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ABSTRACT
We consider multivariate small area estimation under nonignorable, not missing at random
(NMAR) nonresponse. We assume a response model that accounts for the different patterns of
the observed outcomes, (which values are observed and which ones are missing), and estimate
the response probabilities by application of the Missing Information Principle (MIP). By this prin-
ciple, we first derive the likelihood score equations for the case where the missing outcomes are
actually observed, and then integrate out the unobserved outcomes from the score equations
with respect to the distribution holding for the missing data. The latter distribution is defined
by the distribution fitted to the observed data for the respondents and the response model. The
integrated score equations are then solved with respect to the unknown parameters indexing
the responsemodel. Once the response probabilities have been estimated, we impute themiss-
ing outcomes from their appropriate distribution, yielding a complete data set with no missing
values, which is used for predicting the target area means. A parametric bootstrap procedure is
developed for assessing the mean squared errors (MSE) of the resulting predictors. We illustrate
the approach by a small simulation study.

ARTICLE HISTORY
Received 1 January 2019
Revised 20 September 2019
Accepted 2 October 2019

KEYWORDS
Distribution of missing data;
imputation under
nonignorable nonresponse;
missing information
principle; MSE estimation;
NMAR nonresponse

1. Introduction, models and assumptions

Let {yij, xij; i = 1, . . . ,M, j = 1, . . . ,Ni} represent the
data in a finite population of N units, belonging to
M areas, with Ni units in area i,

∑M
i=1 Ni = N, where

yij = (yij,1, . . . , yij,K)′ is the vector of outcome values
for unit j in area i and xij = (xij,1, . . . , xij,L)

′ is a vec-
tor of corresponding L covariates. Note that the use of
a single vector xij for the covariates accommodates sit-
uations where in fact different covariates, possibly of
different dimension, apply to different observations.We
assume that the covariates are known for every unit in
the population, from a recent census or some adminis-
trative files. Suppose that the outcome values follow the
generic two-level population model:

yij|xij,uUi
ind∼ f (yij|xij,uUi ), i = 1, . . . ,M, j = 1, . . . ,Ni

uUi
ind∼ f (uUi );E(uUi ) = 0 = (0, . . . , 0)′,V(uUi ) = �U ,

(1)

where uUi = (uUi,1, . . . , u
U
i,K)′ is a K-dimensional latent

random effect.
In the present article we assume that a noninforma-

tive sample has been drawn from the above population,
but the observed data is incomplete because of notmiss-
ing at random (NMAR) nonresponse. By noninforma-
tive sampling we mean that the sampling probabilities

are not related to the outcome variable of interest after
conditioning on the model covariates, such that the
conditional distribution of the outcome variable in the
sample, given the covariates, is the same as the corre-
sponding distribution in the population fromwhich the
sample is taken.

In practice, the observed data in a sample are almost
never complete due to non-response. The extent of the
non-response may differ from unit to unit within an
area, with some units providing all the requested infor-
mation, while others only providing part of it, with dif-
ferent units answering different questions. And tomake
matters worse, the non-response is NMAR, that is, the
probability of some target component of a unit being
missingmay depend, at least in part, on themissing tar-
get value, as well as the other target values for that unit,
whether observed or missing. See e.g., Equation (10)
for a simple example. As a consequence, approaches
that ignore the non-response and just use the com-
plete responses or those that model the non-response
only as functions of the observed covariates may yield
biased small area predictors. See the simulation study
in Section 5.

As a practical example, consider the Household
Expenditure Survey (HES) carried out by Israel’s Cen-
tral Bureau of Statistics. The survey collects informa-
tion on socio-demographic characteristics, as well as
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Table 1. Response patterns on 3 salary variables in Israel’s HES.
2017.

Res. Pattern 000 001 010 011 100 101 110 111 Total
Count 885 23 14 308 20 9 40 9,664 10,963
Percentage 8.1 0.2 0.1 2.8 0.2 0.1 0.4 88.2 100

information on income and expenditure. The sample
consists of households selected with equal probabilities
by a two-stage sampling design. Three important ques-
tions asked in this survey (and in other similar surveys
across the world) relate to the salary in each of the three
months preceding the month of the interview. Table 1
presents the distribution of the observed response pat-
terns of the three variable in the 2017 survey, with “1”
defining response and “0” nonresponse. The first posi-
tion to the left defines the response regarding the salary
in the month preceding the interview, the middle posi-
tion defines the response regarding the salary 2 months
before the interview, and the third position defines the
response regarding the salary 3 months ago.

Pfeffermann and Sikov (2011) found that the
response to salary questions is informative but they did
not consider SAE and restricted to a single target vari-
able. For further discussion and illustrations of NMAR
nonresponse and related concepts, see, Rubin (1976),
Little (1982), Little and Rubin (2002), Pfeffermann and
Sikov (2011), and references therein.

