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ABSTRACT
We examine the conditions under which descriptive inference can be based directly on the
observed distribution in a non-probability sample, under both the super-population and quasi-
randomisation modelling approaches. Review of existing estimation methods reveals that the
traditional formulation of these conditions may be inadequate due to potential issues of under-
coverage or heterogeneous mean beyond the assumed model. We formulate unifying condi-
tions that are applicable to both types of modelling approaches. The difficulties of empirically
validating the required conditions are discussed, as well as valid inference approaches using
supplementary probability sampling. The key message is that probability sampling may still be
necessary in some situations, in order to ensure the validity of descriptive inference, but it can be
much less resource-demanding given the presence of a big non-probability sample.
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1. Introduction

There is a resurgence of interest in the use of
non-probability samples. See, for example, Baker
et al. (2013) and Elliott and Valliant (2017) for two
recent reviews. Such data may arise in situations where
probability sampling is either infeasible or too costly.
The observations may be obtained from the so-called
big-data sources, such as payment transaction data via
a specific platform, cellphone call data from a major
provider of the service. These big-data non-probability
samples can be much larger in size, compared to the
more familiar non-probability samples collected from
web panel surveys, quota sampling, etc.

Following Rubin (1976) and Little (1982), Smith
(1983) considers the so-called super-population (SP)
approach to inference from non-probability sample.
Under this approach, a predictionmodel is constructed
for the outcome variable of interest, often conditional
on some chosen covariates. In particular, Smith (1983)
observes an important distinction between analytic and
descriptive inference. In analytic inference, the target is
the model parameters that are of a theoretical nature;
such parameters can never be observed directly no
matter how large the sample is. Whereas the targets
of descriptive inference are statistics of a given finite
population, such that in principle they can be directly
observed given a perfect census of the population.

Moreover, Smith (1983) focuses on validity condi-
tions, under which the non-probability sample obser-
vation mechanism can be ignored, in the sense that
inference can be based on the observed distributions

directly, such as the conditional distribution of the out-
come variable given the covariates in the sample. The
two key validity conditions under the SP approach can
be roughly stated as follows: (i) the prediction model
is correctly specified for the population units, (ii) the
non-probability sample selection mechanism is non-
informative, in the sense that the relevant distribution
under the population model can be observed in the
non-probability sample directly. Similar validity con-
ditions for the SP approach apply in other situations,
such as purposive sampling (Royall, 1970),missing data
problems (Rubin, 1976).

In this paper, we concentrate on descriptive infer-
ence methods that depend on validity conditions in
the sense of Smith (1983). Of course, inference is also
possible without such validity conditions. For instance,
not missing-at-random models (Rubin, 1976) can be
used to deal with informative missing data, where
the unobserved full-sample outcome distribution is
not the same as that among the respondent subsam-
ple. Or, the sample likelihood of Pfeffermann, Krieger,
and Rinott (1998) can be applied to survey data under
informative sampling, where the distribution that holds
in the population cannot be directly observed in the
sample. See also Pfeffermann (2017) for several other
situations where this approach may be relevant. We
do not consider such approaches here, which require
explicitly modelling the informative observationmech-
anism of sample selection or measurement.

As reviewed by Elliott and Valliant (2017), there
exists another quasi-randomisation (QR) approach to
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non-probability samples. Under the QR approach,
one hypothesises a randomisation model of the non-
probability sample inclusion indicator, but treats the
outcomes of interest as unknown constants in the pop-
ulation. Though it is clearly inspired by the randomi-
sation approach based on probability sampling, the
QR approach is also a model-based approach, based
on a model of the sample inclusion indicator instead
of a prediction model of the outcome variable under
the SP approach. A key motivation is that the correct
inclusion probability can be used for any outcome of
interest, just like when it is known under probability
sampling, whereas the SP approach by nature must be
specified differently for different outcome variables. In
the context of survey sampling, the QR approach was
introduced to deal with nonresponse, where response
to survey is modelled as the second phase of selec-
tion, in addition to the first phase of sample selec-
tion according to a probability sampling design (Oh
& Scheuren, 1983).

According to Elliott and Valliant (2017), two key
validity conditions are required for the QR approach.
(I) The non-probability sample does have a probability
sampling mechanism, even though it is unknown. In
particular, one assumes that this hypothesised sample
inclusion probability is strictly positive for all the pop-
ulation units, so that the only difference to probability
sampling is that the inclusion probability is unknown.
(II) There exist a set of covariates that ‘fully govern
the sampling mechanism’. In other words, the sample
inclusion probability is a function of these covariates.

Thus there are two model-based approaches to
inference from non-probability sample. Under the SP
approach, onemodels the outcome variable conditional
on the realised sample inclusion indicators, whereas
under the QR approach, one models the sample inclu-
sion indicators, but treats the outcomes as unknown
constants. Although one may envisage the outcomes as
the realised values of random variables, a fully speci-
fied model of the outcome variable will not be required
under the QR approach, given suitable validity con-
ditions. Similarly, although one acknowledges that the
sample selection mechanism may be critical to the SP
approach, a fully specified model of the inclusion indi-
cator will not be required under the SP approach, given
suitable validity conditions.

