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ABSTRACT
The goals of anymajor business transformation programme in an official statistical agency often
include improving data collection efficiency, data processing methodologies and data qual-
ity. However, the achievement of such improvements may have transitional statistical impacts
that could be misinterpreted as real-world changes if they are not measured and handled
appropriately.

This paper describes a development work that sought to explore the design and analysis of
a times-series experiment that measured the statistical impacts that sometimes occur during
survey redesigns. The Labour Force Survey (LFS) of the Australian Bureau of Statistics (ABS) was
used as a case study. In the present study:

(1) A large-scale field experiment was designed and conducted that allowed the outgoing and
the incoming surveys to run in parallel for some periods to measure the impacts of any
changes to the survey process; and

(2) The precision of the impactmeasurement was continuously improvedwhile the new survey
design was being implemented.

The state spacemodelling (SSM) technique was adopted as themain approach, as it provides an
efficient impact measurement. This approach enabled sampling error structure to be incorpo-
rated in the time-series intervention analysis. The approach was also able to be extended to take
advantage of the availability of other related data sources (e.g., the data obtained from the par-
allel data collection process) to improve the efficiency and accuracy of the impactmeasurement.
As stated above, the LFSwas used as a case study; however, themodels andmethods developed
in this study could be extended to other surveys.
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1. Introduction

It is common practice for national statistical offices
to employ a repeated sampling scheme. This practice
enables changes in the total aggregate (or population)
and different cross-sections to be estimated. The time
series produced under a repeated survey scheme over
time creates a basis for social, economic, environmental
analysis and policy making.

Any changes to a survey process could potentially
have a systematic effect on the outcomes of a survey.
Such systematic differences are referred to as disconti-
nuities or impact and affect the continuity of the esti-
mated time series obtained by a repeated survey. This
creates difficulties for users in interpreting movements
in the data when making policy decisions, as it may not
be clear if the period-to-period change in the estimates
represent real-world changes or if they are the result
of differences in measurement biases introduced by the

changeover to a new survey design. Thus, any changes
in survey methodology have to be well managed. Fur-
ther, the effects of methodological change need to be
identified, measured and adjusted, if necessary, to pro-
vide a coherent picture before and after the change and
tomitigate the risk of the changes beingmisinterpreted.

The Australian Bureau of Statistics (ABS) is embark-
ing on a transformation programme, which includes,
among other changes, the application of different col-
lection modes for survey data and the use of differ-
ent, but more efficient, sampling frames and estimation
methods for official statistics. This transformation is
expected to deliver positive changes to official statis-
tics; however, there is a risk that such changes could
have a statistical impact on some ABS time series.
Consequently, methodologies need to be developed
to measure, and where necessary adjust for, statistical
impacts.
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The first and the most straightforward approach to
assessing the effects of survey changes is to conduct
times-series experiments. In such experiments, data
are collected under the old (control) and new (treat-
ment) survey approach simultaneously. Preferably, such
data should be based on randomised experiments. The
data can be used to obtain a direct accurate estimate
of the impacts, depending on the size of the available
sample at one survey period and the number of peri-
ods. In the present paper, this approach is referred to
as a parallel run (see, for example, Van den Brakel,
2008).

Various intervention analyses of time-series models
have also been widely used to measure possible time-
series discontinuities with or without using the infor-
mation fromaparallel run. For example,Glass,Willson,
and Gottman (2008) provide a general framework of
the methodological aspects of control groups in time
series. Similarly, in Chapter §8.6, Harvey (1989) also
provides a general Seemingly Unrelated Time Series
Equations (SUTSE) model for intervention analysis
with control groups, while Van den Brakel and Krieg
(2015) describe how they used multivariate STM to
measure the statistical impact induced by the Dutch
Labour Force Survey (LFS) redesign. Van den Brakel
et al. (2017, Van den Brakel, Zhang, & Tam, 2019) also
described a general framework for a statistical impact
measurement (SIM).

In this paper, we explore a number of impact mea-
surement strategies that could be applied to surveys
redesigns, such as that planned for the Australian LFS.
In relation to the parallel-run design, this paper primar-
ily focused upon a methodology that could ascertain
the pre-determined statistical accuracy of the mini-
mum detectable impact (MDI) (in terms of Type I
and II errors). State space modelling (SSM) techniques
were used to address some special characteristics of the
ABS LFS.

Section 2 of this paper provides a brief introduc-
tion to the characteristics of the current ABS LFS sur-
vey, outlines possible future changes and considers the
options for measuring statistical impact. Section 2 also
considers a number of general STMs and their state
space presentation for measuring statistical impact.
Section 3 describes the methods and models that could
be used for the LFS parallel-run design and discusses
the simulated results. Section 4 evaluates a number of
options and suggests a hybrid option to balance differ-
ent priorities in terms of costs, accuracy and revisions.
Finally, Section 5 discusses the implications of different
options and avenues for future research.

All the calculations reported in this paper were
undertaken using programmes written in the SSM pro-
cedure in software packages: SAS, SsfPack (see Koop-
man, Shephard, & Doornik, 2008) and R.

2. Australian Bureau of Statistics labour force
survey

2.1. Australian Bureau of Statistics labour force
survey design

The LFS is based on a multi-stage area sample of
dwellings and covers approximately 0.32% of the civil-
ian population of Australia aged 15 years and over
(ABS, 2016). Households selected for the LFS are inter-
viewed using face-to-face, telephone or web forms each
month for eight consecutive months and one-eighth of
the sample is replaced each month. The LFS sample
can be thought of as comprising eight sub-samples (or
rotation groups [RGs]). Each RG remains in the survey
for eight months; one RG is ‘rotated out’ each month
and replaced by a new group that is ‘rotated in’. This
high overlap of respondents from month-to-month
induces strong serial correlations in the sampling
errors.

A composite estimator is used to obtain monthly
estimates for the employed and unemployed labour
force (Bell, 2001). This estimator combines themonthly
general regression (GREG) estimates for the eight
waves observed in the last six months into an approxi-
mate design unbiased estimate for the current month.

2.2. Options formeasuring statistical impacts

As part of the present study, three general options (dis-
cussed further below) were examined in relation to the
precision of the SIM, the risks and the costs related to
the practical implementation.

Option A: A 100% control sample to maintain the
production quality of the current LFS during the paral-
lel run. This optionwould enable optimal combinations
of the treatment sample size and length of parallel run
to be ascertained. This option would have the low-
est levels of risk for the continuation of the official
publications but would be costly.

Option B: Reduce the size of the control sample and
make the treatment sample size equal to the control
sample size (e.g., have a control group and a treat-
ment group equal to 75% of the regular sample size of
the current LFS). Such a balanced design would enable
the statistical impact to be estimated as precisely as
possible; however, this would be done at the cost of
accepting less precise and less regular LFS estimates
for official publication purposes during the parallel-run
period. Additionally, this option might not be accepted
by external users due to the increase of sampling errors
in the regular survey estimates.

