
observed and ai = 0 if yi is a nonrespondent.

(A4) Within each Pk, (xi, yi, ai)’s are i.i.d. from a
superpopulation with E(y8i ) < ∞, (xi, yi, ai)’s
from different imputation classes are indepen-
dent, and sampling is independent of the super-
population.

(A5) Within each Pk, under the superpopulation,
P(ai = 1 | xi, yi, k) = P(ai = 1 | xi, k) > 0, which
is continuous in xi.

(A6) Within eachPk, the conditional distribution of xi
given ai has a bounded and continuous Lebesgue
density and μk(·) in (A1) is a differentiable
function.

(A7) Within each Pk,

qk,i(γ ) = P
(

|γ ′x − γ ′xi|

= min
j∈Rk

|γ ′x − γ ′xj|
∣∣∣Xk,Rk,Sk

)

is differentiable with respect to γ , where P is
with respect to x under superpopulation, Sk =
S ∩ Pk,Rk = R ∩ Pk, and Xk = {xi : i ∈ Rk}.

(A8) For each k, n1/2(β̂k − βk)= n−1/2∑
i∈S∩Pk

φ(xi,
yi, ai) + op(1), where φ is a function satisfy-
ing E{φ(xi, yi, ai)} = 0 and E{φ(xi, yi, ai)}2 <

∞, and op(1) denotes a term converging to 0 in
probability.

Because of (A4), NNI is carried out within each S ∩
Pk. (A5) assumes that, within an imputation class, the
nonresponse mechanism is covariate-dependent (Lit-
tle, 1995) or unconfounded (Lee, Rancourt, & Särn-
dal, 1994), an assumption made for the validity of
many other popular imputation methods. This actually
is the main reason to construct imputation classes, in
addition to the exchangeability of (xi, yi)’s. Although
(xi, yi, ai)’s within an imputation class are i.i.d., the
nonresponse mechanism is still not completely at ran-
dom, since P(ai = 1 | xi, k) depends on the covariate
xi. Finally, (A8) is satisfied if β̂k is obtained using

SIR (Li & Duan, 1991) or SAVE (Cook & Weisberg,
1991).

The following is our main theoretical result.

Theorem: Assume (A1)–(A8). Let ŶI by defined by (2)
with imputed ŷj based on single-index NNI. Then

√
n

(
ŶI

N
− Y

N

)/
σ →d N(0, 1)

for some σ > 0,where→d is convergence in distribution
unconditionally with respect to the superpopulation and
sampling.

Similar results can be obtained for F̂I(t) with any t
and quantiles related with F̂I .

Proof of Theorem: The proof follows the same argu-
ment in Shao and Wang (2008). Since variables are
independent across imputation classes and imputation
is carried out within each imputation class, it suffices to
show the result within each imputation class or, equiv-
alently, the result when K = 1. We now drop the sub-
script k in this proof. Let S , R and X be defined as
before with subscript k dropped. Then

E(ŷi |X ,R,S) =
∑
i∈R

qi(β̂)yi,

where qi(β̂) is the probability that i ∈ R is selected as
the nearest neighbour of a nonrespondent and qi(β) is
defined in (A7) with subscript k dropped. Define μ̂I =
ŶI/N, μ = Y/N, μ1 = E(yi | ai = 1), μ0 = E(yi | ai =
0), p = P(ai = 1), w̄i = wi/N, êi = ŷi −

∑
i∈R qi(β̂)yi,

Q1 = ∑
i∈R̄ w̄iêi, Q̂2 = ∑

i∈R w̄i[yi − μ(β̂ ′xi)] + (1 −
p)
∑

i∈R qi(β̂)[yi − μ(β̂ ′xi)], Q̂3 = ∑
i∈R w̄i[μ(β̂ ′xi)

− μ1], Q̂4 = ∑
i∈R̄[w̄i − (1 − p)]

∑
i∈R qi(β̂)[yi − μ

(β̂ ′xi)] +∑
i∈R̄ w̄i[

∑
i∈R qi(β̂)μ(β̂ ′xi) − μ0], Q5 =

(μ1 − μ0)
∑

i∈S w̄i(ai − p) and Q6 = μ(
∑

i∈S w̄i − 1).
Also, for l = 2, 3, 4, define Ql to be Q̂l with β̂ replaced
by β . Then

μ̂I − μ = Q1 + Q̂2 + Q̂3 + Q̂4 + Q5 + Q6

= Q1 + Q2 + Q3 + Q4 + Q5 + Q6

+ (Q̂2 − Q2) + (Q̂2 − Q3) + (Q̂4 − Q4).

