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ABSTRACT
A standard assumption when modelling linked sample data is that the stochastic properties of
the linking process and process underpinning the population values of the response variable
are independent of one another. This is often referred to as non-informative linkage. But what
if linkage errors are informative? In this paper, we provide results from two simulation experi-
ments that explore two potential informative linking scenarios. The first is where the choice of
sample record to link is dependent on the response; and the second is where the probability of
correct linkage is dependent on the response. We focus on the important and widely applicable
problem of estimation of domain means given linked data, and provide empirical evidence that
while standard domain estimationmethods can be substantially biased in the presence of infor-
mative linkage errors, an alternative estimation method, based on a Gaussian approximation to
a maximum likelihood estimator that allows for non-informative linkage error, performs well.
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1. Introduction

The steady increase in researcher access to large admin-
istrative databases this century hasmeant that the use of
linkage to enhance, or even create, data sets for analysis
is now ubiquitous. But concerns about the confiden-
tiality of the sources being linked has meant that in
many cases the linking is non-deterministic and is car-
ried out by an independent third party, often referred to
as Trusted Third Party, or TTP, linkage. In such cases,
the analyst using the linked data set has no access to the
identifier information used for linkage and so cannot
be sure that the outcome of the linkage process is not
related to the analytic variables of interest. This creates
a dilemma, since all methods that have been suggested
for secondary analysis of linked data have, at their core,
an assumption that the linkage error process and the
stochastic behaviour of the analysis variables are con-
ditionally independent given the known characteristics
of the analysis population. This is sometimes referred
to as the assumption of non-informative linkage.

In this paper, we explore sensitivity to this assump-
tion when the focus of analysis is the well-known lin-
ear model and the linkage is very straightforward, just
involving two register databases covering the same tar-
get population, with sample values of the response
variable sourced from one register and the model
covariates from the other. We also restrict our attention
to the common situation where the linear model itself

is the very simple one that characterises a set of domain
means of interest, with all domains exhibiting the same
variability. Our approach is empirical rather than theo-
retical, in the sense that we use small scale simulation to
illustrate issues that can arise when the linkage process
is actually informative and also describe a realistic data
application where informative linkage is plausible.

We focus on two informative linkage scenarios. The
first is where the sample inclusion probabilities for the
sample of linked records used in analysis depend on
the response variable of interest. The second is where
the actual linkage process depends on the values of
this variable, in the sense that the probabilities of cor-
rect linkage depend on them.Other informative linkage
scenarios are no doubt feasible, including where both
informative linkage scenarios that we address occur
together. However, it seems reasonable to start with
an examination of each of these two situations sepa-
rately since they are easily motivated in the context of
TTP linkage. When considering the impact of infor-
mative linkage on analysis methods that are supposed
to correct for linkage error bias in secondary anal-
ysis of linked data, we also restrict our attention to
two recently described approaches, both based on a
simple exchangeable specification for the linkage error
model (LEM) that characterises the distribution of
the linkage errors. The first of these is described in
Section 3.1 and corresponds to modifying the usual
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estimating equations for the linearmodel parameters so
that they are unbiased under this LEM, while the sec-
ond, described in Section 3.2, uses a Gaussian approx-
imation to the joint distribution of the data defined by
the observed linkages and the correctly linked data to
define themaximum likelihood estimator (MLE) under
the LEM. The two approaches are mainly distinguished
by their use of auxiliary information. The first uses
only linked sample data plus knowledge of the LEM
parameters, while the second uses this information as
well as information about the marginal distributions
of the response and the model covariates in the two
population registers.

The paper consists of six sections. The next section
describes the inferential framework underpinning the
results in the paper, along with the two informative
linkage mechanisms that we consider. Section 3 then
specifies the LEM that we assume, and shows how
it can be used to define unbiased estimating equa-
tions for the parameters of the linear model of interest
as well as an approximate MLE for these parameters.
Section 4 sets out results frommodel-based simulations
of the impact of the two informative linkage mecha-
nisms while Section 5 describes a simulation based on a
more practical application that evaluates the impact of
potential informative linkage and real LEMmisspecifi-
cation on the estimating methods described in Section
3. Section 6 finally concludes the paper with a short
discussion of the implications of the results presented
in it.