Option C: Phase-in a new process where by one
group is rotated in each month. After 8 months, the
existing process could be fully changed to reflect the
new process. This strategy would not allow for a period
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of parallel data collection; thus, the SIM would rely
fully on a times-series model to estimate the statistical
impact. A potentially large revisionmay result and have
to be accepted after the changeover had begun. This
option carries the highest risks.

Finally we propose a hybrid option. This combines
the information obtained with a small parallel run with
the information observed before and after the parallel
run with a structural time series model. The informa-
tion obtained with the parallel run is used as a-priori
information in the time-series model. The observa-
tions obtained before and after the parallel run are
in the time-series model used to further improve the
precision of the initial estimate for the discontinuity
obtainedwith the parallel run. The details are explained
in Subsection 4.2.

2.2.1. Reasons formeasuring statistical impact
using general regression estimates at the rotation
group level
Our main objective was to measure the statistical
impact at the level of composite estimates. The compos-
ite estimator applied in the ABS LFS combines monthly
GREG estimates for the eight waves over the last six
months. Consequently, any abrupt statistical impact at
the current end of the series due to the changeover to
a new design should be smoothed out over a longer
period. To avoid such an effect and to achieve an
accurate and timely SIM, the statistical impact was
measured at the monthly GREG estimates in the sepa-
rate rotation group levels. The corresponding impacts
to the composite LFS estimates were then derived
accordingly.

A number of potential changes to the LFS must
be considered and their statistical impacts assessed. It
would be unrealistic to assume that a statistical impact
would be uniformly equal across all waves, as the pro-
posed changes may have different impacts on different
waves. Such differences are referred to as ‘wave sen-
sitive’ differences in this paper. For example, the use
of e-collection as the primary collection mode could
produce changes in respondent induction and the strat-
egy for promotingweb-formadoption could potentially
lead to a wave sensitive effect.

2.3. Using structural time-seriesmodels at the
rotation group level tomeasure statistical impact

Assume ŷi,t is a GREG estimate of the main LFS vari-
ables (e.g., number of employed persons and num-
ber of unemployed persons from the rotation group
that in the current month t has been observed i times
[i = 1, . . . 8]) (referred to hereafter as ‘wave i’). With-
out losing generality, the structuralmeasurement errors
for the wave i at time t are:

(1) time invariant rotation group bias (RGB) bi for
wave i; and

(2) sampling error, ei,t for wave i in period t.

The rotation group bias, b1, . . . , b8, showed a per-
manent wave sensitive level shift (LS) compared to the
reference wave (in this study, Wave 7 was the reference
wave; thus, without loss of generality, we set b7 = 0).1

The following equation (Pfeffermann, 1991) describes
the relationship between an observed estimate, ŷi,t and
the unobserved components, yt , bi, ei,t and αi. In this
paper, all the modelling work uses a logarithmic scale.
Thus, the additive components are multiplicative in the
original scale. Standard Error (SE) is equivalent to Rela-
tive Standard Error (RSE) in the original scale. It should
be noted that these terms are used interchangeably in
this paper. Thus:⎛⎜⎝ŷ1,t

...
ŷ8,t

⎞⎟⎠ = 1[8]yt +

⎛⎜⎝b1
...
b8

⎞⎟⎠ +

⎛⎜⎝e1,t
...

e8,t

⎞⎟⎠ (1)

where yt is a true population value, 1[8] is the eight-
dimensional vector with elements equal to one.

The target variable, yt , can be expressed by a STM:

yt = Tt + St + It , (2)

where Tt , St , and It denote the smooth trendmodel, the
seasonal model and the irregular component, which is
often assumed to be white noise that represents unex-
plained variations in the population parameter (see
Durbin&Koopman, 2012 for further details). The sam-
pling error stochastic process, et can be modelled as
white noise forWave 1 (assuming there was no correla-
tions with estimates from the previous panel):

e1,t = u1,t , u1,t ∼= NID(0, σ 2
1,u) (3)

as an AR(1) process for Wave 2

e2,t = φ2,1e1,t−1 + u2,t , u2,t ∼= NID(0, σ 2
2,u) (4)

and as an AR(2) process for the other waves (i = 3,
4, . . . 8)

ei,t = φ1ei−1,t−1 + φ2ei−2,t−2 + ui,t ,

ui,t ∼= NID(0, σ 2
i,u) (5)

where coefficientsφ1 andφ2 and the sampling error dis-
turbance variance, σ 2

u , can be pre-defined with the LFS
data (see Pfeffermann, Feder, & Singnorelli, 1998).

3. A parallel-run design

3.1. Design considerations in the labour force
survey context

The objectives of any LFS parallel-run design are to:

1 There is anecdotal evidence that Wave 7 contained is less biases and more stable among the eight waves.
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• measure the direct statistical impacts induced by
the ABS process change to the published ABS LFS
outputs;

• identify statistical impacts in a timely manner to
support statistical risk management; and

• obtain an accurate SIM with a minimum treatment
sample for the agreed accuracy level and a feasible
parallel-run design.

3.1.1. Working assumptions
For this study, the following hypothetical accuracy cri-
terion2 was set to detect a significant statistical impact:
One SE of population3 estimates (43,750 and 19,500
employed and unemployed persons, respectively) with
conventional Type I and II errors less than 5% and 50%,
respectively.

The MDI was defined as the minimum size of the
impact, α, that could be detected based on the above
stated accuracy criterion. Its value was calculated as the
SE of the estimated statistical impact, SE(α̂), times a
multiplier, which was derived from the predefined Type
I and II errors. The multiplier of 1.96 corresponds to
Type I and II errors of 5% and 50%, respectively.

The ratio of the MDI to one SE of the population
estimate, SE(ŷ) (the MDI ratio), 1.96 × SE(α̂)/SE(ŷ),
indicates that a SIMmethod is successful when its value
is less than or equal to one. The MDI ratio provides a
uniform measure and makes comparisons of the SIMs
of different variables easier.

The SIM, as described in this study, was primarily
designed to identify a permanent LS induced by a new
LFS design with additional consideration of sampling
error properties.

The following two parameters for a parallel-run
design must meet the accuracy criterion and opera-
tional feasibility:

(1) The size of the treatment sample; and
(2) The duration of the parallel run.

From an operational feasibility perspective, the
duration of any parallel run in this study was limited
to less than two years.

3.2. State spacemodel formulation

Equations (1–5) describe a general SSM framework for
GREG estimates of the LFS at the rotation group level
with interventions. With or without a control group,
this model reflects a common approach in the litera-
ture (Harvey, 1989) that is used to measure the statis-
tical impact as the intervention component. However,

such a conventional model has to estimate many hyper-
parameters, as it needs to estimate the ‘true’ pop-
ulation, yt , in the STM Equation (2). Basically, the
differences between the model’s predicted value and
observed value provide a source for measuring the sta-
tistical impact. Such relatively complicatedmodel iden-
tification and prediction can be vulnerable to rapid
real-world changes. Further, the model may be unable
to account for rapid real-world changes during the
parallel-run period. As the sole goal of this study was
to estimate the statistical impact rather than produce a
‘true’ population estimate, the model was simplified for
the parallel-run scenario.