Returning to the present article, the target is to
impute the missing data and use the observed and
missing data for estimating the small area means, or
other summary measures of interest. It may come as a
surprise, but we are not familiar with published arti-
cles considering small area estimation under NMAR
nonresponse, except for Sverchkov and Pfeffermann
(2018), which treats the case of univariate outcomes.
The present paper extends the methodology developed
in that article. See Pfeffermann and Sikov (2011) and
Riddles, Kim, and Im (2016) for reviews and many
references addressing the problem of NMAR nonre-
sponse when fitting models to survey data, but with no
attention to SAE applications.

Define the response indicator Rij,k = 1(0) if yij,k is
observed (unobserved), and let Rij = (Rij,1, . . . ,Rij,K)′.

Assumption 1.1: (1a) The response occurs indepen-
dently between the units,

(1b) Pr[Rij = r|(yi∗j∗ , xi∗j∗ ,uUi∗ ), i∗ = 1, . . . .M, j∗ =
1, . . . ,Ni] = Pr[Rij = r|yij, xij].

As noted in Sverchkov and Pfeffermann (2018),
Assumption 1b is very reasonable. In particular, it
states that the probability to respond to the target vari-
able yij does not depend on the corresponding ran-
dom effect given yij, Pr[Rij = r|yij, uUi , xij] = Pr[Rij =
r|yij, xij]. Furthermore, it guarantees the identification
of the response model. See Remark 2.2 in Section 2 for
further discussion.

Note that under (1) and Assumption 1.1,

f [yij|xij,uUi ,Rij, {(yi∗j∗ , xi∗j∗ ,Ri∗j∗ ,uUi∗ ), i
∗

= 1 . . .M, j∗ = 1 . . .Ni; (i∗, j∗) �= (i, j)}]
= f (yij|xij,uUi ,Rij). (2)

We assume a parametric form for the completely
observed outcomes,

yij|xij,ui,Rij = 1 = (1, . . . , 1)′ ∼ fR(yij|xij,ui; θ1)
= f (yij|xij,ui,Rij = 1; θ1);

ui = uUi − E(uUi |Rij = 1) ∼ fR(ui; θ2)

= f (ui|Rij = 1; θ2),ER(ui; θ2) = 0. (3)

Note that in general, uUi and ui are different if the
nonresponse is NMAR.

Assumption 1.2: The subset {(i, j) : Rij = 1} is not
empty for every sampled area, such that the parame-
ters θ = (θ1, θ2) can be estimated by restricting to the
fully observed data (units with no missing data), using
classical small area estimation (SAE) procedures.

Remark 1.1: Assumption 1.2 is for convenience and
it is sufficient for our present approach to have fully
observed data in only sufficient number of areas
to allow efficient estimation of the parameters θ =
(θ1, θ2). Additionally, for a general response model
under which the response to any given component of
the multivariate target variable y may depend on the
component itself as well as the other components, with
possibly different coefficients for each component, (see
for example Equation (10) in Section 4), we also require
sufficient number of observations for each response
pattern Rij, thus allowing efficient estimation of the
response model for each component.

Denote by θ̂ = (θ̂1, θ̂2) the estimate of θ obtained
that way. For known θ , the best predictor of the ran-
dom effect ui given the completely observed data,OC =
{(yij : Rij = 1), xij, i = 1, . . . ,M, j = 1, . . . ,Ni}, is
E(ui|OC; θ). We predict, ûi = E(ui|OC; θ = θ̂ ).

Our proposed procedure to deal with the multivari-
ate informative (NMAR) nonresponse consists of the
following steps:

1. Fit a parametric model for the completely
observed outcomes, (Equation (3)).

2. Fit an appropriate parametric model for the
response probabilities, which may depend on the out-
come and the covariates (Assumption 1b), indexed
by the unknown vector parameter γ ; pr(yij, xij; γ ) =
Pr[Rij = r|yij, xij; γ ], with pr(yij, xij; γ ) differentiable
with respect to γ . See Section 2 for details.

3. Impute the missing outcomes from their appro-
priate distribution with the unknown parameters
(θ1, θ2, γ ) replaced by their sample estimates, and then
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use the ‘complete’ sample data (observed and imputed
values), to predict the small area means or other area
measures of interest. See Section 3 for the imputation
equations under the model. Since we assume nonin-
formative sampling such that if there was no nonre-
sponse, the sample data would follow the same model
as in the population, in what follows we do not dis-
tinguish between the population and sample data and
consider the population data as our sample. The results
of the present study can easily be generalised to the case
where first a sample is selected from the finite popula-
tion by some non-informative or informative sampling
scheme, and then nonresponse occurs. In this case one
can use the estimated distribution (3) and the estimated
response model for imputation of the missing sample
data as defined in the present article. Once the missing
sample data are imputed, the small area means of inter-
est can be estimated using the approach of Pfeffermann
and Sverchkov (2007).

In the next section, we apply the MIP principle for
estimating the response model parameters and discuss
some related questions. In Section 3, we develop the
imputation equations for themissing data, which, when
combined with the observed data, permit simple esti-
mation of the small areameans or other area parameters
of interest. In Section 4, we propose a parametric boot-
strap procedure for estimating the predictionRootMSE
of the resulting predictors. We illustrate our approach
with a small simulation study in Section 5 and conclude
with a summary of the main outcomes in Section 6.