2. The inferential framework

We focus on using linked data from two population reg-
isters. In particular, we assume that the covariatesX are
available from the first register, while the response val-
ues are available from the second register. The records
making up the registers do not have a common unique
identifier, so linkage is non-deterministic, based on
shared, but not unique, identifying information about
the units making up the population covered by the reg-
isters. These identifiers are assumed to have no errors.
However, since they are also not unique, linkage based
upon them is subject to error.Without loss of generality,
we assume that the ordering of records on the first regis-
ter is the ‘true’ population ordering, with y denoting the
correspondingly ordered vector of population values of
the response. By definition, y is unknown. However, the
population vector y∗of linked values of the response is
supposed to be close (if not equal) to y. The actual pop-
ulation records of interest are then the rows of [yX],
while their linked version is defined by the rows of
[y∗X]. Finally, we note that in many cases it may be too
expensive to completely link both registers, so a sample
of records from the first register (i.e., the one defining
X) is linked to records in the second register (the one

defining y). However, the linking agency is willing to
make non-identifying tabulations from both registers
available, and these can be used to define auxiliary data
for inference.

The linked data analysis methods set out in the fol-
lowing section make a number of further assumptions.
These are:

a) Both registers have complete coverage of the same
population, with no duplicates;

b) Linkage is one to one, with all records (potentially)
linkable, i.e., there are no intrinsically non-linkable
records;

c) Error-free common identifiers are available on
each register, and allow both to be partitioned into
q = 1,..,Q disjoint subsets referred to as blocks in
what follows;

d) Records in different blocks can never be linked,
so there can be no linkage errors between
blocks;

e) Sampling from rows of X and then linking to
obtain y∗ is stochastically equivalent to directly
sampling the rows of [y∗X]. That is, sample then
link is stochastically equivalent to link then sample;

f) The auxiliary data consist of the block averages for
both y and X.

In addition to these assumptions, it is usually
assumed (often implicitly) that the linkage process is
non-informative for the population model of interest.
That is, linkage errors are independent of analysis errors
given covariate information. However, in this paper, we
consider the case where linkage is in fact informative.
In particular, in the simulations described in Section 4,
we consider two potential informative linkage mecha-
nisms.

(1) The decision on which record to link is corre-
lated with the value of the response variable Y of
interest via a latent variable Z. For example, prob-
ability sampling is used to determine which linked
register unit to sample, with inclusion probability
proportional to the value of a latent variable Z that
is correlated with Y.

(2) The probability of making a correct link depends
on the value of the response variable Y through a
latent variable Z. That is, Pr(correct link) = f (Z),
where Z is correlated with Y.

In both cases, Z could be thought of as a mea-
sure of the amount of high-quality linking informa-
tion available for a particular population unit. Under
TTP linkage this information would not be provided
to a secondary analyst working with the linked data,
and would, therefore, be latent as far as that analyst is
concerned.
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3. Modelling under linkage error

Without loss of generality, we confine our attention to
the M records making up a single block within the
population of interest. We, therefore, drop the block
subscript q, with the understanding that all block-
specific summations defined below need to be extended
to population-specific summations by re-introducing
q and summing over this index. Following Chambers
(2009), we next note that y∗ = Ay when linkage is one
to one and complete, where A = [aij] is an unknown
latent random permutation matrix of order M, with
binary-valued coefficients. This reference also proposes
a simple (unrealistic but pragmatic) non-informative
linkage error model (LEM) for A for use in secondary
analysis. This is the Exchangeable Linkage Errors (ELE)
model, defined by

Pr{y∗
i = yj|X} = Pr{aij = 1|X} = λij

=
{

λ, i = j,
η, i �= j

i, j = 1, . . . ,M

Here, λ is a fixed, block-specific, parameter which for
the time being is assumed to be known. Also, since link-
age is one to one and complete, it is straightforward
to see that η = (M − 1)−1(1 − λ). Let IM denote the
identity matrix of order M and 1M denote a vector of
ones of size equal toM. Then

T = E(A|X) = (λ − η)IM + η1M1TM

Sampling corresponds to selecting a subset of m
linked records. We assume that this sampling is non-
informative given X (e.g., simple random sampling
within blocks) and use a subscript of s to denote the set
of sampled records. Without loss of generality, we also
assume that s consists of the population units making
up the first m rows of X. Let As denote the rows of A
corresponding to records in s. The linked sample values
of the response variable are then y∗

s = Asy. Finally, we
put

Ts = E(As|X)

= [
(λ − η)Im + η1m1Tm | η1m1TM−m

]
= [

Tss Tsr
]
.

Here, Im denotes the identity matrix of orderm and 1m,
1M−m denote vectors of ones of sizes equal to m and
M-m respectively.