In the case of the LFS, the existing composite esti-
mator continued to be used to produce the ‘true’
labour force population estimates. Consequently, the
conventional intervention analysis was simplified by
modelling the differences between the estimates pro-
duced under the current design and the estimates pro-
duced under the new design conducted in parallel. This
reduced the risks of rapid changes or outliers affecting
the estimation and improved robustness by reducing
model complexity. The difference SSM for estimating
statistical impact is developed further below.

3.2.1. The conceptual decomposition of a statistical
impact on the general regression estimate
Suppose a new LFS design (n) starts from time t1.
Then model (1) can be extended for the observations
obtained at months t ≥ t1 by adding a vector that con-
tains level shifts for the separate waves to model the
systematic difference due to the change-over to a new
survey design. This results into the following model:⎛⎜⎝ŷ(n)

1,t
...

ŷ(n)
8,t

⎞⎟⎠ = 1[8]yt +

⎛⎜⎝b1
...
b8

⎞⎟⎠ +

⎛⎜⎝α1x1,t
...

α8x8,t

⎞⎟⎠ +

⎛⎜⎝e(n)1,t
...

e(n)8,t

⎞⎟⎠
(6)

where ŷ(n)
i,t denotes the new GREG estimate for wave i,

e(n)i,t is sampling error of the new LFS design and xi is an
intervention dummy variable denoted as

xi,t =

⎧⎪⎨⎪⎩
1, if observations are obtained under

the new design of wave i at time t,
0, otherwise.

The regression coefficients, αi, are the LSs induced by
the redesign of the survey process and are the measure-
ment of the statistical impact (Van den Brakel & Roels,
2010; Van den Brakel, Smith, & Compton, 2008). To
identify the model, the LSs and the coefficients for the
RGB were assumed to be time invariant.4

2 There was no official accuracy criterion at the time at which the paper was written. A hypothetical accuracy criterion was used purely to assist discussion in
this paper.

3 In the context of this paper, population refers to employed or unemployed persons.
4 Further elaboration of this simple model may be needed if evidence emerges that this assumption needs revision (see our discussion of future avenues of
research in Section 5).
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In the case of a parallel run, the statistical impact for
each wave is obtained by taking the difference between
(6) and (1):⎛⎜⎝ŷ(n)

1,t − ŷ1,t
...

ŷ(n)
8,t − ŷ8,t

⎞⎟⎠
︸ ︷︷ ︸

difference in estimates

=

⎛⎜⎝α1x1,t
...

α8x8,t

⎞⎟⎠
︸ ︷︷ ︸

difference in RGB

+

⎛⎜⎝e(n)1,t − e1,t
...

e(n)8,t − e8,t

⎞⎟⎠
︸ ︷︷ ︸
difference in SE

(7)
The structural changes come from:

(1) A permanent LS presented in the ‘difference in
RGB’; and

(2) A dynamic sampling error change presented in the
‘difference in SE’.

The ‘true’ population yt cancels out under the dif-
ference model formulation and was thus excluded from
the estimation.

3.2.2. Estimating the statistical impact during a
parallel run
In practice, a new design will usually be introduced by
each successive rotation group. Assuming a parallel run
is conducted for t0 ≤ t < t1 a new series ŷ(τ )

t can be
constructed5 as:

ŷ(τ )
i,t =

⎧⎪⎨⎪⎩
ŷ(n)
i,t t0 ≤ t < t1 and wave i

has a treatment sample
ŷi,t otherwise

,

i = 1, . . . , 8 (8)

ŷ(τ )
i,t = yt + bi + αixi,t + ei,t + (e(n)i,t − ei,t)xi,t (9)

with an intervention dummy variable xi,t

xi,t =

⎧⎪⎨⎪⎩
1 t0 ≤ t < t1 and wave i

has a treatment sample
0 otherwise

(10)

Thus, the permanent LS αi for Wave i can be estimated
from the parallel run with a combined sampling error
process ηi,t = e(n)i,t − ei,t :

ŷ(τ )
i,t − ŷi,t = αixi,t + ηi,txi,t t0 ≤ t < t1 (11)

Assuming the sample rotation design continues, both
ei,t and e(n)i,t follow the same Auto-Regressive (AR)
model (see Equations [3–5]) process, but with a differ-
ent disturbance variance, σ 2

η,δ . Thus:

ηi,t = φ1ηi,t−1 + φ2ηi,t−2 + δi,t

δi,t ∼= NID(0, σ 2
i,δ) (12)

σ 2
i,δ = σ 2

i,(e,u) + σ 2
i,(e(n),u)

− 2corr(e(n).,. , e.,.)σi,(e,u)σi,(e(n),u) (13)

φ1, φ2 and σ 2
i,(e,u) can be estimated from the existing

LFS sample design. σ 2
i,(e(n),u) can be determined by the

new treatment sample design. Amore accurate estimate
of αi from Equations (11) and (12) can be achieved by
maximising correlation ρ = corr(e(n).,. , e.,.) in Equation
(13). This relies on the working assumptions made ear-
lier; that is, that the existing and new LFS designs have
the same sampling error stochastic process (i.e., the
same autoregressive coefficients of the AR(2) model).
Thus, σ 2

i,δ ≈ (σi,(e(n),u) − σi,(e,u))
2 when ρ ≈ 1.

The difference between the RGB of the existing
design and new design can be estimated from the fol-
lowing state space model presentation.

The observation equation is:

ŷ(τ )
i,t − ŷi,t = αixi,t + ηi,txi,t i = 1, · · · , 8 (14)

The state equation is:6

(
ηt

ηt−1

)
=

(
	1 	2
I 0

)(
ηt−1
ηt−2

)
+

(
δt
0

)
(15)

Where

ηt = (η1,t , η2,t , . . . , η8,t)′, δt = (δ1,t , δ2,t , . . . , δ8,t)′,

	1 =
(
0′
[7] 0

φ1I[7] 0[7]

)
, 	2 =

(
0[2×6] 0[2×2]
φ2I[6] 0[6×6]

)
.

0[j] is a j-dimensional vector with each element equal to
zero, 0[p×q] a p× q matrix with each element equal to
zero, and I[j] is a j× j identity matrix.

3.2.3. An analytical solution for the parallel-run
parameters
The estimated coefficients α̂i(i = 1, · · · , 8) are the per-
manent LSs and the RGB of the new LFS design can be
derived by bi + α̂i (i = 1, · · · , 8), where bi is the RGB
of the existing LFS design.

The null hypothesis for no statistical impact is H0:
αi = 0 (i = 1, · · · , 8). Based on classical statistical the-
ory, we sought to determine the sample size needed to
test whether themean of the treatment samples differed
to the means of the control samples where the control
was regarded as the true value and the difference was
the statistical impact.