It is possible to construct estimators that combine
both the models of outcome and sample inclusion indi-
cator, in a manner such that the estimator is consistent
as long as one of the two models hold. Over the recent
years, it is becoming common to refer to this estima-
tion approach as ‘doubly robust’ (Kang & Schafer, 2007;
Kim &Haziza, 2014; Robins, Rotnitzky, & Zhao, 1994).
Notice that the traditional generalised regression esti-
mator in survey sampling is doubly robust in the same
sense, except that here the randomisation mechanism
is actually known. Nevertheless, it is a fact that in the

debate between model-based and design-based infer-
ence from probability sampling, either side questioned
the ‘robustness’ of the other.

The rest of the paper is organised as follows. In
Section 2, we review the estimationmethods from non-
probability sample which do require validity condi-
tions. Although these have been roughly stated above,
a closer examination under both modelling perspec-
tives reveals nuances across the different estimators.
Moreover, we shall highlight the potential challenges of
under-coverage and heterogeneous means beyond the
assumed model. The traditional formulation of valid-
ity conditions is inadequate in both regards. We outline
a set of unified validity conditions in Section 3, which
are formulated non-parametrically and encompasses
both the modelling approaches. Post-stratification and
calibration estimators are considered in light of these
conditions. However, as will be discussed, a key diffi-
culty in practice is that the validity conditions may be
impossible to verify empirically based only on the data
used for the estimation. Finally, we outline shortly in
Section 4 some valid approaches given a supplemen-
tary probability sampling of the outcome of interest,
followed by a brief summary in Section 5.

The key message is that probability sampling may
still be necessary in some situations, in order to ensure
the validity of descriptive inference, but it can be much
less resource-demanding given the presence of a big
non-probability sample. In fact, the bigger the non-
probability sample, the better it is.

2. Review of existing approaches

Denote by U the population of known size N. Let each
population unit be associated with an outcome of inter-
est, denoted by yi, for i ∈ U. Denote by B the observed
nonprobability sample of size nB. A common assump-
tion to all the estimators we discuss below is that B does
not contain any out-of-scope units, such that B ⊂ U,
and there are no duplicated units in B. Let δi = 1 if
i ∈ B, and 0 if i ∈ U \ B. Let yi be observed for all the
units in B, and let yB = {yi; i ∈ B}. To fix the idea, let

Y =
∑
i∈U

yi

be the population total that is the target of descriptive
inference. Let xB = {xi; i ∈ B} in cases where any rel-
evant covariates xi are available in the sample B. Let
X = ∑

i∈U xi be the population totals and let X̄ = X/N.
Given xB, one can have two situations depending on
whether (X, X̄) are known or not. In the case they are
unknown, it may still be possible that there exists a
second probability sample S, for S ⊂ U, in which xi is
observed, so that (X, X̄) can be estimated based on the
sample S.
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2.1. B-sample expansion estimator

Consider first the most basic situation where only yB
is observed, and no relevant covariates are available at
all. Let ȳB = ∑

i∈B yi/nB be the B-sample mean. The B-
sample expansion estimator of Y is given by

Ŷ = NȳB. (1)

Under the SP approach, let

μi = E(yi | δi, i ∈ U)

be the conditional expectation of yi given δi, for any i ∈
U, where both δi and yi are treated as random variables.
Provided the conditional expectation is the same as the
unconditional expectation given either δi = 1 or δi = 0,
for any i ∈ U, denoted by

μ = μ(δi = 1) = E(yi | i ∈ B) = E(yi; i ∈ U), (2)

we have

E(ȳB − Y/N |B) =
∑
i∈B

μ/nB − μ = 0

such that the B-sample expansion estimator is pre-
diction unbiased for Y. We shall refer to (2) as the
SP assumption, which is a validity condition for the
B-sample expansion estimator under the SP approach.

Under the QR approach, where yi is treated as a fixed
constant, let

pi = Pr(δi = 1; yi, i ∈ U)

be the inclusion probability of any population unit that
is associated with the value yi. The notation ‘;’ is used
here instead of ‘|’ because, strictly speaking, pi is not
a conditional probability now that yi is not conceived
as the realised value of a random variable under the
QR approach. Now, provided the inclusion probability
is the same for any i ∈ U,

pi = p (3)

we have Ỹ = ∑
i∈B yi/p is unbiased for Y, since

E

(∑
i∈B

yi/p

)
=
∑
i∈U

E(δi; yi, i ∈ U)yi/p

=
∑
i∈U

pyi/p = Y .

In reality, p is unknown. It is natural to estimate it by
p̂ = nB/N under (3), which yields (1) as the resulting
plug-in estimator. It follows that the QR assumption (3)
is the key validity condition, which ensures that the B-
sample expansion estimator is consistent for Y, asN →
∞ and nB/N = Op(1) asympotically.

In summary, the B-sample expansion estimator (1)
can be motivated under both the SP and QR appro
aches, given validity conditions (2) and (3), respectively.

2.2. B-sample calibration estimator

Suppose relevant covariates xB are available in the sam-
ple B. The population totals X may be either known
or unknown. In the latter case, suppose they can be
estimated from a second probability sample S. The B-
sample calibration estimator of Y is given by

Ŷ =
∑
i∈B

wiyi where

⎧⎪⎪⎨⎪⎪⎩
∑
i∈B

wixi = X if known X,∑
i∈B

wixi = X̂(S) if unknown X,
(4)

where X̂(S) is some consistent S-sample estima-
tor, as the S-sample size increases, and the weights
wB = {wi; i ∈ B} are calibrated in a way depending on
the availability of X.