2. Estimation of responsemodel parameters

If the missing outcome values were actually observed,
the vector parameter γ , indexing the response probabil-
itiesmodel, could be estimated by solving the likelihood
equations:

(1,...,1)′∑
r=(0,...,0)′

∑
(i,j):Rij=r

∂ log pr(yij, xij; γ )

∂γ
= 0, (4)

where the external summation is over all the
K-dimension vectors with 0,1 elements.

In practice, the missing data are unobserved for
Rij �= 1 and hence the likelihood equations (4) are not
operational. However, one may apply in this case the
missing information principle (MIP; Cepillini, Sinis-
cialco, & Smith, 1955; Orchard & Woodbury, 1972).
See, in particular, Sverchkov (2008), Sverchkov and
Pfeffermann (2018), and Riddles et al. (2016) for
recent applications of the principle to handle univariate
NMAR nonresponse.

Missing Information Principle: Let O = {(yij.k :
Rij,k = 1), xij, i = 1, . . . ,M, j = 1, . . . ,Ni}denote all the
observed data. Since no observations are available for

elements (ij, k) : Rij,k = 0, solve instead the best predic-
tor of (4) given the observed data:

E

⎛
⎝ (1,...,1)′∑

r=(0,...,0)′

∑
(i,j):Rij=r

∂ log pr(yij, xij; γ )

∂γ

∣∣∣∣∣∣O
⎞
⎠

= E

⎡
⎣ (1,...,1)′∑
r=(0,...,0)′

∑
(i,j):Rij=r

× E

(
∂ log pr(yij, xij; γ )

∂γ

∣∣∣∣∣O,ui,Rij = r

)∣∣∣∣∣O
]

= 0.

(5)

The expectation E((∂ log pr(yij, xij; γ )/∂γ )|O, ui,
Rij = r) can be approximated and solved as fol-
lows: Let α denote the set of indexes with observed
values yij,k and β denote the complement of α,
i.e., yij,α = {yij,k; rk = 1}, yij,β = {yij,k; rk = 0}. Denote,
Rij,α = (Rij,k : k ∈ α), Rij,β = (Rij,k : k ∈ β) and define
by 1β , 1α the corresponding unit vectors of respective
dimensions. By Assumption (1b),

E

(
∂ log pr(yij, xij; γ )

∂γ

∣∣∣∣∣O,ui,Rij = r

)

=
∫

∂ log pr(yij, xij; γ )

∂γ

× f (yij,β |yij,α , xij,ui,Rij = r) d yij,β

=
∫

∂ log pr(yij, xij; γ )

∂γ

×

{[Pr(Rij,β = 1β |xij,ui,Rij,α = 1α , yij)]
−1 − 1}

f (yij,β |yij,α , xij,ui,Rij = 1)dyij,β∫
[Pr(Rij,β = 1β |xij,ui,Rij,α = 1α , yij)]

−1

f (yij,β |yij,α , xij,ui,Rij = 1)dyij,β − 1

;

(6)

Pr(Rij,β = 1β |xij,ui,Rij,α = 1α , yij)

=
pr(yij, xij; γ )∫

pr(yij, xij; γ )f (yij,β |yij,α , xij,ui,Rij = 1)dyij,β
.

Finally, solve (5) with respect to γ by substitut-
ing f (yij,β |yij,α , xij,ui,Rij = 1; θ̂1) =

(
fR(yij|xij,ui; θ̂1)/∫

fR(yij|xij,ui; θ̂1)dyij,β
)
for f (yij,β |yij,α , xij,ui,Rij = 1),

replacing ui by ûi and dropping the external expec-
tation. See Sverchkov and Pfeffermann (2018) for a
similar approximation in the univariate case.

The last equality (product) in (6) extends to themul-
tivariate case the following fundamental relationship
between the sample and sample-complement distribu-
tions, derived in Sverchkov and Pfeffermann (2004) for



216 D. PFEFFERMANN ANDM. SVERCHKOV

the univariate case:

f (yij|xij, ui,Rij = 0)

= [p−1
r (yij, xij) − 1]f (yij|xij, ui,Rij = 1)
E{[p−1

r (yij, xij) − 1]|xij, ui,Rij = 1} . (7)

Equation (7) and its multivariate extension in Equation
(6) form the basis for our proposed approach. It states
that the distribution of an unobserved (missing) value
yij is defined mathematically by the distribution of yij
if it was observed, and the response model. Notice that
under NMAR nonresponse, the distribution of yij given
that the unit responded is different from the distribu-
tion of yij given that the unit did not respond, and also
different from the population distribution of yij, before
nonresponse takes place. The proof of the multivariate
extension applied in (6) follows the same simple steps of
the proof of (7) in Sverchkov and Pfeffermann (2004),
utilising Bayes theorem. See also Sverchkov (2008) and
Riddles et al. (2016).