5 It should be noted that the sampling error for the treatment sample may be larger due to the smaller sample size of the treatment sample.
6 Without losing generality, the state equation is written as an AR(2) process but Waves 1 and 2 follow a white noise process and an AR1 process, respectively.
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The variance of the sampling error disturbance σ 2
i,μ

from Equations (12) and (13) was rewritten as:

σ 2
i,δ = σ 2

i,(e,u) + σ 2
i,(e(n),u) − 2ρσi,(e,u)σi,(e(n),u)

= γi(σ
2
i,e + σ 2

i,e(n) − 2ρσi,eσi,e(n) )

= γi

(
1
nC

+ 1
nT

− 2ρ√
nCnT

)
σ 2

= γi

(
1 + 1

κ
− 2ρ√

κ

) (
σ√
nC

)2

= γi

(
1 + 1

κ
− 2ρ√

κ

)
σ 2
i,e (16)

where σ 2
i,e and σ 2

i,e(n) are the variance of the control and
treatment sampling errors of Wave i and κ = nT/nC
is the sample size ratio between treatment and control
samples. Finally:

γi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, i = 1 (φ1 = 0,φ2 = 0)
1 − φ2

1 , i = 2 (φ1 �= 0,φ2 = 0)
(1 + φ2)[(1 − φ2)

2

−φ2
1]/(1 − φ2), i ≥ 3 (φ1 �= 0,φ2 �= 0)

was derived from the sampling error AR process.
With some algebras (for further details see Zhang,

Van den Brakel, Honchar, Wong, & Griffiths, 2017), the
SE of αi can be derived at any point of time t:

SE(αi|κ) = SE(δi,t) = σi,δ =
√

γi

(
1
κ

+ 1 − 2ρ√
κ

)
σi,e

(17)
We can also derive that the improvement is the gain:

SE(αi|κ)

σi,e/
√

κ
=

√
γi

(
1 + κ − 2ρ

√
κ
)

(18)

in terms of the proportional reduction to the SE of αi
by considering the sampling error process and intra-
cluster correlation using the SSM model. The smaller
the gain value, the bigger the reduction of the SE. This
gain decreases with increasing intra-cluster correlation
ρ. Notably, when ρ = 0 (there is no intra-cluster cor-
relation), the gain is

√
γi(1 + κ). For example, when

κ = 0.5, then the gains are 0.64 and 0.96 for the
employed and unemployed labour forces of the LFS,
respectively.

For a parallel run, with a treatment sample over
periods {T}, the SE of αi is:

SE(αi|κ , n) =
√
1
n
σ 2
i,δ =

√
γi

n

{
1
κ

+ 1 − 2ρ√
κ

}
σi,e

because δi,t ∼= NID(0, σ 2
i,δ) (19)

where n is the number of times that Wave i was
observed over the periods of {T}.

3.3. Simulation study

Equation (17) provides a theoretical solution to deter-
mine the SE of the statistical impact {αi}. It can be
used to allocate the treatment sample size by optimis-
ing n (the number of times each wave is included in the
periods of a parallel run) and κ (treatment sample size
proportion to control sample size) to meet the statis-
tical accuracy criteria with the predefined parameters,
γi, ρ and σi,e (which are specific to the employed and
unemployed estimates). For this simulation study, an
equal sampling error was assumed for the eight waves;
that is, σ 2

i,e = σ 2
e (i = 1, · · · , 8). The sampling error dis-

turbance variance of Wave i, σ 2
δ,i can be derived from

σ 2
i,δ = γi

(
1 + 1

κ
− 2ρ√

κ

)
σ 2
e .

A simulation study was undertaken with the follow-
ing two objectives:

(1) To verify whether the theoretical solution was cor-
rect, and

(2) To evaluate the Kalman filter performance of the
SSM on a relatively short time series derived from
a parallel run.

Model (7) is proposed as a parsimonious SSM as a
tool to analyse a short time series obtained with a paral-
lel run. Generally, the Kalman filter requires a relatively
long time series, particularly in the case of Model (1)
and (6), which contain many nonstationary state vari-
ables that require a diffuse Kalman filter initialisation.
SinceModel (7) uses the contrasts between the new and
old design as the input series, most of the nonstation-
ary state variables cancel out at the cost of having a short
series. One objective of the simulation is to investigate
whether this approach is an alternative for the hybrid
option, discussed in Subsection 4.2, where the informa-
tion of the parallel run is used for an exact initialisation
of the regression coefficients of the level shifts in the
Kalman filter.

Due to operational constraints, only one treatment
RG was able to be introduced each month. Figure 1
presents a 15-month parallel-run scheme; each treat-
ment RG was run in parallel for a full eight (=15–17)
months. The shaded cells represent treatment RGs.

One hundred replicates were generated for different
combinations of:

• parallel durations (11, 13, 15, and 19 months, where
each separate wave was conducted in parallel for 4,
6, 8, and 12 months, respectively);

• treatment sample sizes (κ = 30%, 50%, 80% and
100%); and

• intra-cluster correlations (ρ = 0, 0.3, 0.5 and 0.8).

The RG level wave sensitive impacts {αi} (i =
1, · · · , 8) were set for a combined impact size, α,
of one SE, SE(ŷ), of the national LFS employment
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Figure 1. A scheme for 15 months parallel run.

and unemployment, respectively (i.e., α = SE(ŷ)).
Appendix 1 describes how the simulated data at the RG
level were generated for the simulation study.

This model is stationary with stability and observ-
ability. Thus, an unconditional mean and covariance
were able to be used as the initial condition of the state
variables (Aoki, 1987). Zhang et al. (2017) also showed
that the analytical solution of the corresponding state

correlation matrix can be derived as the sum of the
serial cross-correlation of sampling errors {ei}.

The following initialisations of the Kalman filter
were used:

(1) A diffuse initialisation for the state {αi}with values
of zero and large variances with a known correla-
tion structure; and

Figure 2. Average SE against treatment sample size, intra-cluster correlation and parallel duration.
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Table 1. Average SE Regress on X.

Employed Unemployed

Coefficient of X 1.035e-02 (5.482e-05) 0.0706435 (0.0002898)
Null deviance 1.6335e-03 7.6127e-02
Residual deviance 2.1526e-06 6.0167e-05
R2 0.9987 0.9992

(2) An exact initialisation for the sampling error state
{ei}with zero expectations, estimated variance and
zero correlations.

The SEs of {αi} were estimated and were consistent
over different waves (i = 1, 2, . . . 8) regardless of the
true value of {αi}. Thus, the precision of the impact
estimates was not dependent on the size of the chosen
impacts in the simulation.

The top panel of Figure 2 shows the average SE
of αi (avg.se7) against different combinations of intra-
cluster correlation, (ρ), parallel-run duration, (n) and
treatment sample size, (κ). The results were consis-
tent with our expectations for both the employed
and unemployed labour forces (i.e., the larger intra-
cluster correlation or the longer parallel-run duration
or larger the treatment sample size, the smaller of the SE
of αi).