3.1. Solution of an approximate unbiased
estimating equation under ELE

From now on, we assume that our population response
and covariate values are related via the simple lin-
ear model, E(y|X) = f = Xβ andVar(y|X) = σ 2IM . In
this sub-section, we further restrict ourselves to where

we only have access to linked sample data {y∗
s ,Xs}, see

Kim and Chambers (2012). Under the ELE model, an
unbiased estimating equation for β is

Gs(y∗
s − Hsβ) = 0

whereHs = TsX = (λ − η)Xs + ηM1mx̄T , x̄ is the vec-
tor of column averages for X and Gs is a user-specified
matrix of weights.Without access to x̄, we cannot calcu-
lateHs. Consequently, when only sample data are avail-
able, we approximate this unbiased estimating equation
by

Gs(y∗
s − Ĥsβ) = 0

where

Ĥs = (λ − η)Xs + ηM1s ˆ̄xT .
Here ˆ̄x is the sample weighted estimate of x̄ defined by
the columns of Xs. The resulting estimator of β is then

β̂ = (GsĤs)
−1(Gsy∗

s ).

The variance of β̂ can be estimated via a sand-
wich approximation (for details see Kim & Chambers,
2012). This approximation depends on σ 2, which can
be estimated using a method of moments approach, see
Chambers (2009), and leads to an estimator for σ 2 of
the form

σ̂ 2 = m−1{(y∗
s − fs)T(y∗

s − fs) − 2fTs (Im − Tss)fs}

where fs denotes the sample components of f = Xβ .
There are three standard choices for the weight-

ing matrix Gs. The first is least squares weighting,
defined by Gs = XT

s . The second is the type of weight-
ing implicit in the approach of Lahiri andLarsen (2005),
corresponding toGs = Ĥ

T
s . The third option, described

in Chambers (2009), is a plug-in approximation to
the efficient weights HT

s �−1
s that lead to the estima-

tor β̂ with smallest variance givenX. HereVar(y∗
s |X) =

σ 2�s where �s = Im + σ−2Var(Asf|X). An approxi-
mation to these efficient weights is Ĥ

T
s �−1

s . When we
replace �s by an estimate �̂s we obtain the so-called
empirical best linear unbiased estimator or EBLUE
weights, Gs = Ĥ

T
s �̂−1

s . The solution to the sample-
based estimating equation defined by Ĥs above based
on these EBLUE weights is denoted BL in what follows,
and its simulation performance under informative link-
age is reported in the next section. Note that BL is
analogous to the BLUE for β given X where Var(y∗

s |X)

is known up to a proportional constant.
The BL weights must be computed iteratively since

they depend on both σ 2 and Var(Asf|X). A method of
moments estimator for σ 2 is defined above. In order
to estimate Var(Asf|X) we note that Chambers (2009)
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shows that under the ELE

Var(Af) ≈ diag((1 − λ){λ(fj − f̄ )2 + f̄ (2) − (f̄ )2})

where f̄ denotes the mean of the components of f
and f̄ (2) denotes the mean of their squares. Replac-
ing f̄ and f̄ (2) by sample-weighted estimates ˆ̄f and ˆ̄f (2)
respectively we obtain the approximation

Var(Asf) ≈ diag((1 − λ){λ(fj − ˆ̄f )2

+ ˆ̄f (2) − (
ˆ̄f )2}; j ∈ s)

which can be computed given values for λ and β .

3.2. Approximate GaussianMLE under ELE

In Section 2 we noted that non-identifying block-level
tabulations from the y and X registers could be made
available by the linking agency. This information is not
used in the estimating equation approach described in
the previous sub-section. Following the development
in Chambers and Diniz da Silva (2019), we therefore
now show how this auxiliary information, which corre-
sponds to the block averages ȳ and x̄ of y andX respec-
tively, can be used in inference. To start, we make the
further assumption that the regression errors are Gaus-
sian, i.e., y ∼ N(Xβ , σ 2IM). Since both sampling and
linkage are non-informative, the marginal distribution
of y∗

s is also Gaussian, with

E(y∗
s |X) = E(Asy|X) = Hsβ

Var(y∗
s |X) = Var(Asy|X) = σ 2�s

Cov(y, y∗
s |X) = Cov(y,Asy|X) = σ 2TT

s

Similarly

Cov(y∗
s , ȳ|X) = M−1Cov(Asy, 1TMy|X)

= σ 2M−1Ts1M .