In the Appendix, we illustrate the construction of
Equation (6) under the mixed logistic model for the
outcome variable.

Remark 2.1: The dimension of the set of equations in
(5) is equal to the dimension of γ indexing the response
model and hence it is impossible to estimate the param-
eters γ and the parameters θ = (θ1, θ2) of the outcome
model defined by (3), by solely solving this set.

Remark 2.2: A fundamental question regarding the
use of the MIP equations (5) is the existence of a
unique solution, or more generally, the identifiability
of the response model. For the univariate case, Rid-
dles et al. (2016) deal with NMAR nonresponse in
the general context of sample surveys by following
an approach proposed by Sverchkov (2008), which is
similar to our present approach. Riddles et al. (2016)
established the following fundamental condition for the
response model identifiability: the covariates x can be
decomposed as x = (x1, x2), with dim(x2) ≥ 1, such
that Pr(Rij = 1|yij, xij) = Pr(Rij = 1|yij, x1ij). In other
words, the covariates in x2 that appear in the outcome
model do not affect the response probabilities, given
the outcome and the other covariates. Covariates of this
property may or may not exist in a general set up, but
interesting enough, SAE models actually contain such
a variable, namely, the random effects. The random
effects play a fundamental role in SAE models so the
outcome clearly depends on them, but it is reasonable
to assume that the response probabilities do not depend
on the random effects, given the outcome value, (which
depends on the random effects). In practice, the ran-
dom effects are unobservable but we estimate them and
then solve the equations (5) by conditioning on the esti-
mated effects. So, it is actually the estimated random

effects that play the role of the covariates x2. In prac-
tice, other covariates that are predictive of the outcome
but not of the response might exist as well.

3. Imputation of themissing data.

Once the parameters θ and γ are estimated, the esti-
mates can be substituted (together with ûi) into the
model holding for the missing data, using the rela-
tionship used in (6), yielding the following estimated
distribution. Let yij,β = {yij,k; rk = 0} define, as before,
the unobserved data.

f (yij,β |yij,α , xij, ûi,Rij = r; γ̂ , θ̂ )

=

[(
pr(yij,xij;γ̂ )∫

pr(yij,xij;γ̂ )f (yij,β |yij,α ,xij,ûi,Rij=1)dyij,β

)−1
− 1

]
fR(yij|xij,ûi;θ̂1)∫

fR(yij|xij,ûi;θ̂1)dyij,β∫ ( pr(yij,xij;γ̂ )∫
pr(yij,xij;γ̂ )f (yij,β |yij,α ,xij,ûi,Rij=1)dyij,β

)−1

fR(yij|xij,ûi;θ̂1)∫
fR(yij|xij,ûi;θ̂1)dyij,β

dyij,β − 1

.

(8)

Note again that the distribution fR(yij|xij, ûi; θ̂1) is of the
observed data and can thus be estimated from the data
using standard SAE model fitting procedures.

Imputation of the missing data can be carried out by
drawing at random from the distribution (8). One may
draw a single observation or multiple observations.

Once the missing observations are imputed, pre-
diction of the true population mean of the outcome
variable or other measures of interest is carried out by
application of standard procedures. See the empirical
study in Section 5.

Remark 3.1: By Assumption 1.1, the response occurs
independently between units.

4. Estimation of predictionMSE

As in any other statistical inference problem, one has to
assess the error of the resulting predictors. In SAE appli-
cations under the frequentist paradigm, it is common
to estimate the Root Prediction Mean Squared Error
(RPMSE). It is quite obvious that no analytic expres-
sion of the RPMSE can be derived, given the complexity
of the prediction procedure, and we therefore propose
a bootstrap procedure. As before, we assume for con-
venience no sampling, such that the sample consists
of all the population units. See Remark 4.1 below. The
proposed bootstrap procedure consists of the following
steps:

B0. Impute the missing values as developed in Section
3. Consider the pseudo-population of complete
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responses as the ‘true’ population and calculate the
corresponding true-pseudo area means.

B1. For each unit (i, j) with complete observation ycij
generated in Step B0, draw observed outcomes
with probabilities pr(ycij, xij; γ̂ ).

B2. Apply all estimation and imputation procedures
described in Sections 2 and 3 to the observed
sample obtained in Step B1. Estimate all the area
means.

B3. Repeat Steps B1 and B2 independently B times (B
large) and compute for each area i the bootstrap
RPMSE,

RPMSEm,k = 1
B

∑B

b=1
( ˆ̄Ym,k,b − ȲB0

m,k)
2
;

m = 1, . . . ,M, b = 1, . . .B, (9)

where ˆ̄Ym,k,b is the predictor obtained from boot-
strap sample b for themean of the k-th component
of the outcome variable in area m and ȲB0

m,k is the
corresponding pseudomean in aream as obtained
in Step B0.