Variable X =
√

1
n

(
1 + 1

κ
− 2ρ√

κ

)
was also created to

examine its relationship with the SE of αi. The lower
panel of Figure 2 shows the simulated results (dots)
against the results (regression line) derived by regress-
ing avg.se on X. This graphical presentation clearly
demonstrates that there was a very strong linear rela-
tionship between avg.se and X.

Table 1 shows the regression analysis results. The
high R-squre values (R2) values confirm that avg.se can
be predicted from X.

From this analysis, it can be confidently concluded
that the theoretical articulation of Equation (17) is cor-
rect. Thus, it appears that the Kalman filter performed
well in estimating αi with an expected SE.

In the context of the parallel-run design, from the
structure of X, we confirmed that:

• Intra-cluster correlation is the most powerful vari-
able in reducing the SE of estimated αi;

• The treatment sample size was the second most
important variable. Notably, when the treatment
sample size was the same as the control sample size
(i.e., κ = 1), this provided the most efficient bal-
anced design for minimising the SE of the estimated
αi; and

• The duration of the parallel run was the least pow-
erful factor among the three to reduce the SE of the
estimated αi.

The coefficients of X in Table 1 can be used with any
combination of parallel-run duration, treatment sam-
ple size and intra-cluster correlation to predict the SE
of αi for both employed and unemployed persons in the
LFS. Thus, an optimised parallel-run design was able
to be achieved. However, the intra-cluster correlation
between the control and treatment samples is usually
unknown, unlike the sampling error and the rotation
panel design induced AR sampling error dynamics,
which can be estimated from the sample data (see Pfef-
fermann et al., 1998).

4. Evauation of the options for measuring
statistical impact and change implementation

In this section, we evaluate the three different design
options (described in Section 2) in relation to a parallel
run based on the methodology developed in Section 3.
The remainder of this section assesses the three options
and proposes a hybrid option if an additional revision
is acceptable 12 months after the introduction of a new
LFS survey.

4.1. Evaluations of the three options

Using the formulae developed in Section 3, the parallel-
run parameters can be calculated based on a given set of
scenarios. As a new LFS design was hypothetical at this
stage, it was assumed that the intra-cluster correlation
between the control and treatment samples was zero
(i.e., ρ = 0). In relation to our simulation study, Table 2
shows the length of the parallel run required to meet
the predefined accuracy criterion (see Section 3) for the
unemployment scenarios of Option A with 100% and
50% treatment samples (A100 and A50, respectively)
and Option B with 75% (B75) across both the control
and treatment samples. It should be noted that none of
the options appeared to meet the defined accuracy cri-
terion with the operational feasibility constraints of a
parallel run shorter than 24 months.

Options A50 and B75 have the same total samples
per month and their costs should be similar. However,
B75 is a balanced design and is more efficient than A50
at measuring statistical impact. Thus, a shorter paral-
lel run is sufficient; however, due to the sample size
reduction for the control samples, the published LFS
unemployment estimates during parallel-run periods
are (1.15 times) more volatile.

In relation to the unemployment example with a
24-month parallel run, the estimated relative SEs of
the statistical impacts for the composite estimates were
1.65%, 2.02% and 1.91% for each of the three options
(A100, A50 and B75), respectively. These options detect
a one SE (2.6%) statistical impact with a 5%Type I error

7 The estimated SE of αi for each replicate appeared to be consistent regardless of the waves and the size of αi . avg.se was calculated as the average of all
replicates across the eight waves; that is, avg.se = (1/8 × 100)

∑8
i=1

∑100
j=1 σ̂i,j where σ̂i,j is the estimated SE of αi (Wave i) for replicate j.
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Table 2. Sample size and the length of the parallel run required
for unemployment Options A and B.

A100 A50 B75

Control sample size % 100 100 75
Treatment sample size % 100 50 75
SE on published estimates Current Current 1.15 times larger
Duration 32 months > 44 36 months
Risk Low Low Moderate

Table 3. Total level shift detected by SSM across 100 replicates
(Unemployed).

Periods after the first new design rotation
group is introduced (month) Overall impact % MDI ratio

Simulated 2.60
3 1.86 4.1
5 2.23 4.0
8 2.34 3.9

and 53%, 64% and 61% Type II errors, respectively. The
alternative interpretation may be that the three options
can detect the size of the statistical impact of the MDI
ratios 1.24, 1.52 and 1.43 times the current survey SE
(2.6%) with the pre-defined precision.

The phase-in (i.e., Option C) implementation strat-
egy did not use parallel data collection and was not
designed for accurate SIM. This approach has a high
risk, as there is limited opportunities to assess the
impacts before implementation.

A one SE statistical impact is not detectable with the
required accuracy within the 8-month phase-in period,
as the statistical impact is wave sensitive and there are
incomplete or insufficient observations of new samples.
Table 3 shows our simulation results with a one SE sta-
tistical impact for the LFS unemployed (2.6%). In this
table, the impact was measured at 3, 5 and 8 months
for 100 replicates (there was an untested assumption
of wave insensitive impact; that is, that the impact was
uniform to all the waves).

The estimated impacts at 3 and 5 months (1.856%
and 2.232%, respectively) were obviously not accurate
(given that the true impact was 2.6%). The MDI ratio
indicates that an impact greater than 3.9 SEs in the
unemployed population estimate can be detected with
the required precision. In such circumstances, there are
two choices as to how the situation can be addressed if
only this option is applied:

(1) Ignore the impact, as the measured impact can-
not meet the accuracy criterion. However, the sta-
tistical impact will appear in the published esti-
mates and could be misinterpreted as real-world
changes; or

(2) Apply an ad-hoc manual adjustment based on
the estimated impact. This action is not scientific
and could potentially be subject to large revisions
later8

Neither of these choices were deemed acceptable.
Therefore, the phase-in represents a very high risk
option.

Table 3 also shows that the estimated impact is close
to the real impact after the end of the phase-in (i.e., at
8 months). However, the impact cannot be measured
accurately even after 24 months. Further information
is provided in the next sub-section.

4.2. Simulation studies for different options and a
hybrid option

The advantage of a large parallel run (i.e., Option A)
is that such an approach minimises the risks related
to regular publications during the changeover. If unex-
pected results are observed using the new process dur-
ing the parallel run, the old approach could still be
adopted. Further, as a large parallel run can estimate
the statistical impact directly and with high precision,
another advantage of this option is that it facilitates the
implementation of the new survey without further revi-
sion of the impact measurements after the changeover.
However, this approach is expensive, as significant data
collection effort is required.