Since linked data values are permuted actual data val-
ues, their conditional distribution given these actual
data values cannot be continuous. Consequently, the
existence of the above second-order moments is insuf-
ficient to guarantee that the joint distribution of the
components of the random vector (y, y∗

s , ȳ) is Gaussian.
However, in the same way that a copula-based argu-
ment can be used to approximate a multivariate distri-
bution from a set of univariate marginal distributions
and a correlation structure, we approximate this joint
distribution by a multivariate Gaussian distribution of

the form(
y

y∗+
s

)
|X ∼ N

{(
X
H+

s

)
β , σ 2

[
IM CT

C Ws

]}
.

where y∗+
s = (y∗T

s , ȳ)T , C = [TT
s M−11M]T ,

H+
s = [HT

s x̄]T and

Ws =
[

�s M−1Ts1M
M−11TMTT

s M−1

]
.

Our multivariate Gaussian approximation then implies

(y|y∗+
s ,X) ∼ N{Xβ + CTW−1

s (y∗+
s − H+

s β̂),

σ 2(IM − CTW−1
s C)}.

An application of the Missing Information Principle
(MIP) finally leads to the (approximate) MLEs

β̂ = (H+T
s Ŵ

−1
s H+

s )−1H+T
s Ŵ

−1
s y�+

s

σ̂ 2 = (trace(CTŴ
−1
s C))−1(y∗+

s − H+
s β̂)T

Ŵ
−1
s CCTŴ

−1
s (y∗+

s − H+
s β̂)

where Ŵs is defined by substituting these estimates for
corresponding parameter values inWs.

Given values for λ and β , these approximate MLEs
can be computed iteratively, after replacingVar(Asf) by
the approximation given at the end of the previous sub-
section. The resulting estimator β̂ is denoted as MLE
in the simulation results reported in the next section,
with its variance estimated via the usual weighted least
squares formula

v(β̂) = σ̂ 2(H+T
s Ŵ

−1
s H+

s )−1.

Note that the above development treats λ as known,
or at least equal to a value provided by the TPP link-
age agency. In practice, this may not be the case. In
our simulations later in this paper, we address this issue
by substituting an estimate of λ obtained from a small
independent audit sample. This adds an extra compo-
nent of variance to the sampling distribution of β̂ , as
noted in Chambers (2009). For simplicity, we ignore
this component of variance in our assessment of the
variance of β̂ .

4. Simulations of domain estimation under
informative linking

The impact of informative linking on the estimators
MLE and BL described in the previous section was
first evaluated via model-based simulation, assuming
either an ELE linkage error model, or a variation that
allowed heterogeneous linkage errors within a block.
A total of 1000 simulations were independently car-
ried out for each of twelve scenarios, reflecting different
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types of informative linkage as well as different popu-
lation structures. In all cases the population model of
interest was one where the regression parameters cor-
responded to expected values for the response within a
set of non-overlapping domains that covered the pop-
ulation. That is, the column dimension of X was the
same as the number of domains, with each column of
X consisting of indicator values for a different domain.
The response value for unit j in domain i was then gen-
erated as yij = βi + eij, where eij was an independent
draw from a N(0, σ 2

e ) distribution. The value of βi was
specified as described below, with the target of infer-
ence equal to the actual domain mean ȳi. In addition,
values of a positive latent variable Zij = zij − min(z)
were generated, with zij = 0.5yij + 0.5uij and where
uij was another independent draw from a N(0, σ 2

e )

distribution.
The model-based simulations reported in this

section consider two distinct sources for informative
linkage, the first corresponding to informative choice
of which linked records to use in analysis, i.e., where
selection is based on sample inclusion probabilities for
the linked sample which depend on the value of the
response variable, while the second corresponds to the
case where the probability of correct linkage for a popu-
lation record is not uniform within a block but is corre-
lated with this response value. Two sets of simulations
are reported. The first (Simulation A) is where there are
just 10 domains of interest with an average of 20 linked
records per domain, while the second (Simulation B)
considers the case where there are more domains (30)
but fewer linked records per domain (10).

In both sets of simulations the population is divided
into 3 blocks corresponding to different levels of link-
age error. The overall population size is 10,000, with
block 1 consisting of the first 5000 units, block 2 con-
sisting of the next 3,000 units and with the remaining
2000 units allocated to block 3. As noted above, we start
by assuming that there are 10 domains, with domain
membership distributed randomly across the popula-
tion, so each domain is of the same size in expectation.
Domains also cut across blocks, allowing units in dif-
ferent domains (but not in different blocks) to be incor-
rectly linked. Independent samples of sizes m = 100,
60, 40 are taken from blocks 1–3 respectively, following
the procedures set out below. Furthermore, the actual
values of λ for blocks 2 and 3 are treated as unknown
(block 1 is assumed to be known to be perfectly linked),
and so are estimated by taking a random sample of 10
linked records from each of blocks 2 and 3 and check-
ingwhether their designated linkages are in fact correct.
The proportion of correctly linked records in each sam-
ple in each block is then used as the value of λ for that
block.