To actually compute the estimator (4), one needs to
choose a set of initial weights, denoted by
aB = {ai; i ∈ B}, and a distance function such as∑

i∈B(wi − ai)2/ai between the initial and calibrated
weights (Deville & Särndal, 1992). In the case of

ai = 1/pi, (5)

where pi is the true B-sample inclusion probability, for
pi > 0, the calibration estimator is consistent, as N →
∞ and nB/N = Op(1), givenmild regularity conditions
in addition. However, insofar as one cannot manage to
set the initial weights (5), the calibration estimator is
unmotivated from the QR perspective.

Next, under the SP approach, suppose the SPx
assumption given by

E(yi | xi, i ∈ U) = μ(xi) = x�
i β , (6)

which relates the conditional expectation of yi linearly
to the given xi, and

E(yi | xi, i ∈ U) = E(yi | xi, i ∈ B) (7)

by which the B-sample selection is non-informative
given xi. We have then

E

(∑
i∈B

wiyi − Y
∣∣∣∣ xU

)
= E

(∑
i∈B

wix�
i β

)
− X�β = 0

given
∑

i∈B wixi = X, regardless of the initial weights
aB. Otherwise, this expectation would tend to 0, pro-
vided X̂(S) is an asymptotically unbiased estimator ofX,
under some suitable asymptotic setting. It follows that
the assumptions (6) and (7) are the key validity condi-
tions for the B-sample calibration estimator under the
SP approach.

The estimator (4) becomes the B-sample post-
stratification estimator in the special case where xi is
the post-stratum dummy index. For the QR approach,
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one can set ai to be the inverse post-stratum B-sample
fraction, which is equivalent to introducing the QR
assumption (3) in each post-stratum separately. This
QRx assumption provides then a validity condition for
the B-sample post-stratification estimator under the
QR approach. For the SP approach, the two assump-
tions (6) and (7) remain formally the same.

2.3. B-sample inverse propensity weighting

Suppose relevant covariates xB are available in the
sample B. The B-sample inverse propensity weighting
(IPW) estimator is constructed under theQR approach.
Suppose

pi = p(xi; η) > 0 (8)

i.e., the B-sample inclusion probability is completely
determined given xi, in the strictly positive paramet-
ric form p(xi; η), which may as well be referred to as
the QRx assumption. Provided xi is known for all the
units in the population, η can be estimated, say, by a
population estimating equation∑

i∈U
H(δi; η) = 0,

where E[H(δi; η)] = 0. Otherwise, suppose xS is obser
ved in a second probability sample S, one can use the
pseudo population estimating equation∑

i∈S
diH(δi; η) = 0

(Kim & Wang, 2018), where di is the sampling weight,
for i ∈ S, or some S-sampling design-consistent adjust-
ment of it. This requires that one is able to observe δi for
each unit i in S, in other words the two samples S and B
can be matched, which is an important assumption in
terms of application. To ensure thatH(δi; η) is the same
in both of these two estimating equations, i.e., whether
i ∈ S or just i ∈ U, one needs to assume that S-sampling
from U is non-informative for δi, so that

Pr(δi = 1 | xi, i ∈ S) = Pr(δi = 1 | xi, i ∈ U). (9)

Notice that, given non-informativeness (9), we have
E[H(δi; η)] = 0 for all i ∈ s, such that one can also use
the unweighted S-sample estimating equation, which is
given by ∑

i∈S
H(δi; η) = 0

instead of the pseudo population estimating equation.
Having obtained the parameter estimate η̂, one obtains
p̂i = p(xi; η̂) and the B-sample IPW estimator

Ŷ =
∑
i∈B

yi/p̂i, (10)

which is consistent for Y under mild regularity con-
ditions, if η̂ is consistent for η under some suitable

asymptotic setting. It follows that the QRx assump-
tion (8) is its key validity condition, whereas the non-
informativeness assumption (9) is needed in addition
when xi is only available in a probability sample S
instead of the population.

2.4. Another B-sample IPW estimator

Elliott and Valliant (2017) discuss another IPW estima-
tor (10), where pi is obtained with the help of a second
so-called reference probability sample S, and is given by

pi ∝ Pr(Si = 1 | xi, i ∈ U)
Pr(δi = 1 | xi, i ∈ B ∪ S)
Pr(Si = 1 | xi, i ∈ B ∪ S)

,

(11)
where Si = 1 if i ∈ S and 0 if i ∈ U \ S, and to fix
the idea one may suppose S ∩ B = ∅. First, the QRx
assumption (8) is retained. The definition of pi by (11)
can then be motivated as follows:

Pr(δi = 1 | xi, i ∈ U)

Pr(Si = 1 | xi, i ∈ U)

∝ Pr(xi | δi = 1, i ∈ U)

Pr(xi | Si = 1, i ∈ U)[
prop. to

Pr(δi = 1 | i ∈ U)

Pr(Si = 1 | i ∈ U)

]
∝ Pr(xi | δi = 1, i ∈ B ∪ S)

Pr(xi | Si = 1, i ∈ B ∪ S)

∝ Pr(δi = 1 | xi, i ∈ B ∪ S)
Pr(Si = 1 | xi, i ∈ B ∪ S)[
prop. to

Pr(δi = 1 | i ∈ B ∪ S)
Pr(Si = 1 | i ∈ B ∪ S)

]
provided the S-sample inclusion probability is also fully
determined by xi in the sense of (8). Thus the validity
condition for the IPW estimator (10) based on (11) is
that the QRx assumption (8) holds for both the samples,
given the same xi.