The opposite approach (i.e., Option C) involves no
parallel run and requires a times-series model be used
to estimate the impact. The major advantages of this
approach include that it is inexpensive and avoids the
additional fieldwork that would be required by a par-
allel run. However, skipping a period of parallel data
collection and relying on a times-series model to esti-
mate the statistical impact also has several disadvan-
tages and risks. First, it is not clear in advance if the
times-series estimates for the statistical impact will
have the required levels of precision. Further, any esti-
mates of the impact could be unreliable directly after
the changeover and will likely have to be revised after
new observations become available under the new sur-
vey design. Consequently, revisions must be expected
and accepted. Implementing the changeover without a
period of parallel data collection also increases risks
during the changeover. If the new survey design is a fail-
ure or has a significant impact, the old approach will
have to be adopted; however, if this occurs, there will
be a period for which no data or less reliable data are
available for the production of official statistics.

An intermediate option is to have a small parallel
run and combine the information derived from this run
with the adoption of a times-seriesmodelling approach.
For example, a parallel run could be conducted with
20% or 50% of the regular sample size for a period
of 12 months. The results obtained from the parallel
run could be used as a-priori information in the times-
series model. This could be done by using the direct
estimates for the impact and their SEs obtained with

8 A scientific adjustment is described as a hybrid option in Section 4.2.
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Table 4. Different parallel-run scenarios used in the simulationa.

Sample size Unemployed Employed

Standard error Standard error

Scenario Control sample Treatment sample
Parallel-run period

month % points total MDI ratio % points total MDI ratio

1 100% 20% 18 7.9 61,620 4.05 1.08 135,000 5.25
2 100% 50% 12 5.6 43,680 2.87 0.81 101,250 3.94
2 100% 20% 24 5.6 43,680 2.87 0.81 101,250 3.94
3 100% 50% 18 3.9 30,420 2.00 0.54 67,500 2.63
4 100% 100% 12 3.7 29,016 1.90 0.54 67,500 2.63
5 100% 25% 24 4.7 36,348 2.41 0.68 85,000 3.31
6 100% 100% 18 2.5 19,500 1.28 0.44 55,000 2.14
aIt should be noted that in relation to employed persons, Scenario 4 equals Scenario 3.

Figure 3. Minimum detectable impact ratio at the 5% significance level and 50% power obtained with the times-series model for
different periods after the changeover among the unemployed labour force (left panel) and the employed labour force (right panel).

the parallel run as initial values for the state variables of
the interventions in the Kalman filter. As an alternative,
the parallel run could be analysed with SSM Equation
(7) and these results could be used as a-priori informa-
tion in the times-series model. The information from
the time series observed before the start of the parallel
run and the information that becomes available under
the new approach after finalising the parallel run could
be used in the times-series model to further improve
the precision of the impact estimates. It should be noted
that this option directly reduces the risk of having a
period without official figures after the changeover and
also reduces the amount of revisions.

As per the simulation approach described in Section
3.2, more simulations for the national unemployed and
employed persons from the rotation group level esti-
mates were conducted to illustrate the precision of the
impact estimates.9 The simulations were run using the
times-series model approach without a parallel run and
with five different parallel-run scenarios of reduced
sample sizes (see Table 4). The SEs in Table 4 refer to the
statistical impact estimates at the rotation group level
obtained with the control sample, the treatment sample
and the specified parallel-run periods. The sample size
percentages refer to the current sample size of the regu-
lar LFS. The MDI ratios were calculated for the overall
composite estimates.

The SEs obtained with the times-series model with-
out a parallel run and the five different scenarios were
aggregated for the different periods observed after the
changeover to the new design. The MDI ratio values
obtained directly after the parallel run were all greater
than one except forUnemployed Scenario Six. This sug-
gests that none of the parallel-run results from the first
five scenarios met the predefined precision.

Figure 3 shows the MDI ratios of the different
scenarios in relation to different periods after the
changeover for the unemployed and the employed. For
the unemployed, a sixth scenario was added to illus-
trate the effect of the times-series model if it is applied
after the full parallel run of 100%–100% for a period
of 18 months. The MDI ratio for the scenario without
a parallel-run converged to a value of approximately 2
and 3 for the unemployed and employed labour forces,
respectively. Thus, under this scenario, detecting an
impact of one SE cannot be achieved. For example, in
relation to the unemployed series of Scenario 1, a one
SE impact still cannot be achieved with the predefined
accuracy criterion after 24 months. Conversely, in rela-
tion to Scenario 4, this precision can be obtained after
19months and in relation Scenario 6, this precision can
be obtained after 11 months.

The results showed that if the results of a relatively
small parallel run are improved with a times-series

9 Most of the precision discussions in this section focused on the rotation group level, as the SE of a statistical impact to the overall composite estimates can
be approximated as the SE at the rotation level times a multiplier.
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Table 5. The relative SEs for the impactmeasurement estimates and revisions for the unemployed labour force in percentage points
after 12 months under different parallel-run options.

RG1 RG2 RG3 RG4 RG5 RG6 RG7 RG8 Average

SE of impact
No PR 3.18 3.35 3.45 3.52 3.58 3.63 3.66 3.69 3.5
Scenario 1 2.36 2.47 2.51 2.54 2.57 2.63 2.67 2.74 2.6
Scenario 2 2.05 2.13 2.15 2.17 2.19 2.23 2.29 2.37 2.2
Scenario 3 1.74 1.79 1.79 1.79 1.81 1.84 1.91 2.00 1.8
Scenario 4 1.70 1.75 1.74 1.75 1.77 1.80 1.86 1.95 1.8
Scenario 5 1.88 1.95 1.96 1.97 1.99 2.03 2.09 2.18 2.00
Scenario 6 1.42 1.44 1.43 1.43 1.44 1.47 1.52 1.61 1.47

Revision
Scenario 1 5.62 6.13 5.88 6.53 4.71 5.71 5.54 5.93 5.8
Scenario 2 3.97 4.22 3.93 4.57 3.29 3.89 3.82 4.02 4.0
Scenario 3 2.73 2.83 2.59 3.11 2.23 2.56 2.58 2.65 2.7
Scenario 4 2.60 2.69 2.45 2.95 2.12 2.43 2.45 2.51 2.52
Scenario 5 3.29 3.46 3.17 3.77 2.71 3.15 3.13 3.25 3.24
Scenario 6 1.69 1.72 1.55 1.88 1.38 1.54 1.58 1.56 1.61

model, the initial estimates of the statistical impact
obtained with the parallel run are likely to be revised
after, for example, a period of 12 months. The sim-
ulation study was also used to estimate the expected
amount of revisions between the estimates obtained for
the parallel runs under the five scenarios and the times-
series model 12 months after finalising the parallel run.
As expected, the size of the revisions decreased with the
sample size of the parallel run. The expected revision
(see the ‘Average’ column of Table 5) is approximately
5.8% under Scenario 1, 4% under Scenario 2 and 2.7%
under Scenario 3.

Table 6 provides the final SEs and revisions of the
SIM estimates for the employed labour force across the
different scenarios in terms of the percent points 12
months after finalising the parallel run.