Four different types of population structures are sim-
ulated, corresponding to two types of domain effects
and two levels of variability of these effects. These are

Fixed domain effects: βi = 100 + σx�
−1

(0.1 + (i − 1)(0.8/9)); i = 1, . . . , 10;
Randomdomain effects:βi = α(i); i = 1, . . . , 10, with

αi ∼ N(100, σ 2
x );

and
Clustered domain effects: σx = 10, σe = 18 so

τ = σ 2
x (σ 2

x + σ 2
e )−1 = 0.24;

Spread Out domain effects: σx = 18, σe = 10 so
τ = σ 2

x (σ 2
x + σ 2

e )−1 = 0.76.
That is, with clustered domain effects the variation

between domain effects represents just under 25 per
cent of total variability, while with spread out domain
effects, this variation represents just over 75 per cent of
total variability. Note that under both the fixed and ran-
dom domain effects specifications, the expected values
of the domain means vary from smallest for domain 1
to largest for domain 10. For each of these four popu-
lation structures, three types of linkage error scenarios
are simulated. These are

Non-informative linking: Linkage errors follow the
ELE model with λ = 1.0, 0.9, 0.5 for blocks 1–3 in that
order, with linked records within a block chosen ran-
domly;

Informative selection of linked sample: Linkage errors
follow the same ELE model as above, but the prob-
ability of sampling a linked record within a block is
proportional to its Z value;

Informative formation of linked records: Here choice
of which linked record to sample is at random within a
block, but the linkage errors themselves follow a mod-
ified ELE model, with linkage error probabilities that
depend on Z. In particular for record j in block q, we
define the probability of correct linkage as

λjq = min
{
1, expit(Zjq)

(
λq/M−1

q

×
∑

k∈ block q
expit(Zkq)

)}

with λq = 1.0, 0.9, 0.5. Here, p = expit(Z) denotes the
inverse of the Z = logit(p) function.

In what follows, we show results for four domain
estimators. These include BL and MLE, as well as the
sample-weighted estimator of the domain, mean based
on the linked data, here denoted WT, and EBLUP, the
empirical best linear unbiased predictor of this mean
under a random domain effects specification, and also
based on the linked data. MSE estimators for BL and
MLE were discussed in the previous section, while a
standard sampling variance estimator is used for WT.
In the case of EBLUP, the well-knownMSE estimator of
Prasad and Rao (1990; denoted PR in what follows) is
used. Note that bothWT and EBLUP ignore the poten-
tial impact of linkage errors and so can be expected
to lose efficiency when these are present. On the other
hand, although the estimators BL and MLE allow for
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Figure 1. Simulation A with fixed domain effects: Relative bias (%) of domain mean estimators. Horizontal axis represents the
different domains.

linkage errors, in both cases it is assumed that these are
non-informative.

Figures 1–6 are graphical displays showing the key
results from Simulation A. Figures 1 and 2 show how
the relative biases of the different estimators under fixed
and random domain effects change as we move from
domain 1 to domain 10 (remember that the actual
domain means move from lowest to highest as we do
this). Similarly, Figures 3 and 4 show how their relative
RMSEs change, and finally Figures 5 and 6 show how
the actual coverages of nominal 95% Gaussian confi-
dence intervals (denoted 95Coverage) based on these
estimators and their associatedMSE estimators change.

It is clear from Figures 1 and 2 that MLE is unbi-
ased under all twelve scenarios considered in the study.
In contrast, BL is biased when the linked sample is
chosen informatively, while both WT and EBLUP are
seriously biased when fixed domain effects underpin
the response (mainly because of overshrinkage in this
case), and are also biased in the random domain effects
case when the linked sample is chosen informatively.

When we consider Figures 3 and 4 we see that MLE
is still superior to the other three estimators when it
comes to MSE efficiency, with BL somewhat less effi-
cient. Surprisingly, EBLUP is almost always the least
efficient in random-effects scenarios, while in the fixed
effects scenarios it is only efficient where the underly-
ing domain effects are closer to zero. Generally, WT
behaves like EBLUP, but tends to bemore efficient since
it does not shrink as much.