We make two observations. First, despite the super-
ficial resemblance to the propensity scoring method of
Rosenbaum and Rubin (1983), the above argument for
pi is not the same. As Rosenbaum and Rubin (1983)
state clearly before their first enumerated equation, ‘in
this paper, the N units in the study are viewed as a
simple random sample from some population’, where
N is the size of the combined sample of treatment and
non-treatment. The analogy to this combined sample is
B ∪ S here. However, it is generally untenable that B ∪ S
can be treated as a simple random sample from the pop-
ulation. Second, for any given probability sample S, it
is possible to identify the variables that determine the
designed inclusion probability, denoted by πi = π(zi),
for i ∈ U. There arises thus a question, ‘what if π(zi)
differs considerably from p(xi, η̂)?’ Moreover, one may
have more than one probability sample in which xi is
observed. There arises then a question, ‘which reference
sample should one use?’
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2.5. Samplematching estimator

Rivers (2007) applies the SP approach in situations
where a second probability sample S is available. Yang
andKim (2018) studymass imputationmethods, which
include the matching estimator of Rivers (2007) as a
special case. The sample matching (SM) estimator is
given by

Ŷ =
∑
i∈S

diŷi, (12)

where ŷi = yki , for ki = argminj∈B ‖xi − xj‖ based on a
chosenmetric ‖ · ‖. That is, yki is the nearest-neighbour
(NN) imputation value from the B-sample for i ∈ S.

To focus on the idea, assume for the moment
exact matching is the case, where xki = xi = x for
all i ∈ S and ki ∈ B. We have then E(ŷi | xi = x) =
E(yki | xki = x, ki ∈ B), which is the same as E(yi | xi =
x, i ∈ B) as if the unit i were in B. Given the non-
informativeness assumption (7) for the B-sample,
which Yang and Kim (2018) call the ‘ignorability’
assumption, we have

E

[∑
i∈S

diE(ŷi | xi)
]

= E

[∑
i∈S

diE(yi | xi, i ∈ B)

]

= E

[∑
i∈S

diE(yi | xi, i ∈ U)

]

=
∑
i∈U

E(yi | xi, i ∈ U) = E(Y | xU).

With respect to both the population model and the
design of S, the SM estimator (12) is prediction unbi-
ased for Y. Notice that in the case of S = U, the SM
estimator is just an NN-imputation method. Whether
S = U or not, the NN-imputed SM estimator is likely
to be less efficient than a prediction-imputed SM esti-
mator

Ŷ =
∑
i∈S

diE
(
yi | xi; β̂(B)

)
whenever a correct parametric specification of the con-
ditional mean (via β) is possible. The simulation results
of Yang and Kim (2018) show that NN-imputation is
less efficient than imputation based on semi-parametric
generalised additive models.

Now, it is not difficult to see that the consistency of
the SM estimator (12) can be established, given asymp-
totic exact matching instead, i.e.,

‖xi − xki‖ → 0 in probability, (13)

for any i ∈ S, as N → ∞ and nB/N = Op(1). Yang
and Kim (2018) make the assumption of ‘common
support’ to the same effect. To ensure that E(yi | xi,

i ∈ U) does not change abruptly as the value xi varies,
Yang and Kim (2018) assume that E(yi | xi, i ∈ U) is
continuous differentiable. Or, one may adopt the SPx
assumption below:

‖E(yi | xi, i ∈ U) − E(yj | xj, j ∈ U)‖
= O

(‖xi − xj‖
)

as N → ∞ (14)

(Chen & Shao, 2000, Theorem 1). It follows that the
assumptions (7), (13) and (14) are the key validity con-
ditions for the consistency of the SM estimator (12).

We make two observations. First, an attractive fea-
ture of the NN-imputation is that the imputed sam-
ple S looks more realistic and natural than, say, by
the regression prediction imputation. However, unless
the S-sampling is non-informative, the NN-imputed S-
sample will not resemble the true S-sample that could
have been observed, since

E(ŷi | xi, i ∈ S) = E(yi | xi, i ∈ U) �= E(yi | xi, i ∈ S),

where the inequality is the case unless S-sampling is
non-informative in the sense of (7). Second, for any
other covariate zi �= xi, including when zi contains the
S-sample design variables, we have

E(ŷi | zi, xi, i ∈ S) = E(yi | xi, i ∈ U)

�= E(yi | zi, xi, i ∈ U)

unless yi and zi are conditionally independent of each
other given xi. This is a general problem for statistical
matching of variables associated with distinct units, i.e.,
yi associated with xi for some i ∈ B and zi associated
with the same value xi but for some different unit in S.
The following example illustrates both remarks above.