Revisions were calculated as themean over the abso-
lute value of the difference between the initial estimate
of the parallel run and the times-series estimate 12
months after finalising the parallel run. A comparison
of the size of the revisions to the SE of the SIM shows
that the revisions were still substantial, particularly in
cases of small parallel runs. As expected, the size of
the revision decreased as the size of the parallel run
increased. As illustrated with Scenario 6 in relation to
the unemployed labour force, the times-series model

still produced revisions after a full parallel run designed
to observe a SIMof one SE at a 5% significance level and
a power level of 50%.

4.3. Revision analysis for the hybrid option

The purpose of this analysis is to understand the prop-
erties of the hybrid option. This option uses the initial
estimates of statistical impacts (in Figure 4, ini SE has
been shown in light grey) from a small parallel run,
which may not be as accurate as desired, as inputs to
a times-series model (SSM) to improve the accuracy 12
months after finalising the parallel run. Specifically, we
sought to explore the relationships between the SEs of
the initial estimates (ini SE), the SEs of the final sta-
tistical impacts (SE 12 months after changeover) and
revision size 12 months after the changeover.

It appears that the regression lines fit the simu-
lated results very well in relation to both employed and
unemployed labour forces. Table 7 shows regression
results and performance. Both the coefficients of the ini
SE for the unemployed and employed were 0.78. This
suggests that the hybrid option reduces approximately
80% of errors regardless of the quality of the ini SE.

Table 8 shows the results of regressing the SE of the
final estimates from the hybrid option 12 months after

Table 6. The relative SEs for the impact measurement estimates and revisions for the employed labour force in percentage points
after 12 months under different parallel-run options.

RG1 RG2 RG3 RG4 RG5 RG6 RG7 RG8 Average

SE of impact
No PR 0.57 0.58 0.58 0.61 0.64 0.63 0.63 0.65 0.61
Scenario 1 0.37 0.36 0.35 0.36 0.38 0.37 0.37 0.40 0.37
Scenario 2 0.31 0.30 0.29 0.30 0.31 0.31 0.31 0.33 0.31
Scenario 3 0.25 0.23 0.22 0.22 0.23 0.23 0.24 0.26 0.27
Scenario 4 0.25 0.23 0.22 0.22 0.23 0.23 0.24 0.26 0.27
Scenario 5 0.27 0.28 0.28 0.29 0.29 0.30 0.31 0.33 0.29

Revision
Scenario 1 0.77 0.87 0.81 0.90 0.67 0.78 0.78 0.83 0.80
Scenario 2 0.58 0.63 0.59 0.67 0.50 0.57 0.57 0.61 0.59
Scenario 3 0.38 0.41 0.37 0.44 0.32 0.36 0.36 0.37 0.38
Scenario 4 0.38 0.41 0.37 0.44 0.32 0.36 0.36 0.37 0.38
Scenario 5 0.48 0.52 0.48 0.56 0.41 0.47 0.47 0.49 0.49
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Figure 4. Comparisons of the initial SE from parallel run, final SE and revision after the 12-month changeover.

Table 7. Revision size regressing on ini SE.

Unemployed Employed

Intercept –0.367054 (0.021980) –0.0395645 (0.0008405)
ini SE 0.779785 (0.004307) 0.7774410 (0.0010967)
Null deviance 10.9734000 1.2628e-01
Residual deviance 0.0016739 1.0051e-06
R2 0.99984 0.999992

Table 8. SE of final estimates regressing on ini SE.

Unemployed Employed

Intercept 0.99578 (0.05123) 0.169087 (0.009134)
ini SE 0.20939 (0.01004) 0.180600 (0.011918)
Null deviance 0.8002000 0.0069333
Residual deviance 0.0090932 0.0001187
R2 0.988636 0.98288

the changeover onto the initial SE (ini SE) from the par-
allel run. The coefficients of ini SE for the unemployed
and employed series were 0.21 and 0.18, respectively.
This suggests that the hybrid option still retains approx-
imately 20% of the errors in the final estimates after the
12-month changeover regardless of the quality of ini SE.

As Tables 7 and 8 show, the results were consis-
tent across both the unemployed and employed labour
forces. The ini SE figures were not exactly equal to the
Revision plus SE of final estimates; however, it can confi-
dently be concluded from the coefficients of ini SE that
the hybrid option reduces the errors by 80% over the 12
months after the changeover regardless of the quality of
the ini SEs. Some errors (approximately 20%) are still
likely to remain in the final estimates.

5. Discussion and future research

This paper presented a set of SSM models and eval-
uations for a range of options that measured the

statistical impacts of a survey redesign. In this study,
the ABS LFS redesign was used as a case study. The
paper showed that by modelling the differences of the
GREG estimates for the control and treatment groups
at the rotation group level, the model for measur-
ing statistical impact from a parallel run simplified
the conventional SSM intervention analysis. This pro-
posed model should be more robust than the con-
ventional SSM intervention approach against rapid
real-world changes. Additionally, as there is no need
to model the ‘true’ population, the proposed model
has a number of advantages over the conventional
SSM intervention approach. Notably, the proposed
model:

• Eliminates possible complications related to mod-
elling the ‘true’ population during parallel-run peri-
ods;

• Avoids the smoothing effect because of the lagged
composite weights;

• Takes account of the dynamics of the sample rotation
induced process more effectively; and

• Exact (rather than diffuses) initialision of the
Kalman filter with a-priori information, as the
model is stationary and the expected variances
(covariances) of the states are used to speed up the
Kalman filter convergence rate.

Theoretical deliberation and the empirical simula-
tion study provided us with an understanding of the
relationship between the precision of detecting a statis-
tical impact and:

(1) the parallel-run parameters (i.e., the intra-cluster
correlation between the treatment and control
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groups, the sample size and the duration of the
parallel run);

(2) the effect of sampling errors (i.e., the correlation
structure of statistical impacts at the rotation group
level and how it affects the statistical impact on the
final composite estimate); and

(3) the improvement and revision properties of the
hybrid option after the changeover.

The information presented in this paper shows how
the survey parallel parameters, the characteristics of the
LFS survey (e.g., intra-cluster correlation and sampling
errors) and the properties of the SSM affect the preci-
sion of an estimated statistical impact. Insight in the
accuracy obtained with the various options are in com-
bination with cost calculations very helpful for the top
management to make a dedicated decision between the
different strategies to quantify discontinuities.

In relation to the options considered for measur-
ing impact and implementing change, while a scenario
without a parallel run is relatively inexpensive, it has
major disadvantages in terms of the risks related to the
quality of the published times-series data (particularly
coherence and interpretability) during the changeover
period. In addition, in the absence of a designed exper-
iment, there is no control over the accuracy require-
ments for the minimum detectable differences. Thus,
the required accuracy criterion that a difference of one
SE should be detected at a 5% significance level and
a power of 50% is unlikely to be achievable with this
approach. For a critically important survey such as the
LFS, a large-scale parallel run is required (assuming a
low appetite for accepting statistical impacts on the time
series).