Turning to the coverage performances displayed in
Figures 5 and 6, we see that even though no allowance
is made for estimation of linkage probabilities (which
inflates variance) in variance estimation, MLE still
performs consistently well in all scenarios. BL also
performs creditably in terms of coverage, but prob-
lems with overshrinkage and bias for WT and EBLUP
lead to poor coverage in fixed effects scenarios. In
random-effects scenarios WT performs slightly better,
but EBLUP remains a poor performer.

Overall, from the Simulation A results set out in Fig-
ures 1–6 we see that informative choice of which linked
records to use in analysis is problematic for all estima-
tors except MLE, while informative linkage error leads
to the largest inefficiencies for WT and EBLUP. That is,
MLE (which assumes linkage error follows a noninfor-
mative ELEmodel and a fixed effect specification for the
domains of interest) seems to be generally robust to the
two different types of informative linkage we consider
in this paper. It also seems to be robust to a fixed versus
random effects specification for the response.

However, Simulation A can be criticised because it
assumes reasonably large sample sizes (average of 20
per domain) and a small number (10) of domains. It
may well be that some of the robust performance of
MLE noted above was a consequence of this choice.
We therefore also report results for an extension of
this simulation study, which we refer to as Simula-
tion B. Essentially this extends the situation of interest
to more domains (30) and smaller domain samples
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Figure 2. Simulation A with random domain effects: Relative bias (%) of domain mean estimators. Horizontal axis represents the
different domains.

Figure 3. Simulation A with fixed domain effects: Relative RMSE (%) of domain mean estimators. Horizontal axis represents the
different domains.

(average of 10 per domain). In particular, we fix the
total sample size at 300, made up of 150, 90 and 60 in
each block. No changes are made to any of the other

parameters governing the behaviour of the study. We
also only show results for random domain effects since
these are closer to the underlying small area estimation
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Figure 4. Simulation A with random domain effects: Relative RMSE (%) of domain mean estimators. Horizontal axis represents the
different domains.

Figure 5. SimulationAwith fixed domain effects: Coverage (nominal = 95%) of domainmean estimators. Horizontal axis represents
the different domains.

paradigm. Similar results (not shown) were obtained
for fixed domain effects. As in Simulation A, domains
are numbered in rank order of their expected values.

Considering the behaviour displayed in Figures 7–9
we see that there are some changes compared with Fig-
ures 1–6. Not surprisingly, all estimators demonstrate
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Figure 6. Simulation A with random domain effects: Coverage (nominal = 95%) of domain mean estimators. Horizontal axis
represents the different domains.

Figure 7. Simulation B with random domain effects: Relative Bias (%) of domain mean estimators. Horizontal axis represents the
different domains.

increased variability. However, BL is also much more
unstable under informative linking. This is particularly
strikingwhen one looks at theMSE results for BL under
informative link formation as shown in Figure 8. The

reason for this is not entirely clear at the time of writing.
One possibility is that its second-order optimal weights
become increasingly unstable given the smaller sam-
ple sizes used in this situation. It is tempting in such
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Figure 8. Simulation B with random domain effects: Relative RMSE (%) of domain mean estimators. Horizontal axis represents the
different domains.

cases to use simpler weights, for example, the weights
implied by the approach of Lahiri and Larsen (2005).
However, although we do not present these results
here, we also calculated the estimates defined by these
alternative weighting regimes in our simulations and
observed essentially the same behaviour as reported for
BL. It, therefore, seems more likely that the instabil-
ity of BL under informative linking reflects an inherent
issue with a purely sampled-based weighting approach
in this situation rather than any particular choice of
weights.

In contrast, MLE remains robust and efficient, even
when domain sample sizes are small. In particular, it
is the only estimation method that remains unbiased
under informative selection of the linked sample. We
also note that though generally the EBLUP is still not
a good performer in Simulation B, it does demonstrate
the bestMSEperformance under non-informative link-
age for the case where the domain means are randomly
distributed but also relatively close to each other. This
is not unexpected since it is the type of situation where
shrinkage can significantly reduce variability. However,
when domain means are more spread out, this advan-
tage disappears and WT performs better than EBLUP.
Finally, in Figure 9 we see that although all four esti-
mators do not achieve their nominal coverage levels
uniformly across the domains, MLE is clearly the best
performer overall, while EBLUP is the worst. Since
EBLUP demonstrates substantial undercoverage irre-
spective of whether the linkage is informative or not,

it seems most likely the PR MSE estimator used with
EBLUP is non-robust to linkage errors.