Example: Let yi be independent of xi ∼ Unif(0, 1),
for any i ∈ U. Then, the SPx assumption (14) holds
trivially, as long as the marginal expectation E(yi)
exists. Next, suppose simple random sample B, so
that the non-informative assumption (7) holds, and
E(ŷi | xi, i ∈ S) = E(yi | i ∈ U) regardless of the exact
matching assumption. Suppose stratified simple ran-
dom S-sampling with two strata of different sampling
fractions, so that the S-sample inclusion probability is
not a constant. Then, the S-sampling is informative
(given xi) as long as the population stratum means are
different, since

E(ȳS | xS, S) = E(ȳS | S) �= E(Ȳ) = E(Ȳ | xU),

where ȳS is the true S-sample mean that is unknown,
since yi is not observed in S. It follows that the
NN-imputed S-sample {ŷi; i ∈ S} would look like a
sample generated by simple random sampling, rather
than the actual stratified sampling. Moreover, the SM-
estimator of stratum means, corresponding to say
zi = 1, 2, respectively, will be biased for the population
stratum means.
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3. More generally on validity conditions

Non-informative selection in form of (7) or (9) is a crit-
ical condition for all the methods in Section 2, which
make use of auxiliary variable xi. Two kinds of possible
violation of these assumptions are worth noting.

First, Kim and Rao (2018) point out an important
issue that has not received sufficient attention in these
methods, namely B-sample under-coverage is the case
if some population units have in fact zero chance of
being included in it. Under the SP approach, extrap-
olation of the conditional distribution of yi in the B-
sample to these population units can only be based on
subjective beliefs but not empirical evidence. The QR
approach is equally affected, since randomisation infer-
encewould have been invalidated even if pi were known
for all the B-sample units, let alone when it is unknown
and needs to be estimated. To address the issue, Kim
and Rao (2018) consider a two-phase SM estimator. Let
the S-sample be partitioned into S1 and S0, such that
S1 = {i; pi > 0} and S0 = {i; pi = 0}. First, estimate this
unobserved partition via the B-sample support:

Ŝ1 =
{
i; min

j∈B ‖xi − xj‖ < ε

}
.

Each S-sample unit that is unsupported in the B-sample
ε-neighbourhood is assigned to Ŝ0. Let us suppose this
partition estimator is consistent in the following sense:

|Ŝ1 ∪ S1|/|Ŝ1 ∩ S1| → 1 in probability,

asN → ∞ and ε → 0. Next, the two-phase SM estima-
tor is given as

Ŷ =
∑
i∈Ŝ1

diw2iŷi,

where
∑

i∈Ŝ1 diw2ixi = ∑
i∈S dixi. In other words, the

under-coverage is dealt with by the calibration of the
weights w2i. This can be motivated, provided the con-
ditional mean E(yi | xi, pi = 0) can be linearly related to
xi, and the relationship is the same for the units with
pi > 0, i.e., the under-coverage is non-informative for
the SP linear model.

Second, insofar one requires either an assumption
of SPx (7) or QRx (9), there is always the possibility
of heterogeneous mean, beyond what is controlled by
the chosen xi. Let Ux = {i; xi = x, i ∈ U} be of the size
Nx. Under the SP approach, which models the mean
μi of unit i by μ(xi), heterogeneous mean is the case
if μi �= μ(xi), despite

μ(x) =
∑
i∈Ux

μi/Nx (15)

and μ(xi) is statistically correct in that the μi’s average
toμ(x) over all the units inUx. Under theQR approach,

heterogeneous mean is the case if pi �= p(xi), despite

p(x) =
∑
i∈Ux

pi/Nx. (16)

Let us illustrate the concept of heterogeneous mean
with a simple example.

Example: Let x ≡ 1, such thatμ(xi) = μ, for all i ∈ U.
LetU = U1 ∪ U0 be a partition. LetU1 be of sizeN1 and
with mean μi = μ(1), for all i ∈ U1; let U0 be of size
N0 and with mean μi = μ(0), for all i ∈ U0. Suppose
μ(1) �= μ(0). Let μ = μ(1)N1/N + μ(0)N0/N. Then,
μi �= μ for any i ∈ U, but we still have

∑
i∈U μi/N =

μ, satisfying (15).

Heterogeneous mean affects the SP and QR appro
aches differently. Given (15), assuming μi = μ(x) for
i ∈ Ux is prediction unbiased, despite heterogeneous
mean, since∑

i∈Ux

[E(yi | δi) − μ(x)] =
∑
i∈Ux

[μi − μ(x)] = 0.

Meanwhile, given (16), assuming pi = p(x) for i ∈ Ux
yields

E

⎛⎝∑
i∈Ux

δiyi
p(x)

⎞⎠−
∑
i∈Ux

yi

= p(x)−1
∑
i∈Ux

(
pi − p(x)

)
yi �= 0

in which case the IPW estimator under the QP
approach may be biased, despite the model of pi is
statistically correct in the sense of (16).

The discussion above suggests that the formulation
of validity conditions in Section 2 is inadequate in
the presence of under-coverage and mean heterogene-
ity. Below we first reformulate the validity conditions,
which cover both the SP and QR approaches, despite
the presence of under-coverage and mean heterogene-
ity. We elaborate and illustrate these conditions for the
post-stratification and calibration estimators. Finally,
we discuss the difficulties of verifying these validity
conditions empirically.