There are two possible ways to reduce the costs of
a parallel run. Either the precision goal that an impact
of one SE must be detectable would have to be relaxed
or revisions to the estimated impact would have to be
acceptable. In the latter case, the times-seriesmodelling
approach could be combined with a smaller sample size
for the parallel run (as illustrated by the six different
scenarios investigated in Section 4).

However, it should be noted that in relation to small
parallel runs, there is a large risk that the revision of the
initial estimates for the SIM is substantial, as the small
parallel run does not produce precise initial estimates.
This suggests that the decision to make the changeover
would be based on an imprecise initial estimate. In a
worst case scenario, the initial SIM estimatesmight sug-
gest a small impact but the final SIM estimates could
be substantially larger 12 months after the changeover.
Notably, this risk would decline by increasing the size
of the parallel run and could be visualised by looking
at the ratio of the revision and the SE of the final SIM
estimates (see Figure 3).

Our study of the hybrid option suggests that use-
ful information obtained from the SIM in Phase 1

activities, such as small experiments, field tests and
dress rehearsals, could be used as priors for the SSMof a
parallel run. Thus, using the SSM modelling approach,
the SIM information obtained from a current phase
could be used as the priors and input to the SSM of
the next phase via an exact initialisation of the states
of the level breaks in the Kalman filter. The SIM preci-
sion could also be continually improved over the three
phases.

We conclude that the hybrid option is the preferred
method for statistical impact measurement. This is
because this approach uses all available information
obtained from the parallel run, the information from
the time series observed under the old design before
the parallel run and the time series observed under
the new design after finalising the parallel run. The
method has the flexibility to find the best trade-off
between additional costs and increased risk by sim-
ulating with which accuracy a statistical impact can
be assessed under parallel runs of different length
and size.

Further research is required to build on the findings
of this study. Some areas for future research include:

• The use of other data sources: The SSM model
(Equations 1–5) used for the hybrid option could
be extended to include related data sources in a
multivariate SUTSE model to improve SIM preci-
sion by better predicting the true population. For
example, Zhang and Honchar (2016) used unem-
ployment benefit claimant counts (CC) is such a
related series for LFS unemployment, and the ANZ
job advertisement (ANZadv) and the Department of
Employment Internet Job Vacancy index (DoEIVI)
are too.

• An alternate SSM formulation: Further study needs
to be undertaken to explore alternative SSM model
formulations to use the historical data to better
improve the Kalman filter convergence rate for
shortening parallel-run periods and to reduce the SE
of the estimated statistical impact.
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Appendix: Simulated data generation

Data generation description

The observations from the simulated data set followed the
following structure,

ŷgi,t = yt + bgi + egi,t

and

egi,t = φ1e
g
i−1,t−1 + φ2e

g
i−2,t−2 + δ

g
i,t δ

g
i,t ∼ NID(0, σ 2

δ )

Note: The above equations are referenced from equation 1,
3–5
where,
i ∈ (1, 2, . . . , 8) is the wave index
g ∈ (1, 2) is the group index where 1 = control group and
2 = treatment group

t is the time period

yt is the ‘true’ population estimate used in the simulation for
employment and unemployment at time t

bgi is the rotation group bias (RGB) for the ith wave of the
control and treatment group, note that the rotation group bias
is time-invariant

egi,t is the sampling error for the ith wave of the control and
treatment group at time t. It follows an autoregressive pro-
cess of order 2, AR(2) with the disturbance termμ

g
i,t ,which is

normally and independently distributed.

‘True’ population estimate yt
It was estimated by using state space models on the LFS
national level estimate. The final estimate was obtained by
excluding the standard error component in the state space
model.

The rotation group bias bgi
Each wave had a predefined rotation group bias value sub-
ject to a specific employment and unemployment simulation
scenario.

AR(2) sampling error egi,t
For the purposes of this simulation study, egi,t and δ

g
i,t were

required to satisfy a predefined variance covariance struc-
ture subject to a specific employment and unemployment
simulation scenario.
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In order to achieve this, the variance covariance of the
AR(2) sampling error disturbance term Cov(egi,t), we gener-
ated bivariate time series, (δ1i,t , δ

2
i,t)

′ with covariance matrix
Cov(δgi,t) (1 ≤ i ≤ 8) to reflect the rotation panel design using
a standard Gaussian white noise generator.

egi,t could then be generated by calculating φ1e
g
i−1,t−1 +

φ2e
g
i−2,t−2 + δ

g
i,t in a cyclical way (1 ≤ i ≤ 8) described

below:
Sampling error for wave i = 1 and mod(t, 8) = 1, control

and treatment group,

egi,t = δ
g
i,t No AR process

Sampling error for wave i = 2 and mod(t, 8) = 1, control
and treatment group,

egi,t = φ1e
g
i−1,t−1 + δ

g
i,t AR(1) process

Sampling error for wave 3 ≤ i ≤ 8 and 3 ≤ mod(t, 8) ≤
8, control and treatment group,

egi,t = φ1e
g
i−1,t−1 + φ2e

g
i−2,t−2 + δ

g
i,t AR(2) process

Table A1 presents the some key parameters for both con-
trol and treatment samples.

Table A1. Parameters for Simulation data generation

Employed Unemployed

Sample size per month 30,000
Sampling error AR1 for wave 2 0.835 0.589
Sampling error AR2 for wave 3–8 0.585, 0.3 0.466, 0.208

RGB Control
RSE at RGB 0.94% 6.60%
b1 0.007 0.058267930
b2 0.001 0.019303798
b3 −0.0044 0.006714512
b4 −0.0044 0.000405143
b5 0.0005 0.017966054
b6 0.0001 0.019514134
b7 0 0
b8 0.0002 0.046400917

RGB Treatment
b1 +α1 0.6 0.7
b2 +α2 0.001 0.2
b3 +α3 −0.001 0.2
b4 +α4 −0.001 −0.02
b5 +α5 0.001 −0.02
b6 +α6 0 −0.02
b7 +α7 0 0
b8 +α8 −0.6 −0.68

The following pseudo code illustrates the data simulation
process

Set RSE RG control sample

Iterate replicates 1–100
Iterate parallel run duration: 11, 13, 15 19
Iterate Kappa: 0.3. 0.5. 0.8, 1
Derived Treatment sample RSE from Kappa.
Iterate intra cluster correlation: 0, 0.3, 0.5, 0.8
Generate both control and treatment sample

End
End

End
End

Note: The simulation programme required the input parameters, φ1 for
wave 2,φ1 andφ2 forwave 3 towave 8, standard error of control and treat-
ment group (reflects κ), ρ, and RGB control and treatment parameters.

In the data simulation, the AR(1) parameter φ1 for wave 2 was different to
the AR(1) parameter φ1

A different seed was used to generate the white noise component in each
replication and therefore, the simulated observations differed only in the
sampling error component.
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