5. Amore realistic linkage exercise

In this section, we provide some illustrative results
taken from a much larger study that looked at record
linkage of economic data from two registers containing
information on 1,280 Brazilian agricultural producers
in four states and from four industries followed by esti-
mation of average values of production for each of these
four industries. For a more detailed description at this
study and the linking methods used in it we refer to
Chambers and Diniz da Silva (2019). Here we focus
on the performances of two representative record link-
age methods that were considered in this study under
two different levels of linkage error and the consequent
impact on the performances of three of the four estima-
tion methods discussed in the previous section. Note
that in what follows states correspond to blocks and
industries to domains of interest.

The two record linkage methods are the widely used
comparison weights method first introduced in Fellegi
and Sunter (1969) and a more recently proposed boot-
strapped classification tree-based method based on the
Bagging idea developed in Breiman (1994; 1998). Both
linkage methods were modified so that they resulted in
one to one and complete linkage. Furthermore, since
unique identifiers were available in the two registers, as
well as names for the different producers, two levels of
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Figure 9. Simulation B with random domain effects: Coverage (nominal = 95%) of domain mean estimators. Horizontal axis
represents the different domains.

Table 1. Summary measures of quality of record linkage for linked Brazilian data.

Comparison weights (FS) linkage Classification tree (Bagging) linkage

Averages of linkage quality
metrics Error level 1 Error level 2 Error level 1 Error level 2

Average counts for all pairwise comparisons

True links made 1220 807 1250 1211
False links ignored 634,114 632,701 633,105 634,664
True links ignored 1334 1748 1308 1354
False links made 60 473 30 69

linking error were evaluated. The first was defined by
the errors in the linking variables originally used and
was mainly due to errors in the name linking fields.
This is denoted as level one error below. The second
was more serious and was generated by switching first
and second names of producers. This is denoted as level
two error below. A total of 200 independent repetitions
of linking followed by estimation was next carried out
by random sampling with replacement from the avail-
able linking variables, including producer name fields
containing either level one or level two errors, and then
linking the two registers. Table 1 shows summary mea-
sures of the linking performance that was achieved over
these 200 repetitions for each level of error and for each
method of linking. It can be seen that under level one
errors there is almost nothing to choose between the
linking performances of both linking methods. How-
ever, when the extent of the measurement error in the
linking variables is increased (level two error), then
classification tree-based linkage performs substantially
better than comparison weights-based linkage.

Table 2. Average probabilities of correct linkage by linkage
method and level of error (Block = State) for linked Brazilian
data.

Comparison weights
(FS) linkage

Classification tree
(Bagging) linkage

Probability of
correct linkage Error level 1 Error level 2 Error level 1 Error level 2

Block 1 0.95 0.74 0.97 0.95
Block 2 0.95 0.52 0.97 0.93
Block 3 1.00 0.92 1.00 1.00
Block 4 0.95 0.72 0.98 0.97

Irrespective of the actual source of the linking errors,
ELE linkage errors were next assumed, with blocks cor-
responding to States. Table 2 shows the average prob-
abilities of correct linkage that were achieved in each
block. Note that for comparison weights-based link-
ing the actual linkage error probabilities (not shown
here) were observed to vary substantially between
domains within some blocks, so the ELE model is in
fact, a misspecified LEM for this case. In particular,
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Table 3. Summary statistics for industry estimates of production using sample-to-register linkage and selected estimators for
Brazilian linked data.

Comparison weights (FS) linkage Classification tree (Bagging) linkage

Error level 1 Error level 2 Error level 1 Error level 2

Industry WT BL MLE WT BL MLE WT BL MLE WT BL MLE

Relative Bias (%)
Crops −0.04 0.23 0.14 −1.69 0.64 0.33 −0.10 0.03 0.14 −0.18 0.14 0.04
Livestock 0.13 0.26 0.14 −0.83 0.51 0.21 −0.21 −0.15 −0.12 0.05 0.22 0.02
Forestry −0.05 0.16 −0.14 −0.73 0.32 −0.27 −0.04 0.06 0.00 −0.06 0.13 −0.03
Fishery 0.25 −0.35 −0.36 5.23 −0.30 −0.67 0.11 −0.21 −0.05 0.61 −0.13 −0.09