3.1. Non-parametric asymptotic (NPA)
non-informativeness

We start by noticing that the B-sample mean equals to
the population mean, denoted by ȳB = Ȳ , provided

CovN(δi, yi)

= 1
N

∑
i∈U

δiyi −
(
1
N

∑
i∈U

δi

)(
1
N

∑
i∈U

yi

)
= 0,

EN(δi) =
∑
i∈U

δi/N > 0,
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where EN and CovN denote, respectively, expectation
and covariance with respect to the empirical distri-
bution function that places point mass 1/N on each
population unit. This provides an empirical formu-
lation of the non-informativeness of the B-sample
observation mechanism with respect to the outcome
of interest. Similar expressions have appeared in var-
ious discussions of the potential sample mean bias
due to the observation mechanism, such as unequal
probability sampling (Rao, 1966), survey nonresponse
(Bethlehem, 1988) or big data (Meng, 2018). It moti-
vates the following non-parametric asymptotic (NPA)
non-informativeness assumption in the absence of any
covariates:

lim
N→∞ CovN(δi, yi) = 0, i.e., non-informative B-selection

lim
N→∞EN(δi) = p > 0, i.e., non-negligible B-selection. (17)

The NPA assumption (17) encompasses both the SP
and QR approaches. For the SP approach, taking the
conditional expectation of yi’s conditional on the δi’s
yields

E
(
CovN(δi, yi) | δU

)
= 1

N

∑
i∈U

δiμi −
(
1
N

∑
i∈U

δi

)(
1
N

∑
i∈U

μi

)
→ 0

given NPA non-informative B-selection, where
∑

i∈U
δi/N > 0 given non-negligible B-selection in addition.
Under this condition, the B-sample expansion estima-
tor (1) is asymptotically prediction unbiased from the
SP perspective. For the QR approach, taking the expec-
tation of δi s with the yi s being constants yields

E
(
CovN(δi, yi); yU

)
= 1

N

∑
i∈U

piyi −
(
1
N

∑
i∈U

pi

)(
1
N

∑
i∈U

yi

)
→ 0,

E
(
EN(δi)

) =
∑
i∈U

pi/N → p > 0.

In particular, the NPA assumption (17) allows for 0 ≤
pi ≤ 1, so that the B-sample expansion estimator (1)
remains consistent from theQRperspective, even in the
presence of under-coverage of the units with pi = 0 or
non-representative units with pi = 1.

Example: Let U = U1 ∪ U0 be a partition. Let U1 be
of size N1, where pi ≡ 1 for i ∈ U1; let U0 be of size
N0, where pi ≡ 0 for i ∈ U0. Despite under-coverage of
B ≡ U1, the first NPA condition implies ȳB − Ȳ → 0,
given the second condition N1/N → p > 0.

3.2. Post-stratification estimator

Consider post-stratification by xi, for i ∈ U. Provided
the assumption (17) holds within each post-stratum,

the B-sample post-stratification estimator is asymptot-
ically unbiased from both the SP and QR perspectives.
Below we consider the QR approach. The SP approach
is a special case of the calibration estimator discussed
in Section 3.3.

Consider first the hypothetical estimator with
known px = ∑

i∈Ux
pi/Nx:

Ỹ =
∑
x

∑
i∈Ux

δiyi/px.

To fix the idea for variance estimation, suppose inde-
pendent Bernoulli distribution of δi with probability pi,
where 0 ≤ pi ≤ 1. The variance of Ỹ is then given by

V(Ỹ) =
∑
x

∑
i∈Ux

piy2i /p
2
x −

∑
x

∑
i∈Ux

p2i y
2
i /p

2
x.

An unbiased estimator of the first term of the variance,
denoted by τ1 is given by

τ̂1 =
∑
x

∑
i∈Ux

δiy2i /p
2
x =

∑
x

p−2
x

∑
i∈Bx

y2i ,

where Bx = B ∩ Ux. An unbiased estimator of the sec-
ond term, denoted by τ2 is given by

τ̂2 =
∑
x

p−2
x

∑
i∈Ux

δipiy2i

=
∑
x

p−1
x

∑
i∈Ux

δiy2i =
∑
x

p−1
x

∑
i∈Bx

y2i ,

where the second equality follows given the additional
QRx assumption, i.e., pi = px for i ∈ Ux. Putting τ̂1 and
τ̂2 together, we obtain

V̂(Ỹ) =
∑
x

(
p−1
x − 1

)
p−1
x

∑
i∈Bx

y2i .

Now, the post-stratification estimator, denoted by Ŷ ,
is obtained from Ỹ on replacing px by p̂x = nxB/Nx,
wherenxB is the observed size ofBx andNx is the known
post-stratum population size. Expanding p̂x around px
(i.e., linearisation) would yield an asymptotically valid
estimator of the unconditional variance of Ŷ .

3.3. Calibration estimator

The post-stratification estimator is infeasible, in cases
when the B-sample contains empty cells, or when the
population size Nx is not all known. Let

ti = (t1i, t2i, . . . tKi)�

= (
t1(xi), t2(xi), . . . tK(xi)

)� = t(xi)

be a vector ofmany-to-onemappings of xi, such that the
population total T = ∑

i∈U ti is known, and the sample
total t = ∑

i∈B ti has only non-zero components.
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As discussed for the calibration estimator in
Section 2, generally one is not able to set the initial
weight to be the inverse of B-sample inclusion proba-
bility in practice. Suppose one simply starts with initial
equal weights ai = N/nB for all i ∈ B. The linear cali-
bration estimator (Deville & Särndal, 1992) is given by

Ŷ =
∑
i∈B

wiyi,

where the weights {wi; i ∈ B} minimise the distance to
{ai; i ∈ B} as measured by∑

i∈B
(wi − N/nB)2

=
∑
t

⎛⎝∑
i∈Bt

w2
i − 2(N/nB)