For each Ql, it is shown in Shao and Wang (2008)
that each n1/2Ql is an approximately linear function
of random variables converging in distribution to a
normal distribution with mean 0. Under (A6)–(A8)
and Taylor expansions, we can show that each Q̂l −
Ql, l = 2, 3, 4, can be approximated by a linear func-
tion of random variables converging in distribution to
a normal distribution with mean 0. Hence, the result
follows by repeatedly applying Lemma 1 in Schenker
and Welsh (1988). �
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Table 1. Simulation bias and standard deviation (SD) in estimatingμ (1000 runs).

n = 200 n = 500

Model μ ε dist μ̂ μ̃I μ̂I μ̂ μ̃I μ̂I

Linear 3 (a) bias −0.008 0.003 0.001 −0.003 0.001 −0.002
SD 0.218 0.252 0.258 0.138 0.164 0.167

(b) bias −0.002 0.000 0.003 0.005 0.009 0.005
SD 0.208 0.242 0.246 0.130 0.152 0.151

(c) bias 0.001 0.009 0.013 −0.003 −0.002 0.012
SD 0.314 0.388 0.394 0.202 0.252 0.259

Nonlinear 7.25 (a) bias −0.004 −0.035 −0.029 0.003 −0.003 0.000
SD 0.579 0.597 0.600 0.377 0.383 0.387

(b) bias 0.003 −0.020 −0.017 −0.001 −0.009 −0.009
SD 0.580 0.590 0.599 0.377 0.390 0.389

(c) bias 0.034 0.010 0.016 0.001 −0.014 −0.016
SD 0.638 0.681 0.686 0.398 0.420 0.417

3. Simulation results

A simulation study is performed to examine the finite
sample performance of μ̂I = ŶI/N with ŶI defined
in (2) and wi = N/n. With sample of size n = 200 or
500, data (x1, y1, a1), . . . , (xn, yn, an) are i.i.d. generated
as follows. First, a three-dimensional covariate vector xi
is generated from the multivariate normal distribution
with mean vector (1, 1, 1) and covariance matrix⎛

⎝ 1 0.5 0.25
0.5 1 0.5
0.25 0.5 1

⎞
⎠

Conditioned on xi, yi is generated according to a lin-
ear model: yi = β ′xi + εi, or a nonlinear model: yi =
0.5(β ′xi)2 + εi, where β ′ = (1, 1, 1) and εi is generated
from one of the following three distributions:

(a) normal distribution N(0, 4),
(b) mixture normal distribution 0.4N(0, 1) + 0.6N

(0, 9),
(c) heteroscedastic normal distribution N(0, x2i1 + 1),

where xi1 is the first component of xi.

Conditioned on xi, the response indicator ai is gen-
erated from the Bernoulli distribution with probability

π(xi) = 1/[1 + exp(−0.4 − 0.1β ′xi)],

where the coefficients in π(xi) are chosen so that the
unconditional rates of missing data are between 20%
and 40%. For each i, xi is observed and yi is observed
if and only if ai = 1.

For simplicity, we consider K = 1 in (A1) and
N = n. Then, μ̂I = ŶI/n is considered as an estima-
tor of the super-population mean μ = E(yi), which is
μ = 3 under linear model and μ = 7.25 under non-
linear model. To apply single-index NNI in (2), SAVE
(Cook &Weisberg, 1991) is used to obtain estimator β̂ .

To evaluate the performance, we add two oracle esti-
mators, in addition to μ̂I . The first oracle estimator
is μ̂ = ∑n

i=1 yi/n, the sample mean without nonre-
sponse, assuming we observe all yi’s. The second oracle
estimator is μ̃I , which is the same as μ̂I except that

the true β , instead of β̂ , is used in finding the nearest
neighbour.

Table 1 provides simulation bias and standard error
(SD) of μ̂, μ̃I and μ̂I based on 1000 runs. It can be seen
fromTable 1 that all biases are negligible. In terms of the
SD, μ̂I based on single-index NNI is just slightly worse
than the oracle estimator μ̃I using the true β instead
of β̂ .

The empirical results are consistent with our theo-
retical findings.
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