Remark 4.1: The bootstrap procedure outlined above
is partly design-based in the sense that we consider
a single pseudo population and the models are used
only for estimating the response probabilities and the
model holding for the completely observed data. The
procedure can easily be extended in two ways. First, we
may generate a new pseudo population for each boot-
strap sample, thus accounting also for the variability
induced by the random generation of the population
values. Second, we may extended the procedure to the
case where a sample is selected from the population and
nonresponse occurs in the sample, by first obtaining
complete sample observations as in Step B0 and then
generating a pseudo population using the procedure of
Sverchkov and Pfeffermann (2004). Thereafter, a sam-
ple is drawn from the pseudo population with the same
sampling design that was used for drawing the origi-
nal sample. The other steps follow Steps B1-B3 above
(with or without accounting for the generation of the
pseudo population, i.e., by generating only one pseudo
population or generating a new population each time).

5. Simulation study

In this section we describe the results of a simulation
experiment when applying the procedures proposed in
Sections 2, 3 and 4 (assuming no sampling and a single
pseudo population).

The experiment consists of the following steps:
S1.Generation of population values: generate for each

area i, i = 1, . . . , 300 and for each unit j, j = 1, . . . , 50
binary covariate values xij with Pr(xij = 1) = Pr(xij =
0) = 0.5, randomeffectsui = (ui,1, ui,2)′ ∼ N(0, I), i =
1, . . . , 300, and corresponding independent outcome

values from the mixed logistic model,

py1(xij,ui) = Pr(yij,1 = 1|xij,ui)
=exp(−.1 − xij + ui,1)/[1 + exp(−.1 − xij + ui,1)],

py2(xij,ui) = Pr(yij,2 = 1|xij,ui)
= exp(.9 + ui,2)/[1 + exp(.9 + ui,2)] (9)

Remark 5.1: The random effects are generated inde-
pendently but they are not assumed to be independent
in the estimation process.

S2. Response mechanism: compute response proba-
bilities for unit j in area i as:

pr(yij, xij, γ )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(xij, yij) exp(γ0 + γ1xij + γ2yij,1 + γ3yij,2),
if r = (1, 1)′

C(xij, yij) exp(γ4 + γ5xij + γ6yij,1 + γ7yij,2),
if r = (1, 0)′

C(xij, yij) exp(γ8 + γ9xij + γ10yij,1 + γ11yij,2),
if r = (0, 1)′

C(xij, yij),
if r = (0, 0)′

;

C(xij, yij) = [1 + exp(γ0 + γ1xij + γ2yij,1 + γ3yij,2)

+ exp(γ4 + γ5xij + γ6yij,1 + γ7yij,2)

+ exp(γ8 + γ9xij + γ10yij,1 + γ11yij,2)]−1; (10)

γ0 = 0, γ1 = − .5, γ2 = 3, γ3 = − 3, γ4 = 0, γ5 = − .5,
γ6 = 2, γ7 = − 2, γ8 = 0, γ9 = − .5, γ10 = 1, γ11 = − 1.
Clearly, the nonresponse is NMAR since the response
probabilities depend on the outcomes. Notice that
the response for yij,1, yij,2 is generated independently
between units.

Remark 5.2: We generated a single (finite) population
and hence, a single set of response probabilities.

S3. Generating responses: generate responses from
the (single) population generated in S1, with response
probabilities defined in S2 (Equation (10)).

S4. Fitting respondents’ model: estimate p̂y1(xij,ui) =
P̂r(yij,1 = 1|xij, ûi,Rij = 1), p̂y2(xij,ui) = P̂r(yij,2 =
1|xij, ûi,Rij = 1) by fitting the mixed logistic model
(9), using PROC NLMIX in SAS with default options.
Notice that the model (9) is not the true respondents’
model under the response model (10), because of the
NMAR nonresponse.

S5. Estimation of response probabilities: assume the
parametric response model (10), compute the expec-
tations in (6) under the estimated models p̂y1(xij, ûi),
p̂y2(xij, ûi) in Step S4 and estimate γ , using the proce-
dure described in Section 2. See Sverchkov and Pfeffer-
mann (2018) for numerical details.

S6. Imputation of missing data: impute the unob-
served data from the distribution of the missing data
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defined in Section 3, which in the present case reduces
to:

f (yij,β |yij,α , xij,ui,Rij = r)

=

{[Pr(Rij,β = 1β |xij,ui,Rij,α = 1α , yij)]
−1 − 1}

f (yij,β |yij,α , xij,ui,Rij = 1)dyij,β∫
[Pr(Rij,β = 1β |xij,ui,Rij,α = 1α , yij)]

−1

f (yij,β |yij,α , xij,ui,Rij = 1)dyij,β − 1

.

Remark 5.3: We imputed a single value for each miss-
ing value but one may impute several values, using a
multiple imputation approach.

Repeat Steps S3–S6 independently 500 times.
Predictors considered: compute the following pre-

dictors for each area on each simulation.

1. ˆ̄Yign
i,1 = N−1

i

⎧⎨
⎩
∑

j,Rij,1=1
yij,1+

Ni∑
k=1,Rik,1=0

p̂y1(xik, ûi)

⎫⎬
⎭ ,

ˆ̄Yign
i,2 = N−1

i

⎧⎨
⎩
∑

j,Rij,2=1
yij,2 +

Ni∑
k=1,Rik,2=0

p̂y2(xik, ûi)

⎫⎬
⎭ .