∑
i∈Bt

wi + ntB(N/ntB)2
⎞⎠

subjected to the constraints
∑

i∈B witi = T, where
Bt = {i; ti = t, i ∈ B} and ntB > 0. It follows that wi =
wt , for i ∈ Bt , since the only thing that matters to the
calibration constraints is

∑
i∈Bt wi now that ti = t for

i ∈ Bt and, given whatever
∑

i∈Bt wi, the term
∑

i∈Bt w
2
i

is minimised at wi = wt for i ∈ Bt .
As the first validity condition for Ŷ , suppose there

exists a vector βK×1, such that∑
i∈Ut

εi/Nt → 0 (18)

for each t-value, as N → ∞, where εi = yi − t�i β , and
Nt is the population size of Ut = {i; ti = t, i ∈ U}. The
condition (18) is analogous to the SPx assumption (6),
where the covariate xi is replaced by ti here.Moreover, it
relaxes the model (6) of the conditional mean, allowing
for potential heterogeneous mean similar to (15). Now
that

∑
i∈B witi = T, we have

Ŷ − Y =
∑
i∈B

wi(t�i β + εi) −
∑
i∈U

t�i (β + εi)

=
∑
i∈B

wiεi −
∑
i∈U

εi.

Given (18),
∑

i∈U εi/N → 0 as N → ∞. Moreover, we
have

1
N

∑
i∈B

wiεi =
∑
t

wt

N

∑
i∈Ut

δiεi

=
∑
t

wt
Nt

N

⎛⎝CovNt (δi, εi) +
⎛⎝ 1
Nt

∑
i∈Ut

δi

⎞⎠
⎛⎝ 1
Nt

∑
i∈Ut

εi

⎞⎠⎞⎠ → 0

as N → ∞, given

CovNt (δi, εi) → 0

ENt (δi) =
∑
i∈Ut

δi/Nt → pt > 0 (19)

for any given t, which is an adaption of the NPA non-
informativeness assumption (17) to the present setting.
It follows that the two assumptions (18) and (19) are the
key validity conditions for the calibration estimator to
be consistent for Y.

For variance estimation, suppose again independent
Bernoulli distribution of δi with probability pi, where
0 ≤ pi ≤ 1. An approximate variance estimator for the
calibration estimator Ŷ can then be given as

V̂(Ŷ) =
∑
t

(
p̂−1
t − 1

)
p̂−1
t

∑
i∈Bt

(yi − t�i β̂)2,

where p̂t = ntB/Nt , and β̂ = (
∑

i∈B witit�i )−1

(
∑

i∈B witiyi).

3.4. Validation of non-informative B-sample
selection

Of the validity conditions discussed above, the criti-
cal assumption is non-informative B-sample selection,
which can be stated in various forms. For instance,
given the non-informativeness assumption (17), an
additional assumption like (18) can in principle to val-
idated empirically. However, the non-informativeness
condition may not hold exactly, and it is generally
impossible to verify only based on the data used for the
estimation. Below we discuss the issue in more detail.

Consider first the propensity model pi = p(xi; η)

under the QR approach. Suppose known xU to avoid
additional complications otherwise, the census score
equation is∑

x

∂p(x; η)

∂η

[
nxB

p(x; η)
− Nx − nxB

1 − p(x; η)

]
= 0,

which is always satisfied by p(x; η̂) = nxB/Nx, i.e., the
saturated model. Insofar as a non-saturated model of
p(xi; η) does not fit perfectly to the data, one can always
attribute its cause to the non-saturated functional form
of p(xi; η), instead of rejecting the assumption that the
set of covariates xi ‘fully govern the sampling mecha-
nism’. In this sense, the validity of the latter assumption
cannot be refuted empirically.

Next, for the SP approach, where both δi and yi
are treated as random, assume the B-sample inclusion
probability pi depends on xi, where xi is known for
i ∈ U to avoid extra complications. For goodness-of-
fit checks, let zi be a known covariate, which is distinct
from xi. We have

E(zB) =
∑
i∈U

pizi =
∑
x

p(x; η)
∑
i∈Ux

zi

=
∑
x

p(x; η)NzZ̄x,

Z = E

(∑
i∈U

δizi/pi

)
= E

[∑
x

nxBz̄xB/p(x; η)

]
,
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where Z̄x = ∑
i∈Ux

zi/Nx and z̄xB = ∑
i∈Bx zi/nxB. The

two observed checks are⎧⎪⎨⎪⎩
zB ≡

∑
x

nxBz̄xB =
∑
x

p̂xNxZ̄x

Z =
∑
x

nxBz̄xB/p̂x

ifzi≡1⇒

⎧⎪⎪⎨⎪⎪⎩
∑
i∈U

p̂i = nB∑
i∈B

1/p̂i = N.

Setting p̂x = nxB/Nx, which fits the assumption
pi = p(xi; λ), both the two checks are satisfied given
Z̄x = z̄xB, i.e., the B-sample expansion estimate of Zx
is perfect for all x. This would suggest that the NPA
assumption (17) holds for zi given xi and may be con-
sidered to support the plausibility of the NPA assump-
tion (17) for yi given xi, provided zi is known to be corre-
lated with yi, but not otherwise. However, in situations
where such a covariate zi is available, it seems natural
that it should be used in the estimation of Y to start
with. The two checks amount then to the case of zi ≡ 1
and are satisfied trivially by setting p̂x = nxB/Nx. Thus
one is faced with a dilemma, where building the best
model for estimation would at the same time reduces
the ability to verify it.