Relative RMSE (%)
Crops 1.66 1.74 1.39 2.51 2.78 2.38 1.58 1.59 1.32 1.84 1.91 1.51
Livestock 2.14 2.24 1.52 2.25 3.20 1.89 2.21 2.24 1.46 2.17 2.25 1.45
Forestry 1.30 1.35 1.27 2.00 2.40 1.43 1.46 1.50 1.16 1.42 1.47 1.24
Fishery 1.75 1.84 1.75 5.81 3.96 2.74 1.63 1.67 1.52 2.03 2.06 1.76

Coverage (%) of nominal 95% Gaussian confidence intervals
Crops 98.0 96.0 96.0 88.4 77.4 94.5 99.0 97.5 98.0 94.0 92.0 95.5
Livestock 86.0 85.0 92.0 93.2 67.8 90.4 90.5 87.5 94.0 88.0 86.0 92.0
Forestry 100.0 100.0 97.0 100.0 84.9 97.3 100.0 100.0 98.5 100.0 100.0 97.5
Fishery 99.5 100.0 98.5 54.8 91.1 96.6 99.5 100.0 97.5 99.0 98.0 97.0

this indicated the presence of within-block heterogene-
ity in the linkage error probabilities, and therefore
a potentially informative linkage situation. Again, we
see that comparison weights-based linkage is substan-
tially impacted by moving from level one to level two
errors, while classification tree-based linkage is much
less affected.

Linked sample data were finally simulated by taking
a 10 per cent simple random sample without replace-
ment from the linked registers created by the two link-
ing methods under the two levels of linking error. For
each sample, we then computed the industry-level esti-
mates generated by WT, BL and MLE. Note that since
all sample weights are the same, WT in this case is just
the linked sample mean of value of production in each
industry. Since correctly linked register information
is available, these estimates could then be evaluated.
Table 3 shows bias, MSE and coverage results for nom-
inal 95% Gaussian confidence intervals for industry
means.

The results set out in Table 3 show that irrespective
of themethod of linking, or the underlying level of link-
age error, MLE is always more efficient, or as efficient,
as WT or BL in all four industries. Furthermore, under
comparison weights-based linkage and level two link-
age errors, WT displays considerably more bias than
MLE andBL. Finally, it can be noted thatMLEproduces
confidence intervals for industry means that have cov-
erage performances that are generally much closer to
their nominal level of 95%.

6. A summary and some tentative conclusions

With the continued growth in the use of non-
deterministic linkage to create data sets for statistical
analysis, the impact of linkage errors on this analysis is
now an important issue, particularly since this type of
measurement error leads to biased inference. Methods

for correcting this bias have been proposed, but they
typically assume non-informative linkage errors, that
is they assume conditional independence of linkage
errors and model errors given model covariates. This
assumption is not necessarily a safe one, though, since
popular third-party linkage procedures cannot guar-
antee that decisions concerning which records to link
(including which linked records to provide the user),
or the probabilities of correct linkage themselves, do
not themselves depend on characteristics that are cor-
related with the study variable.

In this paper, we have used simulation to explore
the sensitivity to informativeness of linkage errors
of two methods for linked data inference, both of
which assume non-informative linkage. The twometh-
ods are a bias-corrected estimating equation method
and maximum likelihood method based on a Gaus-
sian approximation, and we have focussed on domain
mean estimation since this is a popular use for linked
data. Our results are fairly clear. The maximum like-
lihood approach shows impressive stability and effi-
ciency under both informative linkage error scenar-
ios that we explored, while the estimating equation
approach is somewhat less stable and less efficient.
However, it is still preferable to analysis that ignores
linkage error in cases where domain sample sizes are
not too small. In contrast, standard methods of domain
analysis, whether they assume fixed or random domain
effects, should be used with considerable caution when
the underlying data are probability linked since they
can be badly biased if potential linkage errors are infor-
mative. This is particularly true when domain effects
are assumed to be random, and standard EBLUP-based
inference is used. This includes the use of MSE esti-
mation methods for random effects predictors that are
known to work well when there is no measurement
error but then appear to run into considerable problems
when linkage errors are present.
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Amajor issue that we have not attempted to address
in this paper is to dig deeper and find out exactly
why the Gaussian approximation-basedMLE approach
does so well under the informative linkage scenarios
that we investigated. Even though this approach makes
use of ‘calibrating’ block-level information, this type
of robustness was not expected a priori. It may be a
consequence of this approach relying on second-order
assumptions that themselves depend on the one to one
and complete linkage assumptions and the simplicity
of the ELE structure for linkage errors which, provided
blocks are in fact properly identified, can approximate
within block informative linkage reasonably well. It is
an area that will benefit further investigation, as will
extension of the MLE methodology to more complex
data and models.
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