The predictors ˆ̄Yign
i,1 ,

ˆ̄Yign
i,2 ignore the response process

and ‘assume’ that the population distribution holds also
for the observed outcomes.

2. ˆ̄Ynew
i,1 = N−1

i
∑Ni

j=1 y
imp
ij,1 ,

ˆ̄Ynew
i,2 = N−1

i
∑Ni

j=1 y
imp
ij,2 ,

where yimp
ij,k = yij,k if yij,k is observed, and yimp

ij,k is the
imputed value from Step S6 if yij,k is missing (k = 1, 2).

The estimators ˆ̄Ynew
i,1 , ˆ̄Ynew

i,2 are our proposed esti-
mators, accounting for the multivariate NMAR nonre-
sponse.

Statistics considered for assessment of the of
predictors’ performance

Denote by Ȳi,k,r the true mean of area i on the
r-th simulation (for first or second coordinate, k = 1 or
2), and let ˆ̄Yi,k,r represent the first or second predictors
defined above, r = 1, . . . , 500.

Biasi,k =
∑500

r=1 ( ˆ̄Yi,k,r − Ȳi,k,r)

500
;

RPMSEi,k =
∑500

r=1 ( ˆ̄Yi,k,r − Ȳi,k,r)
2

500
;

RelBiasi,k = Biasi,k√
Vi,k

;

Vi,k =
∑500

r=1 ( ˆ̄Yi,k,r − 1
500
∑500

r=1
ˆ̄Yi,k,r)

2

500
;

RelRPMSEi,k =
√
RPMSEi,k(

1
500
∑500

r=1 Ȳi,k,r

) .
We calculated for each area the average (over the 500
simulations) of the number of complete responses and

ordered the areas by these averages (the smallest mean
number of complete responses is 2.3, the largest is 28.1).

S7. Estimation of the Root Prediction MSE (RPMSE):
compute bootstrap estimates of RPMSE following the
steps B0–B3 in Section 4.

In the following four figures we show the results for
RelBiasi,k and RelRMSEi,k, k = 1, 2 for each area, with
the areas ordered as above, starting with the area with
the smallest number of complete responses.

Figures 1 and 2 show how the proposed method
reduces very significantly the bias due to NMAR non-
response. As expected, the bias of both set of predic-
tors decreases as the number of complete responses
increases but our proposed predictors are seen to be
much less biased.

The reduction in RelRMSE by accounting for the
NMAR nonresponse in Figure 3 is not big, which is
explained by the fact that the bias of the predictors
that ignore the nonresponse is not very high in this
case. Notice in this respect that the average number of
missing values yij,1 over the 500 simulations is 5531.5,
compared to an average number of 6014.6 missing val-
ues of yij,2. Nonetheless, when averaging theRelRMSEi,1
over all the areas we find that,

Average[RelRPMSEi,1( ˆ̄Yign
i,1 )]

= 1
300

300∑
i=1

RelRPMSEi,1( ˆ̄Yign
i,1 ) = 0.51,

Average[RelRPMSEi,1( ˆ̄Ynew
i,1 )] = 0.44.

When estimating Ȳi,2 in Figure 4, the reduction in the
RelRPMSE by use of the proposed procedure is much
more drastic, particularly in the areas with small num-
bers of complete responses, due to the large bias when
ignoring the NMAR nonresponse.

Average[RelRPMSEi,2( ˆ̄Yign
i,2 )] = 0.93,

Average[RelRPMSEi,2( ˆ̄Ynew
i,2 )] = 0.28.

Next, we study the sensitivity of the proposed approach
to correct specification of the response model. For this,
we repeated the same simulation study, but by comput-
ing the response probabilities as:

pr(yij, xij, γ )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(xij, yij) exp[γ0 + γ1xij(γ2yij,1 + γ3yij,2)],
if r = (1, 1)′

C(xij, yij) exp[γ4 + γ5xij(γ6yij,1 + γ7yij,2)],
if r = (1, 0)′

C(xij, yij) exp[(γ8 + γ9xij(γ10yij,1 + γ11yij,2)],
if r = (0, 1)′

C(xij, yij),
if r = (0, 0)′

;

(11)
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C(xij, yij) = {1 + exp[γ0 + γ1xij(γ2yij,1 + γ3yij,2)]

+ exp[γ4 + γ5xij(γ6yij,1 + γ7 yij,2)]

exp[γ8+γ9xij(γ10yij,1+ γ11yij,2)]}−1,

with the same coefficients as in (10).
With these response probabilities, the number of

complete responses in an area (averaged over the 500
simulations), is in the range [9.3, 18.3].

When estimating the response model parameters in
Step S5 of the simulation, we still use the model (10) as
the working model, so that the model for the response
is misspecified, and so is the model estimated for the

missing data. (As mentioned before, the model esti-
mated for the completely observed outcomes is also not
correct).