4. Using additional probability sample of
outcomes

So far we have only considered the situations, where
the outcome values of interest are only observed in
the non-probability sample B. Obviously, the situation
changes completely, given in addition a probability sam-
ple of outcomes. Below we discuss shortly two different
approaches to inference in the absence of any relevant
covariates. The ideas remain the same in situations with
additional covariates.

The first approach aims at consistent estimation
combing the two samples, as for example, discussed
in Tam and Kim (2018a, 2018b), where the probabil-
ity sample is taken from the whole population and
overlaps with the B-sample. These authors also dis-
cussed additional issues such as measurement errors or
nonresponse. Here we discuss the situation where the
probability sample is taken from the B-sample com-
plement population. Given the non-probability sample
observations yB, one may treat (B, yB) as fixed, and
select a second supplementary sample from the rest
of the population, denoted by S ⊂ U \ B. Given the S-
sample observations of the outcome, denoted by yS, it
is straightforward to obtain a test for H0 : Ȳ = ȳB vs.
H1 : Ȳ �= ȳB, given as

D = (ȳB − ̂̄Yc
B)

2/V̂(̂̄Yc
B) ∼ χ2

1 ,

where ̂̄Yc
B is an S-sample estimator of the population

mean outside of the B-sample, i.e.,

Ȳc
B =

∑
i∈U\B

yi/(N − nB)

and V̂(̂̄Yc
B) is the associated variance estimator. If H0

is not rejected, then there is the possibility of using ȳB
as an estimate on its own, without regular concurrent
surveys in future. This would achieve the greatest cost
savings. To this end, one may consider S as a particu-
lar form of audit sampling, whose aim is to validate the
big-data estimate ȳB and to provide a meaningful accu-
racy measure that can accommodate its potential bias.
Zhang (2019) develops an approach to audit sampling
inference for big data statistics.

Let WB = nB/N. A consistent estimator of Ȳ using
both samples is given by

̂̄YS = WBȳB + (1 − WB)ȳw and ȳw =
∑

i∈S yi/πi∑
i∈S 1/πi

,

where πi is the S-sample inclusion probability, and the
validity of ̂̄YS now derives from probability sampling
of S, regardless of how the B-sample is generated. The
relative efficiency (RE) against the setting without the
B-sample can be given by

RE = [
(1 − WB)

2V(ȳw)
]
/V(̂̄Y ′),

where ̂̄Y ′ is a hypothetical probability sample from the
whole population U, which has the same sample size
and the same sampling design as S. One may refer to
this as the split-population approach to inference, which
is an age-old idea for combining survey sampling with
administrative data. The efficiency gain would be sub-
stantial provided theB-sample is large. In fact, the larger
the B-sample, the greater is the efficiency gain.

Under the second approach to inference, consider a
composite estimator given by

̂̄YC = γ ȳB + (1 − γ )ȳw,

where γ is the composition weight, for WB ≤ γ ≤ 1.
Notice that when γ = WB, the composite estimator is
just the split-population estimator ̂̄YS above, which is
consistent for Ȳ . As γ increases fromWB towards one,
one risks introducing greater bias, insofar as ȳB �= Ȳ .
However, the composite estimator may yield a smaller
mean squared error (MSE) of estimation, provided this
is desirable. One is then essentially trading the increas-
ing bias (γ − WB)(ȳB − Ȳc

B) against the decreasing
stand error (1 − γ )SE(ȳw), as γ increases. The compos-
ite estimator that achieves the minimum MSE is given
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by

γ = V(ȳw) + WB(ȳB − Ȳc
B)

2

V(ȳw) + (ȳB − Ȳc
B)

2 .

Estimating Ȳc
B by ȳw in application, one can use

γ̂ = min(WB + (1 − WB)V̂(ȳw)/(ȳB − ȳw)2, 1).

The validity of the composite approach derives from
probability sampling of S, regardless of how the B-
sample is generated. Again, the bigger theB-sample, the
better it is.

5. Summary

All the estimators from non-probability sample obser-
vations reviewed in Section 2 are model based, whether
the modelling is carried out under the SP or QR
approach. Two features regarding the model covariate
xi, for i ∈ U, are worth recapitulating:

• compared to the situation with known xU , making
use of an additional probability sample xS entails a
loss of efficiency, as can be expected;

• the availability of an additional probability sam-
ple without the outcome variable is not a principal
advantage, since it does not simplify the validity
conditions compared to the situation where xU is
known, but it does resolve the practical difficulty
when xU is unavailable yet some functions of xU are
needed for descriptive inference.

The situation changes completely, given in addition a
probability sample of outcomes. The probability sample
then enables valid descriptive inference in combination
with the non-probability probability sample. Depend-
ing on the circumstances, the probability sample can
either be selected from thewhole population, or just the
rest population outside the non-probability sample.

Finally, in situations where the non-probability sam-
ple is large, the cost savings will be the greatest if it
can replace regular survey sampling altogether. Use of
an additional probability audit sample is needed to val-
idate the non-probability sample estimate, in spite of
possible failure of its underlying model assumptions,
and to provide a meaningful accuracy measure that can
accommodate its potential bias.
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