Table 2 compares the true response probabili-
ties (Equation (11)) with the average of the esti-
mated response probabilities over the 500 simulations
under themisspecified responsemodel (Equation (10)).
Notice that except in a few cases, the averages of the
estimated response probabilities under the misspeci-
fied model are close to the true response probabilities,
already illustrating lack of sensitivity of our proposed
approach to correct specification of the responsemodel,
although the differences between the true response

Figure 1. RelBiasi,1 of ˆ̄Yigni,1 (‘o’) and ˆ̄Ynewi,1 (‘+’).

Figure 2. RelBiasi,2 of ˆ̄Yigni,2 (‘o’) and ˆ̄Ynewi,2 (‘+’).

Figure 3. RelRPMSEi,1 of ˆ̄Yigni,1 (‘o’) and ˆ̄Ynewi,1 (‘+’).
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Figure 4. RelRPMSEi,2 of ˆ̄Yigni,2 (‘o’) and ˆ̄Ynewi,2 (‘+’).

probabilities and their estimates are occasionally larger
for any given sample.

As seen in Figures 5 and 6, with the misspeci-
fied response model (and the model for the com-
pletely observed data), there are no big biases even
when ignoring the NMAR nonresponse. Nonetheless,
even in this case, when averaging over all the areas,
Average[|Relbias( ˆ̄Yign

i,1 )|] = 1.09, Average

[|Relbias( ˆ̄Ynew
i,1 )|] = 0.50, Average[|Relbias( ˆ̄Yign

i,2 )|] =
1.17, Average[|Relbias( ˆ̄Ynew

i,2 )|] = 0.47.
Next we compare the RelRPMSEs of the two estima-

tors.
Figures 7 and 8 show reduction in the RelRPMSEs

when accounting for the NMAR nonresponse in the

Table 2. True response probabilities, pr,(i,j), and average of
estimated response probabilities, Ap̂r,(i,j)under misspecified
responsemodel, for different responsepatterns rij ; (i = 0, 1, j =
0, 1).

x y1 y2 pr,(1,1) pr,(1,0) pr,(0,1) Ap̂r,(1,1) Ap̂r,(1,0) Ap̂r,(0,1)

0 0 0 .25 .25 .25 .25 .25 .25
0 0 1 .25 .25 .25 .31 .26 .21
0 1 0 .25 .25 .25 .19 .22 .30
0 1 1 .25 .25 .25 .24 .26 .24
1 0 0 .25 .25 .25 .30 .24 .24
1 0 1 .46 .27 .17 .36 .26 .19
1 1 0 .10 .17 .27 .23 .22 .29
1 1 1 .25 .25 .25 .28 .26 .23

areas with small number of complete responses. When
averaging over all the areas,

Average[RelRPMSEi,1( ˆ̄Yign
i,1 )] = 0.41,

Average[RelRPMSEi,1( ˆ̄Ynew
i,1 )] = 0.34;

Average[RelRPMSEi,2( ˆ̄Yign
i,2 )] = 0.17,

Average[RelRPMSEi,2( ˆ̄Ynew
i,2 )] = 0.14.

We conclude that even under the misspecified models,
our approach generally yields predictors with smaller
RelRMSEs thanwhen ignoring theNMARnonresponse
(Figures 5 and 6). Clearly, the predictors obtained under
this approach have larger variances than when ignoring
the NMAR nonresponse, due to all the complex com-
putations involved, so that the large differences in the
bias do not always translate into corresponding large
differences in the RelRMSEs.

Finally, we report the results of RelRPMSE estima-
tion. Due to time limitation, the results so far are based
on only 100 parent samples and 50 bootstrap samples
for each parent sample. Figures 9 and 10 compare the
‘true’ (empirical) RelRPMSEs over the 100 parent sam-
ples, with the mean of the corresponding bootstraps
estimates.

The results in Figures 9 and 10 show for most areas
good performance of the bootstrap estimators and we

Figure 5. RelBiasi,1 of ˆ̄Yigni,1 (‘o’) and ˆ̄Ynewi,1 (‘+’), response model misspecified.
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Figure 6. RelBiasi,2 of ˆ̄Yigni,2 (‘o’) and ˆ̄Ynewi,2 (‘+’), response model misspecified.

Figure 7. RelRPMSEi,1 of ˆ̄Yigni,1 (‘o’) and ˆ̄Ynewi,1 (‘+’), response model misspecified.

Figure 8. RelRPMSEi,2 of ˆ̄Yigni,2 (‘o’) and ˆ̄Ynewi,2 (‘+’), response model misspecified.

Figure 9. RelRPMSEi,1 of ˆ̄Ynewi,1 (‘+’), and bootstrap estimates (‘o’).
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Figure 10. RelRPMSEi,2 of ˆ̄Ynewi,2 (‘+’), and bootstrap estimates (‘o’).

believe that with more parent samples and bootstrap
samples, the results will look even better. Even with the
current runs, when averaging over all the areas,

Average[RelRPMSEi,1] = 0.38,

Average Bootstrap[RelRPMSEi,1] = 0.35,

Average[RelRPMSEi,2] = 0.41,

Average Bootstrap[RelRPMSEi,2] = 0.41,

illustrating the unbiasedness of the bootstrap estima-
tors when averaging over all the areas.

We compared the empirical RelRPMSE’s with the
bootstrap estimates also for the case of the misspecified
response model and obtained similar results. To save in
space, we don’t show the corresponding figures.

6. Summary

In this paper we propose a general approach for mul-
tivariate SAE under NMAR nonresponse within the
selected areas. The approach consists of fitting a model
for the observed data and using this model for esti-
mating a postulated multivariate response model by
application of the missing information principle. Once
the response model is estimated, we derive the model
holding for the missing data, which is used for imput-
ing the missing data, thus obtaining a complete file of
sample data that is used for estimating the unknown
small area parameters. A bootstrap procedure is pro-
posed for estimating the root prediction mean squared
errors of the small area predictors, which consists of
generating a pseudo population with similar behaviour
to the behaviour of the true underlying population, and
selecting many samples from the pseudo population
and many sets of responses for each sample.

A simulation study shows good performance of our
approach in terms of point and RPMSE estimation. The
simulation study also illustrates certain robustness to
misspecification of the response model. The empirical
study in this paper considers the case where the models
that are fitted for the responding units and the response
probabilities are logistic, but the theoretical derivations
assume general models for the observed data and the

response mechanism. Thus, we encourage researchers
of SAE to apply the procedure to simulated and real
data sets, with possibly different models assumed for
the observed data and the response probabilities.
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Appendix. Illustration of the use of Equation
(6) for Estimation of the response probabilities:

Mixed logistic model for the outcome variables with a single
covariate.

Consider bivariate variables yij = (yij1, yij2), and suppose
that the model fitted to the observed data of the respondents
is the mixed generalised logistic model,

py1(xij, ui) = Pr(yij,1 = 1|xij, ui,Rij = 1)

= exp(α1 + β1xij + ui,1)

× [1 + exp(α1 + β1xij + ui,1)]−1

py2(xij, ui) = Pr(yij,2 = 1|xij, ui,Rij = 1)

= exp(α2 + β2xij + ui,2)

× [1 + exp(α2 + β2xij + ui,2)]−1

ui = (ui,1, ui,2)′ ∼ N(0,�) (A1)

Suppose a generic response model, pr(yij, xij; γ )=Pr[Rij =
r|yij, xij; γ ].

We assume that yij,1 and yij,2 are independent given
xij, ui,Rij = 1, and that Pr[Rij = r|yij, xij,ui; γ ] = Pr[Rij =
r|yij, xij; γ ].

Then, for example, for r = (0, 1)′, the components of (6)
can be written as,∫

∂ log pr(yij, xij; γ )

∂γ

× {[Pr(Rij,β = 1β |xij, ui,Rij,α = 1α , yij)]
−1 − 1}

× f (yij,β |yij,α , xij,ui,Rij = 1)dyij,β

= ∂ log pr[(1, yij,2)′, xij; γ ]
∂γ

× {[ pr[(1, yij,2)′, xij; γ ]
pr[(1, yij,2)′, xij; γ ]py1(xij,ui)

+pr[(0, yij,2)′, xij; γ ][1 − py1(xij,ui)]

]−1 − 1}

× py1(xij, ui) + ∂ log pr[(0, yij,2)′, xij; γ ]
∂γ

× {[ pr[(0, yij,2)′, xij; γ ]
pr[(1, yij,2)′, xij; γ ]py1(xij,ui)

+pr[(0, yij,2)′, xij; γ ][1 − py1(xij,ui)]

]−1 − 1}

× [1 − py1(xij,ui)],∫
{[Pr(Rij,β = 1β |xij, ui,Rij,α = 1α , yij)]

−1 − 1}

× f (yij,β |yij,α , xij,ui,Rij = 1)dyij,β

= {[ pr[(1, yij,2)′, xij; γ ]
pr[(1, yij,2)′, xij; γ ]py1(xij, ui)

+pr[(0, yij,2)′, xij; γ ][1 − py1(xij, ui)]

]−1 − 1}

× py1(xij, ui)

+ {[ pr[(0, yij,2)′, xij; γ ]
pr[(1, yij,2)′, xij; γ ]py1(xij, ui)

+pr[(0, yij,2)′, xij; γ ][1 − py1(xij, ui)]

]−1 − 1}

× [1 − py1(xij, ui)]

Similar expressions are obtained for r = (1, 0)′ and r =
(0, 0)′.


	1. Introduction, models and assumptions
	2. Estimation of response model parameters
	3. Imputation of the missing data.
	4. Estimation of prediction MSE
	5. Simulation study
	6. Summary
	Disclosure statement
	Notes on contributors
	References
	Appendix. Illustration of the use of Equation (6) for Estimation of the response probabilities:


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


